1646

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

Troubleshooting Programmable Data Planes via
Real-Time Table Information Recording

Chengyuan Huang™, Member, IEEE, Yibo Xiao, Tianfan Zhang™, Chao Yang, Dong Zhang*, Bingheng Yan"™,
Ahmed M. Abdelmoniem™, Senior Member, IEEE, Gianni Antichi, Xiaoliang Wang"™~, Member, IEEE,
Fu Xiao™, Senior Member, IEEE, Wanchun Dou ", Guihai Chen", Fellow, IEEE,
Hao Yin"“, and Chen Tian"“, Senior Member, IEEE

Abstract— While the flexibility of programmable switches
brings opportunities, it also introduces security risks. Hence, it is
vital to conduct effective troubleshooting in the programmable
switch to mitigate frequent network failures. However, trou-
bleshooting programmable switch failures is challenging due to
their enhanced flexibility and functionality compared to regular
switches, posing increased difficulty in debugging, particularly
with limited debugging tools and information. To address this
problem, we propose an efficient troubleshooting method that
records real-time information about packets in the data plane,
including the tables involved in packet processing. Unfortunately,
due to hardware limitations, it is infeasible to record all tables’
information in the data plane. Thus, the key is to find the table
set reflecting the execution path a packet goes through while min-
imizing the resource overhead. We first represent P4 programs
as a probabilistic transition directed acyclic graph (DAG) and
employ information entropy to quantify the information within
a set of tracked tables. Then, we adopt a two-step approach and
design algorithms to find both optimal and approximately optimal
table record plans. The evaluation results show the efficacy of
the proposed method, including achieving the same path recovery
rate as the related works with less than one-third of the resource
consumption.

Received 23 April 2024; revised 1 December 2024; accepted
9 February 2025; approved by IEEE TRANSACTIONS ON NETWORKING
Editor K. Park. Date of publication 19 February 2025; date of current version
20 August 2025. This work was supported in part by the National Key
Research and Development Program of China under Grant 2022YFB2901502,
in part by the Key Program of Natural Science Foundation of Jiangsu under
Grant BK20243053, in part by the National Natural Science Foundation of
China under Grant 62325205 and Grant 62172204, in part by the Taishan
Industrial Experts Program under Grant tscx202312005, and in part by
Nanjing University-China Mobile Communications Group Company Ltd.
Joint Institute. (Corresponding author: Chen Tian.)

Chengyuan Huang, Yibo Xiao, Tianfan Zhang, Chao Yang, Xiaoliang Wang,
Wanchun Dou, Guihai Chen, and Chen Tian are with the State Key Laboratory
for Novel Software Technology, Nanjing University, Nanjing 210023,
China (e-mail: ryanhuangl014@gmail.com; 201220094 @smail.nju.edu.cn;
zhangtf19 @gmail.com; cyang @smail.nju.edu.cn; waxili@nju.edu.cn;
douwc@nju.edu.cn; gchen@nju.edu.cn; tianchen@nju.edu.cn).

Dong Zhang and Bingheng Yan are with Jinan Inspur Data Company Ltd.,
Jinan 250101, China (e-mail: zhangdong @inspur.com; yanbh@inspur.com).

Ahmed M. Abdelmoniem is with the School of Electronic Engineering and
Computer Science, Queen Mary University of London, E1 4NS London, U.K.
(e-mail: ahmed.sayed @qgmul.ac.uk).

Gianni Antichi is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, E1 4NS London, U.K., and also
with the Dipartimento Elettronica, Informazione e Bioingegneria, Politecnico
di Milano, 20133 Milan, Italy (e-mail: g.antichi@qmul.ac.uk).

Fu Xiao is with the School of Computer Science, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China (e-mail: xiaof@
njupt.edu.cn).

Hao Yin is with the Beijing National Research Center for Information
Science and Technology (BNRist), Tsinghua University, Beijing 100084,
China (e-mail: h-yin@mail.tsinghua.edu.cn).

Digital Object Identifier 10.1109/TON.2025.3541884

Index Terms—Programmable data plane, network

troubleshooting.

I. INTRODUCTION

ROGRAMMABLE data planes have emerged as an

alternative to the traditional data plane, whose func-
tionalities were hard-coded. Network applications based on
programmable switches have sprung up, such as network
measurement [1], [2], [3], in-network computing [4], and in-
network storage [5], [6]. Programmable switches are also
deployed on a large scale in production networks as cloud
gateways [7], [8], [9].

However, these in-network applications can also bring new
problems to the packet processing pipeline in the switches.
The problems can be caused by program bugs in the data
plane or control plane, compiler bugs, hardware errors, etc.
While existing network troubleshooting is already challenging,
the complexity is heightened with programmable switches.
Unlike regular switches, programmable switches offer exten-
sive data plane functionalities that were traditionally handled
by a general-purpose CPU. However, constrained hardware
resources prevent programmable switches from generating
comprehensive logs and debugging information akin to CPUs,
resulting in insufficient data to pinpoint network issues.

Some existing works [10], [11], [12], related to network
troubleshooting, tend to mirror packets from switches to
CPUs and then analyze the packets to find the root cause.
However, these works focus on traditional network errors such
as routing errors, ACL misconfigurations, etc., and do not
consider errors originating from new functionalities introduced
by programmable switches. For example, in Sailfish [7], some
network functions such as DDoS, firewall, and NAT are
offloaded to the programmable switches. The failure of these
programmable switches’ new complex functions is beyond the
capability of existing network troubleshooting systems.

To tame the complexity in the data plane, it is essential
to track the complete behaviors of packets within the switch
for troubleshooting. Snapshot is a useful tool provided by
commercial switches like Tofino [13]. It can capture a network
packet in programmable switches and produce useful informa-
tion about the packet, such as state data and behavior of the
packet in the switch. However, Snapshot has key limitations
(elaborated in Section II-B), e.g., it cannot produce debugging
information at runtime. Consequently, Snapshot is suitable for

2998-4157 © 2025 1IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6079-6579
https://orcid.org/0009-0002-7306-9933
https://orcid.org/0009-0008-6574-6395
https://orcid.org/0009-0009-6255-1055
https://orcid.org/0000-0002-1374-1882
https://orcid.org/0000-0002-6063-4975
https://orcid.org/0000-0002-3410-8621
https://orcid.org/0000-0003-1815-2793
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-7829-7196
https://orcid.org/0000-0003-2710-7628

HUANG et al.: TROUBLESHOOTING PROGRAMMABLE DATA PLANES VIA REAL-TIME TABLE INFORMATION RECORDING

debugging when a network failure is reproducible, but fails to
handle many unreproducible network failures [14].

To monitor the complete processing behavior of packets
in the data plane, the real-time table information should
be recorded for each packet at runtime. This provides the
fine-grained processing information for troubleshooting. Using
this information, we can replay each packet’s processing to
detect errors effectively. For example, consider a P4 program
that specifies a packet must pass through Table A before
reaching Table B. However, due to a compiler error—common
in practice [15]—Table A and Table B are mistakenly placed
in different conditional branches, resulting in packets that hit
Table A never reaching Table B. In such cases, existing trou-
bleshooting tools require significant effort to determine which
table caused the error. In contrast, by recording real-time table
information for each packet during runtime, we can easily
pinpoint that the issue arises from the incorrect placement
of Table B, thereby identifying the specific compiler error.
Specifically, the recorded table information includes execution
and hit information. The execution information refers to which
tables the packet goes through, while the hif information refers
to whether these tables are hit or not. This information is
stored in Packet Header Vectors (PHVs) and is appended to
the packet header when the packet is mirrored. Examining the
real-time table information in the mirrored packet can provide
accurate and comprehensive information for the execution
path, significantly facilitating troubleshooting.

Unfortunately, it is impractical to record information for all
tables due to hardware constraints in programmable switches
regarding PHV and stage resources [16], [17], [18]. On the one
hand, PHVs are used to record table information; however, due
to their limited capacity, e.g., less than 80 bits are available
after enabling the basic functionalities [11], the number of
tables that can be tracked is constrained. On the other hand,
stages serve as action units in the switch pipeline, and a table
must be placed in one of the stages. However, recording table
information may introduce a write-write dependency between
tables, preventing them from sharing the same stage and thus
increasing the required stages in the P4 program. Given the
limited number of stages in a programmable switch, e.g.,
12 stages in the Tofino chip [13], the dependency between
tables exacerbates the stage scarcity problem, resulting in
fewer trackable tables. Hence, with a real P4 program deploy-
ment that may contain over a hundred tables inside, e.g., the
basic switch functionality switch.p4, recording every table
information is infeasible. Therefore, designing an effective
table record plan that covers the crucial execution path and
maximizes table information collection within hardware con-
straints poses a great challenge. To the best of our knowledge,
no prior work has adequately solved this problem.

To tackle it, we first introduce the entropy for assess-
ing information in tracked tables and use the entropy to
guide us to derive a table record plan that induces efficient
coverage containing more information. Specifically, in infor-
mation theory [19], the entropy represents the average level
of information and can be used to evaluate the information
within a set of tables. The insight is that a table set with
higher informativeness indicates a wider range of possibilities,
necessitating the need to record these tables’ information. For

1647

example, if we can find a minimal table set with the highest
informativeness, we can monitor the complete execution path
for more packets by examining the packets’ header, with the
minimal number of tables. Hence, we ingeniously transform
the original problem of finding an efficient table record plan
that tracks the execution path of more packets into identifying
a table set with higher information entropy within hardware
constraints.

Later, to apply information entropy, we introduce proba-
bility into the procedure of the table set finding. Therefore,
we first model the execution of a P4 program as a probabilistic
transition direct acyclic graph (DAG). Then, we design a
depth-first search (DFS)-based algorithm to efficiently com-
pute the information entropy from a set of tracked tables. The
objective of leveraging the information entropy as a metric is
to find a table record plan with the largest information entropy
while meeting the switch hardware constraints. It is a complex
combinatorial optimization problem. To solve it, we adopt a
two-step approach, first generating a set of candidate tables
according to a certain strategy, and then using a Satisfiabil-
ity Modulo Theories (SMT) solver to determine whether it
satisfies the constraints. We design two strategies, Branch-and-
Bound (BnB) and Greedy Algorithms, to generate a candidate
table set and obtain the optimal and approximately optimal
table record plans, respectively.

To simplify the record plan computation, we first consider
only the table execution information when introducing our
information entropy model and algorithms in Section IV.
We then extend the model to include the table it information
and revise the algorithm to solve the extended problem in
Section V. Our contributions are as follows:

1) We record real-time table information in the pro-
grammable data plane for troubleshooting, while consid-
ering the limitations of available resources.

2) We first leverage the information entropy as the metric to
select recorded tables and design a DFS-based algorithm
to calculate the entropy efficiently.

3) We propose a two-step solution using Branch-and-Bound
and Greedy algorithms to find the optimal and approxi-
mately optimal table record plans, respectively.

4) We evaluate the proposed approach using real P4
programs and demonstrate its effectiveness in achiev-
ing low-overhead troubleshooting of programmable data
planes.

II. BACKGROUND AND MOTIVATION
A. Programmable Switch

Programmable switches provide engineers with the flexibil-
ity to customize their packet processing logic in languages
like P4 [20]. Engineers can specify the parser which extracts
headers of a packet into metadata and match-+action tables in
the data plane. A packet passes through different tables and
if it matches an entry of each table, the corresponding action
is executed. Branch conditions are supported in P4 so that
packets may go through different processing orders. The P4
program can be modeled as a DAG, in which nodes represent
the tables or statements, and edges represent the execution
order.

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

1648

From the perspective of hardware architecture, pro-
grammable switches consist of several Match-Action Unit
(MAU) stages. All tables in a P4 program are placed into
these MAU stages. Each MAU stage has its isolated hardware
resources, such as SRAM, TCAM, Stateful ALU, etc. Multiple
tables can be placed in the same stage to achieve parallelization
without violating the hardware constraints. The switch also has
PHYV resources, which are used to store some fields extracted
by the parser, metadata, and some temporary variables.

B. Debugging Programmable Switch

Snapshot is a useful debugging tool provided by Tofino
switches [13]. Engineers can set a trigger in a pipeline and
it will capture the first network packet that satisfies the trigger
condition. Snapshot will show all the information about this
packet at each stage, i.e., all the fields of the PHYV, the
executed tables, and the matched actions. This information can
effectively help engineers to locate problems in P4 programs.

Unfortunately, Snapshot has some limitations. First of all,
Snapshot can only capture the first network packet that meets
the conditions, so it may miss the following packets of interest.
Secondly, Snapshot can only capture the information of a net-
work packet in one pipeline at a time. This can be problematic
since Tofino switches have two pipelines (i.e., Ingress and
Egress) and the number of pipelines can be 4 or more for P4
programs that use pipeline folding technology [7]. Thirdly, the
setting of triggers has its limitations. Based on our experience
with Tofino switches, we find that only PHV fields that appear
in the branch condition or the key of a table can be used as the
trigger condition. Therefore, there may be a situation where a
packet passes through the switch, but Snapshot cannot capture
the packet. Finally, Snapshot is an offline debugging tool
similar to the GNU Project Debugger (GDB), which does not
provide real-time feedback for every network packet. While
Snapshot is effective for troubleshooting reproducible network
failures and can offer valuable insights, not all network fail-
ures are reproducible. Many network issues may temporarily
resolve after a reboot [14], making Snapshot less useful in
such cases.

C. Real-Time Recording in Packet Header

The switch programmability makes it possible to record
table information of network packets at runtime. For example,
if we want to know whether the packet has passed a certain
table, we can assign a variable path, and then add a line of
code to the table’s actions, which sets one bit of path to 1.
Then, it is easy to determine whether the packet has passed
through the table by examining the value of the path variable.
To communicate the path value outside the switch, we can
mirror the packet to a specific port and append the path value
to the packet’s header. By parsing the appended headers of the
mirrored packet, the packet’s execution path within the switch
can be recorded.

However, due to the hardware limitations of programmable
switches, it is infeasible to record information about all tables.
The hardware bottleneck mainly results from the scarcity of
the PHV and stages. 1) The PHV scarcity. If we record

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

all tables’ execution information, then one bit should be
assigned to each table. As a result, for a basic forwarding
program that has O(100) tables, at least O(100) PHV bits are
needed for recording. If the switch performs more functions
or records finer-grained information, more PHVs are required,
e.g., if the table hit information is recorded, 2x PHV bits
will be consumed. However, PHVs are very scarce resources,
e.g., the total PHV capacity of the Tofino chip is only 4K
bits. The implemented functionalities consume the majority
of the PHVs. For instance, after implementing the basic
switch functions (switch.p4) and the flow event telemetry
(netseer [11]), the PHVs consumption already exceeds 98%
and the available PHVs is less than 80 bits. Consequently,
given the common case where over a hundred tables are in the
data plane, assigning a PHV bit for each table for recording
is infeasible.

2) The stage scarcity. The number of available stages also
limits the table record plan. This is because the placement of
tables into stages is primarily constrained by table dependen-
cies. Only independent tables that can be parallelized can be
placed in the same stage. However, PHVs consist of 8-bit, 16-
bit, and 32-bit containers, indicating that multiple tables may
share a single PHV container to record their information. This
introduces write-write dependencies [8] between these tables,
preventing them from being placed in the same stage. As a
result, more stages are required to accommodate the same
number of tables. Given the limited number of stages (e.g.,
12 stages in Tofino [13]) and the large number of deployed
tables (e.g., O(100) tables), finding a feasible table placement
within the stage constraint becomes a significant challenge.

III. INFORMATION ENTROPY

Because of the limitations introduced in Section II-C, not all
the information can be recorded in the data plane, and so we
have to use limited resources to record as much information
as possible. To find the optimal solution for table information
collection, a metric to evaluate the various table record plans
is needed. This section introduces the concept of information
entropy and explains how it can be applied to the scenario of
table information collection.

Given a P4 program, which consists of n tables and PHV
containers, which are available for collecting table informa-
tion. PHV containers are classed into groups of 8-bit, 16-bit,
or 32-bit, to which we assign the tables without violating
the constraints. Technically, more bits can be allocated to a
table for collecting more information. The states of a table
can be divided into three types, not executed, executed but
not hit, and hit, which represent that the packet does not
pass through the table, passes through the table but does
not hit any entry, and hits an entry, respectively. We refer
to whether a table is executed as execution information and
whether a packet hits an entry in the table as hit information.
Allocating 1 bit can record the table execution information,
and allocating 2 bits can record all three states, i.e., both
the execution information and hit information are recorded.
Allocating more bits can record more detailed information,
such as which action is matched and executed. In order to
simplify the problem, we will first assign only one bit to a

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: TROUBLESHOOTING PROGRAMMABLE DATA PLANES VIA REAL-TIME TABLE INFORMATION RECORDING

start
v
cond1l
p2
v
p4
cond2
p5
@ i
p7 .
exit

Fig. 1. Probabilistic transition DAG.

table to record table execution information. We consider the
table hit information in Section V.

In Section III-A, we reinterpret a P4 program as a prob-
ability transition DAG; Section III-B introduces how we use
information entropy as a metric to evaluate the table execution
information; Section III-C introduces an efficient algorithm to
compute information entropy.

A. Probabilistic Transition DAG

As introduced in Section II-A, each P4 program can be
viewed as a DAG. Whenever a packet passes through the
processing pipeline, it will take different branches and may
hit different match-actions according to the value of its header
and the match-action entries in tables. From the perspective of
data streams, the P4 program can be regarded as a probabilistic
transition DAG. Fig. 1 is an example of a probabilistic tran-
sition DAG. The branch selection and table matching of each
packet in the stream can be viewed as probabilistic behavior.
The round node represents a table in the P4 program into
which we can inject code to record table information. The
square node represents an if condition statement in the P4
program into which we cannot add code for recording table
information. Each directed edge has a weight that represents
the probability of transitioning from one node to another node.
For instance, in the example of Fig. 1, when a packet in the
data stream passes through the condl node, it will either pass
through the tbl] table with probability p, or arrive directly at
the cond2 statement with probability ps.

Since all packets entering a table will exit the table, the
sum of all incoming edge probabilities and all outgoing edge
probabilities of any node will always be equal, i.e., p1 = p2 +
P3,P2 = p4,P3 + P4 = p5 + pe,ps = pr. Each DAG has a
start node and an exit node, and their probability is 1, i.e.,
p1=1,ps +p7r =1

We can use P4 counter primitive [20] to count the selection
of different branches and the hits of each table. The counters
can be used to measure the frequency of the estimation
of the probability. Unfortunately, programmable data plane
resources are limited, and assigning a counter to each table
is impractical. To overcome this issue, the data stream can

1649

Recorded Table(s) Entropy
A 0
B -plogzp-(1-p)logz(1-p)
C -plogzp-(1-p)logz(1-p)
D 0
B,C -plogzp-(1-p)logz(1-p)

Fig. 2. A simple DAG and its entropy.

be sampled and then replayed on the P4 software switch,
e.g., BMv2 [21] or Tofino’s ASIC emulator, to estimate the
probability associated with all the tables.

B. The Entropy Metric

Because of hardware limitations, it is not possible to record
all the table execution information. However, we observe that
it is unnecessary to record all tables. Specifically, we observe
that not all tables contain useful information, and some tables
contain repeated information. The left part of Fig. 2 shows a
simple probabilistic transition DAG. It shows that Table A and
Table D are bound to be executed, so their probability is 1,
and they do not contain the execution information from an
entropy perspective. The execution information of table B and
table C overlaps with each other because these two tables are
complementary, i.e., when table B is not executed, that means
table C must be executed. Therefore, in order to obtain all
the table execution information of the DAG, we only need to
record either table B or table C but not all four tables.

Therefore, to determine which tables to record, we need to
measure the information contained in different table record
plans. In this work, we use information entropy [19] as a
metric to measure the information of table record plans. The
execution of a table can be regarded as a binary (0 or 1)
random variable. So, a plan for table information collection
can be considered as a set of multiple random variables
corresponding to each table. Then, the joint entropy of these
random variables can be regarded as the entropy metric of
the plan. Fig. 2 demonstrates a simple DAG and the entropy
of some recorded tables. For example, the execution state of
table A is represented as a random variable @ where 1 means
executed and 0 means not executed. The information entropy
of a is

Zap(a)loga(1/p(a)) = 1+ loga(1) +0 =0

Similarly, we can calculate the information entropy of record-
ing table B, C and D. The entropy of recording both B and C
is the joint entropy of b and c, i.e.,

Y Xep(b, €)loga(1/p(b, ¢)) =—plogz(p) — (1 — p)loga(1—p)

We find that information entropy is a reasonable metric, and
its value is consistent with our previous observations. That
is, table A and table D do not contain information, and the
information in table B and table C overlaps with each other.

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

1650

Fig. 3. Subgraphs of DAG.

C. How to Compute Entropy

The interaction relationship of multiple random variables
is too complex, so this paper only considers the correla-
tion that can be derived from the program structure, which
means that some tables are mutually exclusive and cannot
both be executed, while some other tables are coexistent
and the execution or hit of one table necessarily leads to
the execution of the other. Additionally, we assume that the
execution and hits of different tables are independent. For
example, in Fig. 3, there are 4 random variables, X/, X2,
Y1, and Y2, which respectively indicate whether the table
in which they are located is executed. According to our
assumption, X/ and X2 are not independent of each other
because they are mutually exclusive. But the two random
variable groups (X/, X2) and (Y/, Y2) are independent of
each other, so P(X1, X»,Y1,Y2) = P(X1, X2)P(Y1,Y3) and
P(X1,Y1) = P(X1)P(V1).

Even though the example may seem simple, computing
the entropy of multiple random variables is still non-trivial.
Suppose we record n tables of the P4 program, a strawman
approach to obtain record plans is to enumerate all possibilities
and compute their probabilities, which has an unacceptable
time complexity of O(2"). We observe that many combi-
nations of random variables are infeasible because the P4
program is a DAG. As per the previous example in Fig. 3,
X, and X5 were both 0, which is an impossible combination
because the packet will definitely choose either one of the
tables represented by the random variables X; or Xs.

To address this problem, we design a depth-first search
(DFS)-based algorithm that can efficiently compute the infor-
mation entropy. We first observe that the DAG has many
nodes that a packet will definitely pass through, such as cond1
and cond2 in Fig. 3, which we name the cuts. The cuts
divide the DAG into several subgraphs, such as subgraphl and
subgraph?2 in Fig. 3. Based on the assumption of mutual inde-
pendence, the groups of random variables of each subgraph are
independent of each other, and so the entropy of the whole
DAG is the sum of the entropy of each subgraph. We can
perform a depth-first search on each subgraph to calculate its
information entropy and then sum them up to get the total
information entropy.

Algorithm 1 describes how to calculate the information
entropy of the whole graph and a subgraph. The input of

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

Algorithm 1 Compute Entropy

Input: DAG, pc[][], pnl], recorded_set
QOutput: Entropy
1: Function calculate_total_entropy() do
2 entropy < 0
3 Split DAG into subgraphs Array Gsus[l...n]
4 fori=0—n—1do
5: node + the first node in subgraph G s.s[i]
6.
7
8

recorded «— empty

path_set «— empty

: subg_entropy < 0
9: DFS(Gsubli], node, 1, recorded, path_set)

10: for recorded, p in path_set do

11: subg_entropy < subg_entropy — p * log2(p)
12: end for

13: entropy < entropy + subg_entropy

14: end for

15: return entropy
16: end Function

18: Function DFS(G, node, p, recorded, path_set) do
19: if node is the final node in G then

20: if recorded not in path_set then

21: insert (recorded, p) into path_set
22: else

23: path_set[recorded]+ = p

24: end if

25: return

26: end if

27: if node in recorded_set then

28: append node into recorded

29: end if

30: for all neighbor neigh of node in G' do
31: DFS(G,neigh, p%, recorded, path_set)
32: end for '

33: end Function

Q : Cuts Table
O : Recorded Table

0.1
traversal (recorded, p) path_set
AX-B-D-E: (B,0.2)

AX-Y-C-D-E: (C,0.5) i: B:0.2
AX-Y-D-E: (null, 0.2) C:05
AE (null01) —— Flse:0.3

Entropy = -0.2log20.2-0.5l0g20.5-0.310g20.3

Fig. 4. Calculate subgraph entropy.

Algorithm 1 is the probabilistic transition DAG of a program
(DAG), the probability of each edge (p.[][]), the probability of
each node (p,[]), and the table record plan (recorded_set).
The output of Algorithm 1 is the entropy of this DAG
(Entropy). The calculate_total_entropy in Algorithm 1 first
initializes entropy to 0 and splits DAG into n subgraphs
Gsup[l..n] (lines 2 - 3). For each subgraph ¢, we initialize the
recorded table set (recorded), the traversed execution path set
(path_set), and the entropy of the subgraph (subg_entropy)
to empty, empty, and O, respectively (lines 5 - 8). Later, the
DFS calculates the information entropy of a subgraph through

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: TROUBLESHOOTING PROGRAMMABLE DATA PLANES VIA REAL-TIME TABLE INFORMATION RECORDING

a depth-first traversal (line 9). After traversing all paths,
we traverse path_set and accumulate each path’s entropy to
obtain the subgraph’s entropy (lines 10 - 12). Finally, the
entropy values of all subgraphs are accumulated to derive the
whole entropy of the graph (line 13).

The DFS algorithm traverses all paths in the subgraph
and computes the execution probability of each path. For
each path, recorded is used to include all nodes specified
in recorded_set that need to be recorded along that path
(lines 27-29). Note that the execution of one path corre-
sponds to the execution situation of all recorded nodes. For
a specified path, if it is executed, it indicates that recorded
nodes in recorded are executed and those not in recorded
are not executed. So as long as we traverse all possible
execution paths, we enumerate all potential valid combinations
of recorded table execution situations. Note that different
paths may have the same recorded list, which means that
these paths correspond to the same execution situation of the
recorded nodes. So, we accumulate the probability of these
paths (lines 20 - 23). The pair (recorded, p) in path_set
represents the probability p of the event where the nodes in
the set recorded are executed, while the nodes outside this
set remain unexecuted. Thus, path_set contains all possible
execution situations of the recorded table and its probability.

Fig. 4 gives an example of calculating the entropy of a
subgraph, given the recorded table plan, i.e., recorded_set =
(B, C). This subgraph consists of 5 tables A, B,C, D, E and
2 conditional statements X, Y. Table A and E are cuts tables,
whose probability is 1, and the recorded tables are B and
C. Algorithm 1 will traverse all paths: (1) A-X-B-D-E with
recorded table B. (2) A-X-Y-C-D-E with recorded table
C. (3) A-X-Y-D-FE with recorded table null. (4) A-E with
recorded table null. Note that (3) and (4) have the same
recorded so we sum up their probability and get the path_set
in Fig 4. Then we can calculate the subgraph entropy as
—0.210g20.2 — 0.5l0g20.5 — 0.3l0g20.3.

IV. THE OPTIMAL TABLE RECORD PLAN

This section discusses how to find the optimal table record
plan. First, we give a formal description of the problem. Given
a P4 program consisting of n tables and m PHVs available
for recording table information, we assign some bits of PHVs
to the recorded tables to store whether the table is executed or
not. An assignment can be formally represented by an n x m
matrix A. A;; = 1 means that we assign 1 bit of PHV; to
table;. For a P4 program consisting of 3 tables and II available
PHVs, if we assign 1 bit of PHV; to tables and 1 bit of
PHV; to tabley, the assignment matrix will be like:

0 1
A=(1 o0 (D
0 0

As introduced in Section II-C, the hardware limitations are
mainly due to limited PHV and stage. PHV is organized in the
form of a container, and the container has only widths of 8bit,
16bit, and 32bit. Therefore, the widths of these m available
PHVs are {wy,ws, ..., Wy}, where w; = 8 or 16 or 32. The
restriction of PHV can be formally described as ¥;A;; < w;.

1651

Generator |1.Generate a candidate table set S

2. Send S to Solver 6. Return result to Generator

Initialize: Add dependencies in D
3. Add dependencies cause by S
4. Solve

5. Pop dependencies cause by S

Solver

Fig. 5. Workflow of two-step solving method.

The stage restriction is more complex to deal with. We use
stage; variable to denote the stage where table; is placed.
Each P4 program has complex table dependencies, which we
roughly divide into two categories. The first one is that table;
must be placed before table;, i.e., stage; < stage;; the other
one is that table; cannot be placed after table;, i.e., stage; <
stage;. We denote the table dependencies in the original P4
program, which is prior to the injection of table information
collection code, as D.

This may cause new write-write dependencies when a PHV
is assigned to multiple tables. Specifically, if table; and table;
are not mutually exclusive, then assigning the same PHV to
them will create a write-write dependency, and so these tables
cannot be placed in the same stage. Two tables are considered
mutually exclusive if it is logically impossible for both to be
executed simultaneously. For example, in Fig. 4, Table B and
C are mutually exclusive because for a packet, only one of
Table B and C may be executed.

After introducing the notations and restrictions, the problem
can be formally modeled as follows: our objective is to find an
optimal assignment matrix with maximum information entropy
within the hardware constraints.

argmax Entropy(A)
A

subject to X; A;; < w;
Dependencies in D

Dependencies caused by A

A. A Two-Step Solving Method

The problem described above is a complex combinatorial
optimization challenge, with a non-linear objective function
and constraints that are difficult to express mathematically.
To solve this problem, we take a two-step approach. In the first
step, we generate a candidate assignment, and in the second
step, we verify whether the candidate assignment satisfies the
constraints.

Fig. 5 shows the two-step method’s workflow, which con-
sists of two modules, Generator and Solver. The Generator
creates a candidate table set S according to the strategies in
Section I'V-B or Section IV-C (step 1) and sends it to the Solver
(step 2). S is a set of recorded tables different from the existing
assignment A. The Solver determines if there is an assignment
such that all tables in S are recorded and all constraints are
satisfied (steps 3 - 5). Later, the result is returned to the
Generator (step 6). The Generator produces the next candidate
table set after the result returned by the Solver (step 1 again).

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

1652
TABLE I
NOTATION AND CONSTRAINT IN SOLVER
Notation
Table Set: tables, ,tables,, ..., tables,,
Stage: stages, , stages,, ..., stages,,
PHV Number: PHVnums,, PHVnums,, ..., PHVnums,
PHV Width: WL, W2,y +evy Wi,
Constraint:
Cl: for all table, 1 < stage; < MaxzStage
C2: for1 <i<n,1<PHVnums, <m
C3: for1<i<n,1<j<m,
count(PHVnums,;) < wj, where PHVnums, = j
C4: stage constrain of the original program
Cs: stages;! = stagesj, if PHVnums, = PHVnumS].

This process continues until the optimal solution is obtained.
Since D may be large, we add the dependencies of D to the
Solver’s constraints during initialization and then add (step 3)
and pop (step 5) the dependencies related to S incrementally.

Table I shows the notation and constraint of the Solver.
Table Set is the candidate table set given by the Generator;
stage; represents the stage where table; is placed; PHVnum;
represents the index of the PHV used to record table;; PHV
width w; indicates the bit width of the PHV. Constraints C1
and C2 limit the range of stage and PHV; Constraint C3
guarantees that PHV usage will not exceed the bit width
of each PHV; Constraint C4 is the stage constrain of the
original P4 program, which we can get from compiler output;
Constraint C5 represents the write-write dependency caused
by writing the same PHV.

We use the Z3 SMT Solver [22] to solve the con-
straints commonly used in constraint problems related to
programmable switches [8], [23]. If no solution satisfies the
constraints, the Z3 solver returns “unsat” (i.e., unsatisfied).
Otherwise, the Z3 solver returns one of the solutions, and
we can get a valid PHV array. Based on the candidate
table set and PHV, we can get a valid candidate assignment.
For example, if the candidate table set = {1,2} and PHV
Number= {2,1}, we will get an assignment matrix A in
equation 1, where we assign one bit of PHV] to tables and
one bit of PHV; to table;.

B. Branch and Bound

In this section, we introduce the strategy of generating a
candidate table set. A strawman or brute force method is to
enumerate all valid table sets, but the time complexity is too
high to compute the optimal solution for large P4 programs.
Hence, we design a Branch-and-Bound (BnB) [24] algorithm
to solve this problem, which is a known algorithmic paradigm
for solving large-scale NP-hard combinatorial optimization
problems.

Algorithm 2 shows the steps to generate the candidate and
obtain the optimal solution. The input of Algorithm 2 includes
the whole tables determined by the P4 program (tables[]), the
solver used to determine whether the current plan satisfies all
the constraints (Solver), the total width of PHVSs (w;otq1), and
the tables that are specified and need to be recorded by the user
(C). The output of Algorithm 2 includes the maximum entropy
(maz_entropy) with the optimal table record assignment

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

Algorithm 2 Branch and Bound
Input: tables[], Solver, Total width of PHVS wista:, tables
that must be covered C
Output: Maximum Entropy max_entropy, Optimal Assign-
ment A
1: Function branch_and_bound() do
2: candidate — C
3: tables = tables — C
4: sort the recordable tables array in descending order of
the entropy
max_entropy < 0
A — null
search(1)
return mazx_entropy, A
9: end Function
10: Function search(index) do
11: if candidate is valid (based on Solver) then

® W

12: get a valid assignment A_valid from Solver
13: else

14: return

15 end if

16: entropy < compute_total_entropy()
17. if entropy > max_entropy then

18: maz_entropy «— entropy, A — A_valid
19: end if

20: if Wiorer < candidate.size then

21: return

22: end if

23: Wepail < Wiotal — candidate.size
24: FEgym < sum of first wyqq4 entropy values after index

25: upper_bound_entropy «— entropy + Esum

26 if upper_bound_entropy < max_entropy then
27: return

28: end if

29: insert tables[index] into candidate

30. search(index + 1)

31: remove tables[index] from candidate

32: search(index + 1)

33: end Function

(A). Initially, C is assigned to the candidate table record set
(candidate), to ensure the derived table record plan includes
C. Next, the algorithm explores the rest of the tables except
C' (lines 2 - 3). Later, all recordable tables are sorted in
descending order according to their information entropy, and
all initialization is done (lines 4 - 6). Then, the algorithm
searches the sorted tables (line 7) to decide which ones to
add to the candidate table set (lines 29 - 32). During the
search, we update the current maximum entropy and optimal
assignment (lines 16 - 19). We prune the search tree in two
cases. First, if a candidate table set is found to be invalid by
Solver, then the corresponding branch will be pruned (lines 11
- 15). Second, if the upper bound of the entropy obtained by
the search branch is smaller than the current optimal solution,
the branch will be pruned (lines 23 - 28).

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: TROUBLESHOOTING PROGRAMMABLE DATA PLANES VIA REAL-TIME TABLE INFORMATION RECORDING

Entropy of tables:

B: -0.210g20.2 - 0.8l0g20.8 = 0.72
C:-0.5logz20.5 - 0.5log20.5 = 1

D: -0.910g20.9 - 0.1l0g20.1 = 0.47
Visit table in the order of {C, B, D}

Add B into table set?

} Add C into table set?
! 2

Entropy:1.48
Max_Entropy:1.48
Bound:N/A

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
Entropy:1 |
Max_Entropy:1 \
Bound:1+0.72 \
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Entropy:1
Max_Entropy:1.48
Bound:1+0.47<1.48

Max_Entropy:0

Entropy:0
Max_Entropy:1.48
|Bound:0.72+0.47<1.48

Fig. 6. Example of branch and bound algorithm.

We emphasize the importance of estimating the upper bound
of entropy. Assume the sum of PHV bit width is wiotal,
candidate.size is the number of currently selected tables,
and wWgyqi 1S the remaining PHV bit width. Then, the upper
bound of the information entropy will not exceed the sum of
the current entropy plus the first wgy4;; entropy values after
the index of the current table (lines 23 - 25), i.e., the largest
Wapai €Ntropy values in the tables array that have not been
searched yet. This is due to a basic property of information
entropy, i.e., H(X1,Xo,..., X)) < H(X;)+H(X2)+...+
H(X,), and the equation holds only when random variables
are independent.

Suppose we have a 2-bit PHV container and need to find the
optimal table set from the DAG of Fig. 4. Fig. 6 shows the
execution process of the BnB algorithm. First, we calculate
the information entropy of B,C, and D, respectively, and
then sort them. We ignore X, Y because they represent branch
statements and are not recordable, and ignore table A, F
because they are cuts, and their information entropy is 0.

We search through the array {C, B, D}. Fig. 6 shows the
search tree where the numbers above circle nodes indicate
the search order. Node 1 adds table C' to the candidate
table set, then calculates its information entropy and updates
Max_Entropy and the upper bound. Max_Entropy is
updated from 0 to 1 because the information entropy of {C'}
is 1. The upper bound is 1 + 0.72 where 1 is the information
entropy of {C'} and 0.72 is the entropy of { B} because table
B is the first table after C' in {C, B, D}, and it is also the
table with the largest entropy among {B, D} that have not
been searched yet. Next, we present the actions of each node.

Node 2 adds table B to the candidate set, and the current
entropy is calculated as 1.48. The information entropy of the
candidate table set {C, B} is 1.48 instead of 1.72, because
table B and table C' are not mutually independent. Fig. 4

1653

Select from
{B.D}

Select from
{B,C,D}

Entropy:1.48
Valid

Entropy:1.36

Entropy:0.47 Invalid

Valid

Fig. 7. Example of greedy algorithm.
shows the calculation process. Since two nodes have been
selected, the search along this path is complete.

Node 3 does not add table B to the candidate set,
so its entropy is still 1 which is less than Max_FEntropy,
so Max_FEntropy is not updated. The upper bound is 1 +
0.47 which is less than Max_FEntropy, so the branch is
pruned.

Node 4 does not add table C' to the candidate set. The upper
bound is 0.72 4 0.47, which is the sum of the entropy values
of B and D. Hence, the branch is pruned because the upper
bound is less than the current Max_FEntropy. To elaborate,
the information entropy will not exceed the value of 0.72 +
0.47 even if both B and D are added to the candidate set.

After the search, the algorithm obtains the maximum
entropy of 1.47, and the optimal table set is {C, B}. The
assignment method is to assign 1 bit to each of the 2-bit PHV
containers to B and C. Since there is only one PHV container
in the example of Fig. 6, the assignment is obvious, but if there
are multiple PHV containers, the Solver will give a specific
valid assignment.

C. Greedy Algorithm

Although BnB can prune some branches and find the
optimal solution, the search is very time-consuming for large-
scale problems. So, we propose a greedy algorithm that can
find an approximate optimal solution in a short time. The main
idea of the greedy algorithm is to select the valid table with
the largest information entropy from the table array and add
it to the candidate table set in each round until w;.,; tables
are inserted or no valid table can be found from the array.

We reuse the DAG in Fig. 4 and attempt to find the optimal
solution where the PHV width is 2. In addition, we assume that
{C, D}, {B, D} is invalid due to the write-write dependencies.
Fig. 7 shows the execution process of the greedy algorithm.
In the first round, we select from {B,C, D}, calculate the
information entropy of {B}, {C}, {D}, and let the Solver
determine whether they are valid or not. This results in C'
being inserted into the table set. In the second round, we select
from {B, D}, repeat the previous step, and finally choose to
add B to the table set. At this point, wy,; tables are selected,
the algorithm terminates, and the solution is {C, B}.

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

1654

This greedy algorithm cannot always find the optimal solu-
tion. Consider that in Fig 4, we assume that {C, D}, {C, B}
is invalid due to the stage constraint. This greedy algorithm
will return the value of 1 as the max entropy while the
optimal result is 1.16 (The optimal recorded plan is {B, D}
not {C}). When a table with larger entropy prevents the
selection of several other tables with smaller entropy, whose
combined entropy exceeds that of the first table, it results
in a suboptimal table record plan. For an n-element table
array [A, B, C, ..., NJ], where all tables have the same
entropy e, table A is mutually exclusive with the others.
In the worst case, the greedy algorithm may select table A
first, making it impossible to choose any of the other tables.
This results in the table record plan with the smallest total
entropy. If all remaining tables are independent, the upper
bound for entropy is (n — 1) - e, which is (n — 1) times the
entropy of the plan derived by the greedy algorithm. Thus,
the greedy algorithm cannot guarantee optimal performance.
A potential workaround involves running the greedy algorithm
m times, each time starting with a different table from the
array (from table I to table m), after sorting the tables in
decreasing order of entropy. By comparing the entropy of
these m plans, we can select the one with the highest entropy.
However, in our evaluation, we observe that real programs
typically have few mutually exclusive conditions. As a result,
the greedy algorithm can produce good record plans for the
P4 programs we tested.

V. TABLE HIT SITUATION

Previously we only considered the table execution informa-
tion, this section takes the hit information into account.

In Section III, we noted that the table has three states, not
executed, executed but not hit and hit. For the table at the
cut node, it must be executed, so 1 bit is enough to record
whether it is hit or not (e.g., A in Fig. 4); for other tables, II
bits are required to record these three states. We assign 0,
1, or 2 bits to a table to record this information. When one
bit is assigned to a cut table, this bit is used to record hit
information; when one bit is assigned to a non-cut table,
this bit is used to record execution information. On the other
hand, when 2 bits are assigned to a non-cut table, the 2 bits
can record all information. To find the optimal table record
plan with both execution and hit information, we extend the
algorithms introduced in previous sections.

A. How to Calculate Entropy

We extend Algorithm 1 to compute the entropy of both
the execution and hit information. We still follow the frame-
work of Algorithm 1, i.e., we first divide the DAG into
subgraphs, calculate the entropy of each subgraph, and then
sum them up. The difference is that we need to include the
hit information entropy when calculating the entropy of the
subgraphs.

In Algorithm 1, path_set saves each path and its probabil-
ity p, and we consider p x loga(p) as the information entropy
of each path, but it only includes table execution information.
Now, suppose the path consists of several tables containing

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

only execution information and one table, denoted as tabley,
which includes both execution and hit information. Let pp
represent the probability of table;, being hit. The information
entropy of the path can then be expressed as

Hpatn = ppuloga(ppn) + p(1 — pr)log2(p(1 — pr))
= pprlogz(p) + pprlogz(pn) + p(1 — pr)loga(p)
+ p(1 — pn)loga(1 — pn)
= ploga(p) + p(prlogz(pn) + (1 — pr)log2(1 — pr))

We denote Hpir = prloga(pr)+ (1 —pr)loga(1 — pr), then
Hpath = plOgZ (p) + thit

We extend the number of tables with hit information to
m, denote the tables as tabley,,tabley,, ..., tabley, , the
probability of tabley, being hit as pp,. Similarly, We denote
Hpit, = pn;loga(pr;) + (1 — pn;)loga(1 — pp,). Then the
information entropy of the path can be generalized to

Hpath = plogg (p) + pEZ’Zthiti 2)

pHpse, can be interpreted as the entropy of table hit informa-
tion. We replace p * loga(p) in line 11 of Algorithm 1 with
Equation 2, allowing the algorithm to compute the entropy
with table hit information.

B. Extended Greedy Algorithm

When considering the table hit information, the search
space expands too much, making it difficult for the search
algorithm to solve the problem. Therefore, we extend the
greedy algorithm in Section IV-C to find an approximately
optimal solution. In the extended algorithm, we still choose
the local optimal solution at each step, assigning a bit
to the valid table that produces the most entropy. How-
ever, for different tables, the bit is used to collect different
information.

For instance, there are three types of tables in Fig. 4.
Table A and F are cuts tables, and the bit assigned to them
will record hit information; tables B and C' have already been
assigned bits to record execution information, so the newly
assigned bit will also be used to record hit information; table
D is a non-cut table, and the bit assigned to it will record
execution information. The algorithm finds the local optimal
solution at each step until the available PHVs are exhausted
or no valid assignment can be found.

VI. EVALUATION

We conduct experiments on a commodity Barefoot
Tofino switch [13] and evaluate our algorithm on various
P4 programs for recording table information. We syn-
thesize the transition probabilities of each edge and the
hit probabilities of each table with random numbers.
Section VI-A shows the relation between path recov-
ery rate and the number of bits used. Section VI-B
shows the resource overhead incurred by the record code.
Section VI-C evaluates algorithms used to compute informa-
tion entropy. Section VI-D shows the time overhead of these
algorithms.

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

—e— Our work
—%— Balllarus
—#— KeySight

0

3810 3815

5 10
bi

3805
ts

(b) netCache.p4.

—e— Our work
—— Balllarus

8

10 12 14 18

20 22 24

bits

(d) ontas.p4.

—e— PHV: 32
—— PHV: 16+16

N
o

-
w

Information Entropy
=
o

w

0 5 10 15 20 25

The width of PHV (bit)

30

(c) Igress w/ execution and hit information.

1655

HUANG et al.: TROUBLESHOOTING PROGRAMMABLE DATA PLANES VIA REAL-TIME TABLE INFORMATION RECORDING
1.0 —e— Our work 1.0
—*— Balllarus
2 08 —m— KeySight L 08
5 5
[-4 [-4
g o6 2 0.6
> >
] 54
2 04 2 04
k= k=
& 02 & 02
0.0 0.0
40 50 60 170 180 31490 31500 31510
Its
(a) switch.p4.
1.0 —e— Our work 1.0
—— Balllarus
8 08 8 08
e e
g 06 2 0.6
> >
3 S
& 04 & 04
= =
& 02 &£ 02
0.0 0.0
26 28 30 32 42 44 46 48 50 52
bits
(c) fabric.p4.
Fig. 8. Path recovery rate of different P4 programs.
15.0{ —* PHV: 32
8 —— PHV: 16+16
g 8125
e o
56 §10.0
c c
S S
B, 2 75
3 —e— Greedy Algorithm, PHV:16 3
£ —v— Greedy Algorithm, PHV:8+8 g 5.0
T —=— BnB Algorithm, PHV:16 - 25
—— BnB Algorithm, PHV:8+8 ’
0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30
The width of PHV (bit) The width of PHV (bit)
(a) Egress w/o hit information. (b) Ingress w/o hit information.
Fig. 9. Information entropy of different programs.

A. Path Recovery Rate

The definition of path recovery rate is as follows: given a p4
program with n possible execution path pathq, .. ., path, with
execution probability py, ..., p,, our algorithm can identify k
paths path;,, ..., path;, among them. Then the path recovery
rate is Z§:1 pi,- We measure the relation between the number
of used bits and the path recovery rate on the P4 program.

We evaluate our approach on several typical P4 programs
and compare it to Balllarus [18] and KeySight [25]. Balllarus,
which is most related to our work, employs Ball-Larus encod-
ing to encode all possible paths. Thus, it consumes fixed-sized
PHV bits given a P4 program. KeySight generates Post-
Cards' [10] for each Packet Equivalence Class (PEC). Thus,
we measure the mirrored packet size. We selected a large pro-
gram, switch.p4, a medium-sized program, fabric.p4,
and two small programs, ontas.p4 and netCache.p4, for
demonstration. The results are shown in the Fig. 8.

Compared to Ballarus, our approach reduces the number
of bits required to achieve a full path recovery rate by
76%, 35%, and 30% for switch.p4, ontas.p4, and

!PostCards are mirrored packets that capture changes occurring at output
ports, packet headers, and so on during packet processing by a switch.

fabric.p4, respectively. This improvement is due to our
entropy-guided method, which identifies certain paths that do
not require encoding, whereas Balllarus encodes all possible
paths. However, our approach uses 2 more bits than Balllarus
for netCache.p4. This is because netCache.p4 has
fewer paths. In simple programs with fewer paths, the over-
head of encoding all possible paths is smaller, and techniques
like Ball-Larus coding can effectively minimize bit usage.
Compared to KeySight, our approach reduces bit usage by
99.86% and 99.73% for switch.p4 and netCache.p4,
respectively. This significant reduction is because KeySight
relies on PostCards instead of directly embedding path infor-
mation into the original packet. As a result, it has few
restrictions on the size of PostCards and includes additional
information within them, resulting in substantially higher bit
consumption compared to our approach. Note that we do
not show the results of KeySight in Fig. 8c and 8d. This is
because the version of P4_16 supported by Keysight is rela-
tively outdated. Unlike fabric.p4 and ontas.p4, it does
not support certain operations introduced in newer versions
of P4_16, making it unable to analyze fabric.p4 and
ontas.p4. However, since Keysight generates specialized
Postcards without the resource constraints associated with

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

1656

TABLE II
RESOURCE OVERHEAD
p4 program phv container(8 bits, 16 bits, 32 bits) | stage
netCache 8, 18, 14 10
netCache-path 10, 18, 14 10
ontas 20, 33, 27 7
ontas-path 23, 33, 27 9
TABLE III
SCALE OF SWITCH.P4
All Table Num | Non-Cut Table Num | Dep Num
SwitchIngress 96 55 683
SwitchEgress 45 23 166

manipulating the original packets, it is expected to consume
substantial resources, like the performance in switch.p4
and netCache.p4.

More importantly, our work considers scenarios with
constrained resources. Even under limited PHV resource con-
ditions, our approach provides path execution information that
exceeds the capabilities of other methods. For example, with
just 48 bits, our algorithm achieves approximately a 75% path
recovery rate on switch.p4, while Ballarus cannot record
any paths with fewer than 178 bits, as it does not account for
scenarios with limited available PHV resources.

B. Resource Overhead

We assess the impact of recorded code on resource over-
head, primarily focusing on stage and PHV containers.
We evaluate the netCache and ontas programs and refer to the
programs inserted with the record code as netCache-path and
ontas-path. For netCache-path, path information is recorded
in metadata, while for ontas-path, it’s recorded in the packet
header.

Table II lists the resource overhead of the original programs
and the programs inserted with the record code. The results
show that netCache-path adds 2 PHV containers and ontas-
path adds 3 compared to the original program. Moreover,
regarding stages, netCache-path incurs no stage overhead,
while ontas-path adds 2 stages. Our algorithm ensures that
stage usage stays within hardware constraints (e.g., 12 in
Tofino). The additional stage overhead arises from multiple
tables writing to the same PHV container simultaneously,
creating write-write dependencies and thereby increasing the
number of required stages, as discussed in Section IV. Simi-
larly, recording execution information in the packet header or
metadata increases PHV container usage.

C. Information Entropy

Because switch.p4 is a complex enough program
containing numerous tables and dependencies, we utilize
switch.p4 to evaluate the two algorithms proposed for
computing information entropy, i.e., BnB and Greedy. Table III
shows the scale of the Ingress and Egress subprograms
for switch.p4. The number of possible combinations in
switch.p4 is huge. For example, if we plan to assign 16 bits
to SwitchIngress to record the execution information, then the
number of possible combinations is significant, i.e., C'(55, 16),
whose value is approximately 3 * 1014,

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

—e— Brute 400 —e— Brute
—— BnB —— BnB
300{ —*— Greedy —— Greedy

2 10 12 14 16 2

4 6 10 12 14 16
The width of PHV (bit)

4 6
The width of PHV (bit)

(a) SwitchEgress. (b) SwitchIngress.

Fig. 10. Time overhead.

Fig. 9 illustrates information entropy with various PHV
widths. PHVs are assigned to tables to record execution or
hit information. “PHV: 32” indicates the use of a single 32-bit
PHYV container for recording, while “PHV: 16+16” implies the
use of two 16-bit PHV containers. Fig. 9a depicts results from
running the Greedy and BnB algorithms on SwitchEgress
to identify maximum entropy for recording only execution
information. The overlapping lines of the Greedy and BnB
algorithms demonstrate the proposed Greedy algorithm’s opti-
mality on switch.p4. Similar results are obtained for other
P4 programs, including netCache.p4 and others.

Next, we explore SwitchIngress in scenarios with only
execution information and with both hit and execution infor-
mation. Fig. 9b and Fig. 9c present maximum entropy
results achieved by recording only execution information and
both execution and hit information, respectively, using the
Greedy algorithm on the SwitchIngress subprogram. In both
instances, employing two 16-bit PHV containers yields greater
information entropy than a single 32-bit container. This aligns
with our expectation, as multiple containers result in fewer
write-write dependencies, facilitating the storage of more
information.

D. Time Overhead

Finally, we examine the relation between the width of the
used PHV containers and the time overhead imposed by differ-
ent algorithms, including brute force (Brute), greedy (Greedy),
and branch and bound (BnB). That is, we measure the time
consumption of different schemes to generate a desirable table
record plan while tuning the width of PHV. We evaluate
different algorithms with the complex switch.p4 and utilize
two 8-bit containers for egress and a 16-bit container for
ingress.

Fig. 10 illustrates the time overhead of different algorithms
on switch.p4. We observe that Brute incurs the highest time
overhead, followed by BnB and Greedy. This is because Brute
enumerates all valid table sets to find the optimal table record
plan, which is very time-consuming. With an increase in the
number of used bits, Brute’s time overhead is at least 8 times
that of BnB, validating the efficacy of our pruning operation in
BnB. Moreover, we observe that BnB’s time overhead in the
egress is nearly comparable to that of Greedy. However, in the
ingress, BnB’s overhead is noticeably higher than Greedy, due
to the greater number of tables and the more complex program
structure in the ingress pipeline, implying the efficiency and
simplicity of Greedy.

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: TROUBLESHOOTING PROGRAMMABLE DATA PLANES VIA REAL-TIME TABLE INFORMATION RECORDING

VII. RELATED WORK

P4-related troubleshooting. Recently, there has been
PADB [26], which is an on-the-fly debugging platform for
programmable data plane that leverages additional debugging
snippets to generate reports at runtime. It provides three
primitives for network engineers: Watch, Break, and Next, thus
providing three levels of visibility to help engineers debug
bugs in P4 programs. The work in [27] showed that the
performance query expressed in a domain-specific language
could be translated to small pieces of code operating on
different devices in the network collecting the necessary state.
Most related to our work, Balllarus [18] proposed a method
to track the execution of P4 programs in the data plane to
help locate errors related to packet processing. It uses Ball-
Larus codes to encode the paths of P4 programs for efficient
path recording. However, it currently only considers tracking
the table execution for all the possible paths, i.e., Balllarus
can encode all N paths of a program in a single [log(N)]-bit
variable. Hence, it cannot track certain tables within hardware
constraints like our work. KeySight [25] proposes the Packet
Equivalence Class(PEC) abstract and generates PostCards
based on PEC. A PostCard can be viewed as a mirrored
packet that encapsulates packet runtime information, meaning
KeySight does not directly embed path information into the
original packet. Additionally, the PostCard includes other
runtime details, such as the output port, which increases its bit
consumption. Recently, to overcome the limitations of current
monitoring methods exhibit performance and granularity, [28]
proposed P4-based implementation using In-band Network
Telemetry, which is shown to exhibit minor networking and
processing overhead. However, they attempt to record the full
execution information of P4 programs, which takes too many
PHV resources and is impractical for large-scale P4 programs.

Network troubleshooting system. Some existing network
troubleshooting systems use mirroring to monitor the network.
NetSight [10] mirrors each packet to a specific server and
tags the packet with some metadata. EverFlow [12] adopts
a “match and mirror” policy to mirror only a portion of the
packet, thus reducing traffic overhead. NetSeer [11] utilizes
the programmable data plane to detect and report flow-level
events. Another work showed that network failures could be
immediately detected and flushed out of the path information
table at each server by a timeout mechanism [29]. NetSight and
EverFlow do not consider programmable switches, and Net-
Seer, while utilizing programmable switches to troubleshoot
traditional network anomalies, still does not consider the
new applications that programmable switches may undertake.
We propose to append some internal table information to the
mirrored packet to help troubleshoot.

Network telemetry. Some network telemetry systems [30],
[31], [32] allow network engineers to express telemetry queries
in a dataflow language, but these systems only operate on
packets when they arrive at the switch. PacketScope [33] is the
first work to provide visibility inside the switch. PacketScope
is an extension of Sonata [31], and it can answer queries
about internal processing, enabling network engineers to infer
what is happening in a switch. However, PacketScope can

1657

only provide statistical information, not details about how
each packet is processed in the switch. Causal telemetry [32]
captures causal relationships between events, including those
that occur on physically separated devices. Moreover, a P4-
based prototype implementation is presented, which covers a
case study that uses causal telemetry to detect Priority-Based
Flow Control (PFC) deadlocks.

VIII. CONCLUSION

Effective troubleshooting requires recording real-time inter-
nal information of each packet in the programmable data plane.
However, because of the hardware limitation, recording the
table information arbitrarily is infeasible. Thus, we must select
the informative tables carefully. To this end, we treat the P4
program as a probabilistic transition DAG and propose to use
information entropy to evaluate a set of recorded tables. Then
we take a two-step approach and design algorithms to find
the table record plans. Experiments show that our algorithms
can get the optimal and approximately optimal set of tables
efficiently. As part of our future work, we will investigate
variations of entropy metrics and explore how they align with
the specific requirements of the programmable data plane.
We aim to collaborate with industry partners to deploy the
solution in operational networks and assess its effectiveness
in production troubleshooting scenarios.

REFERENCES

[1] H. Zheng et al., “FlyMon: Enabling on-the-fly task reconfiguration for
network measurement,” in Proc. ACM SIGCOMM Conf., Aug. 2022,
pp. 486-502.

[2] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “SketchLib:
Enabling efficient sketch-based monitoring on programmable switches,”
in Proc. 19th USENIX Symp. Networked Syst. Design Implement.
(NSDI), Mar. 2022, pp. 743-759.

[3] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 101-114.

[4] A. Sapio et al., “Scaling distributed machine learning with in-network
aggregation,” in Proc. USENIX NSDI, 2021, pp. 785-808.

[5] X.Jin et al., “NetCache: Balancing key-value stores with fast in-network
caching,” in Proc. ACM SOSP, 2017, pp. 121-136.

[6] Z. Liu et al., “DistCache: Provable load balancing for large-scale storage
systems with distributed caching,” in Proc. USENIX FAST, Feb. 2019,
pp. 143-157.

[7] T. Pan et al., “Sailfish: Accelerating cloud-scale multi-tenant multi-
service gateways with programmable switches,” in Proc. ACM SIG-
COMM, 2021, pp. 194-206.

[8] Y. Li, J. Gao, E. Zhai, M. Liu, K. Liu, and H. H. Liu, “Cetus: Releasing
P4 programmers from the chore of trial and error compiling,” in Proc.
USENIX NSDI, 2022, pp. 371-385.

[9]1 N. Zheng et al., “Meissa: Scalable network testing for programmable
data planes,” in Proc. ACM SIGCOMM Conf., Aug. 2022, pp. 350-364.

[10] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proc. USENIX NSDI, Apr. 2014, pp. 71-85.

[11] Y. Zhou et al., “Flow event telemetry on programmable data plane,” in
Proc. Annu. Conf. ACM Special Interest Group Data Commun. Appl.,
Technol., Archit., Protocols Comput. Commun., Jul. 2020, pp. 76-89.

[12] Y. Zhu et al., “Packet-level telemetry in large datacenter networks,” in
Proc. ACM SIGCOMM, 2015, pp. 479-491.

[13] Barefoot’s Tofino. Accessed: 2024. [Online]. Available: https://www.
intel.com/content/www/us/en/products/details/network-io/intelligent-
fabric-processors/tofino.html

[14] X. Wu et al., “NetPilot: Automating datacenter network failure mit-
igation,” ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 419-430, Sep. 2012.

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

1658

[15]

[16]

[17]

(18]

(191

[20]

[21]

[22]

[23]

[24]

(25]

[26]

[27])

[28]

(291

(30]

[31]

[32]

(33]

F. Ruffy, T. Wang, and A. Sivaraman, “Gauntlet: Finding bugs
in compilers for programmable packet processing,” in Proc. 14th
USENIX Symp. Operating Syst. Design Implement. (OSDI), Jan. 2020,
pp. 683-699. [Online]. Available: https://www.usenix.org/conference/
osdi20/presentation/ruffy

X. Chen et al.,, “Melody: Toward resource-efficient packet header
vector encoding on programmable switches,” in Proc. IEEE INFOCOM,
May 2023, pp. 1-10.

M. Hogan, S. Landau-Feibish, M. T. Arashloo, J. Rexford, and
D. Walker, “Modular switch programming under resource constraints,”
in Proc. USENIX NSDI, 2022, pp. 193-207.

S. Kodeswaran, M. T. Arashloo, P. Tammana, and J. Rexford, “Tracking
P4 program execution in the data plane,” in Proc. ACM SOSR, 2020,
pp. 117-122.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379423, 1948.

P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87-95, Jul. 2014.

P4 Software Switch. Accessed: 2015. [Online]. Available: https://github.
com/p4lang/behavioral-model

L. De Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Proc.
Theory Pract. Softw., Int. Conf. Tools Algorithms Construct. Anal. Syst.
Cham, Switzerland: Springer, 2008, pp. 337-340.

B. Tian et al., “Aquila: A practically usable verification system for
production-scale programmable data planes,” in Proc. ACM SIGCOMM,
2021, pp. 17-32.

J. Clausen, “Branch and bound algorithms-principles and exam-
ples,” Dept. Comput. Sci., Univ. Copenhagen, Copenhagen, Denmark,
Tech. Rep., 1999, pp. 1-30.

Y. Zhou et al., “KeySight: Troubleshooting programmable switches via
scalable high-coverage behavior tracking,” in Proc. IEEE 26th Int. Conf.
Netw. Protocols (ICNP), Sep. 2018, pp. 291-301.

C. Zhang et al., “P4DB: On-the-fly debugging of the programmable data
plane,” in Proc. IEEE ICNP, Oct. 2017, pp. 1-10.

J. Khan and P. Athanas, “Query language for large-scale P4 network
debugging,” in Proc. ACM/IEEE ANCS, Jul. 2018, pp. 162-164.

H. N. Nguyen, B. Mathieu, M. Letourneau, G. Doyen, S. Tuffin, and
E. M. de Oca, “A comprehensive P4-based monitoring framework for
L4S leveraging in-band network telemetry,” in Proc. NOMS-IEEE/IFIP
Netw. Oper. Manage. Symp., May 2023, pp. 1-6.

C. Jia et al., “Rapid detection and localization of gray failures in data
centers via in-band network telemetry,” in Proc. NOMS - IEEE/IFIP
Netw. Oper. Manage. Symp., Apr. 2020, pp. 1-9.

S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 85-98.

A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proc. ACM SIGCOMM, 2018, pp. 357-371.

Y. Liu, N. Foster, and F. B. Schneider, “Causal network telemetry,” in
Proc. 5th Int. Workshop P4 Eur., Dec. 2022, pp. 46-52.

R. Teixeira, R. Harrison, A. Gupta, and J. Rexford, ‘“PacketScope:
Monitoring the packet lifecycle inside a switch,” in Proc. ACM SOSR,
2020, pp. 76-82.

Chengyuan Huang (Member, IEEE) received the
B.Eng. and Ph.D. degrees from Beijing Univer-
sity of Posts and Telecommunications in 2015 and
2021, respectively. From 2021 to 2023, he was
a Post-Doctoral Researcher with Purple Mountain
Laboratories, Nanjing, China. He is currently an
Assistant Researcher with the Department of Com-
puter Science and Technology, Nanjing University.
His research interests include data center net-
works, software-defined networking, and distributed
systems.

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

Yibo Xiao received the B.S. degree from the Depart-
ment of Computer Science and Technology, Nanjing
University, China, in 2024, where he is currently
pursuing the Ph.D. degree. His research interests
include programmable networks and network system
design.

Tianfan Zhang received the bachelor’s degree from
Nanjing University of Aeronautics and Astronautics
in 2020 and the master’s degree from the Department
of Computer Science and Technology, Nanjing Uni-
versity, China, in 2023. His research interests include
computer networks and distributed systems.

Chao Yang received the B.S. degree from the
Department of Computer Science and Technol-
ogy, Nanjing University, China, in 2022, where
he is currently pursuing the M.E. degree. His
research interests include in-network computing and
congestion control.

Dong Zhang is currently the Chairperson of Jinan
Inspur Data Company Ltd., has led the develop-
ment of the world’s highest computing and storage
density rack server, the first China UNIX operat-
ing system. He has made creative contributions in
areas, such as converged architecture and high-end
system software, earning one national award, and
11 provincial-level awards.

Bingheng Yan received the Ph.D. degree from Xi’an
Jiaotong University in 2010. He is currently the
Cloud Research and Development Director of Jinan
Inspur Data Company Ltd., where he has led a wide
range of virtualization research projects, and the
development of Inspur’s server virtualization product
InCloud Sphere, which break the global world record
of SpecVirt. His research interests include operating
systems, virtualization, and cloud computing.

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: TROUBLESHOOTING PROGRAMMABLE DATA PLANES VIA REAL-TIME TABLE INFORMATION RECORDING

Ahmed M. Abdelmoniem (Senior Member, IEEE)
received the Ph.D. degree in computer science and
engineering from The Hong Kong University of
Science and Technology (HKUST), Hong Kong,
in 2017. He held the positions of a Research Sci-
entist with KAUST, Saudi Arabia, and a Senior
Researcher with the Huawei’s Future Networks Lab-
oratory (FNTL), Hong Kong. He is currently an
Associate Professor with the School of Electronic
Engineering and Computer Science, Queen Mary
University of London, U.K., and leads the SAYED
Systems Group. He is the Principal Investigator and the Co-Investigator on
several national and international research projects, funded mainly by grants
totaling over U.S. $1.5 million in funding. He has published numerous (more
than 80) articles in top venues and journals in distributed systems, computer
networking, and machine learning. His current research interests include opti-
mizing systems supporting distributed machine learning, federated learning,
and cloud/data-center networking, emphasizing performance, practicality, and
scalability. He is a member of ACM and USENIX. He was awarded the
prestigious Hong Kong Ph.D. Fellowship from RGC of Hong Kong in 2013 to
pursue the Ph.D. degree at HKUST.

Gianni Antichi received the B.S., M.S., and Ph.D.
degrees from the University of Pisa, Italy, in 2006,
2007, and 2011, respectively. From 2013 to 2018,
he was a Post-Doctoral Researcher with the Depart-
ment of Computer Science and Technology, Uni-
versity of Cambridge. He is currently an Associate
Professor with the Politecnico di Milano, Italy, and
the Queen Mary University of London, U.K. His
research interests include data center networks, pro-
grammable hardware, end-host networking, network
function virtualization, and distributed systems.

Xiaoliang Wang (Member, IEEE) received the
Ph.D. degree from the Graduate School of
Information Sciences, Tohoku University, Japan.
From 2010 to 2014, he was an Assistant Profes-
sor with the Department of Computer Science and
Technology, Nanjing University, China, where he
is currently an Associate Professor. He has pub-
lished more than 30 technical papers at premium
international journals and conferences, including
IEEE TRANSACTIONS ON INFORMATION THE-
ORY, IEEE TRANSACTIONS ON COMMUNICA-
TIONS, IEEE INFOCOM, USENIX ATC, and USENIX FAST. His research
interests include network systems and optical switching networks.

Fu Xiao (Senior Member, IEEE) received the Ph.D.
degree in computer science and technology from
Nanjing University of Science and Technology,
Nanjing, China, in 2007. He is currently a Professor
and a Ph.D. Supervisor with the School of Computer
Science, Nanjing University of Posts and Telecom-
munications, Nanjing. His research papers have been
published in many prestigious conferences and jour-
nals, such as IEEE INFOCOM, IEEE ICC, IEEE
IPCCC, IEEE/ACM TRANSACTIONS ON NET-
WORKING, IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS, IEEE TRANSACTIONS ON MOBILE COMPUTING,
ACM TECS, and IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. His
research interests include the Internet of Things and mobile computing. He is
a member of the IEEE Computer Society and the Association for Computing
Machinery.

1659

Wanchun Dou received the Ph.D. degree in
mechanical and electronic engineering from Nan-
jing University of Science and Technology, China,
in 2001. From April 2005 to June 2005 and from
November 2008 to February 2009, he visited the
Department of Computer Science and Engineering,
The Hong Kong University of Science and Tech-
nology, Hong Kong, as a Visiting Scholar. He is
currently a Full Professor with the State Key Lab-
oratory for Novel Software Technology, Nanjing
University. He has chaired three National Natural
Science Foundation of China projects and published more than 60 research
papers in international journals and international conferences. His research
interests include workflow, cloud computing, and service computing.

Guihai Chen (Fellow, IEEE) received the B.S.
degree in computer software from Nanjing Uni-
versity in 1984, the M.E. degree in computer
applications from Southeast University in 1987, and
the Ph.D. degree in computer science from The
University of Hong Kong in 1997. He had been
invited as a Visiting Professor with Kyushu Institute
of Technology, Japan; The University of Queens-
land, Australia; and Wayne State University. He is
currently a Distinguished Professor with Nanjing
University. He has published more than 350 peer-
reviewed articles and more than 200 of them are in well-archived international
journals, such as IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING, IEEE/ACM TRANSACTIONS
ON NETWORKING, and ACM Transactions on Sensor Networks, and also
in well-known conference proceedings, such as HPCA, MOBIHOC, INFO-
COM, ICNP, ICDCS, CoNext, and AAAI His research interests include
parallel computing, wireless networks, data centers, peer-to-peer computing,
high-performance computer architecture, and data engineering. He has won
nine paper awards, including the ICNP 2015 Best Paper Award and the
DASFAA 2017 Best Paper Award.

Hao Yin is currently a Changjiang Distinguished
Professor with Tsinghua University. He has previ-
ously held roles as the Chief Scientist at China’s
largest content distribution network service provider,
ChinaCache (NASDAQ: CCIH) and as the Deputy
Director of the Ministry of Education-Microsoft
Joint Key Laboratory. His research interests include
computer networks, big data, and blockchain. He has
been honored with awards, including the Second
Prize of the National Technology Invention Award
and the Second Prize of the National Natural Science
Award.

Chen Tian (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the Depart-
ment of Electronics and Information Engineering,
Huazhong University of Science and Technology,
China, in 2000, 2003, and 2008, respectively.
He was an Associate Professor with the School
of Electronics Information and Communications,
Huazhong University of Science and Technology.
From 2012 to 2013, he was a Post-Doctoral
Researcher with the Department of Computer Sci-
ence, Yale University. He is currently a Professor
with the State Key Laboratory for Novel Software Technology, Nanjing
University, China. His research interests include data center networks, network
function virtualization, distributed systems, internet streaming, and urban
computing.

Authorized licensed use limited to: Nanjing University. Downloaded on August 22,2025 at 06:58:47 UTC from IEEE Xplore. Restrictions apply.

