
Astral: A Datacenter Infrastructure for Large Language Model
Training at Scale

Qingkai Meng¢, Hao Zheng¢, Zhenhui Zhang¢, ChonLam Lao|, Chengyuan Huang¢, Baojia Li~,
Ziyuan Zhu~, Hao Lu~, Weizhen Dang~, Zitong Lin~, Weifeng Zhang~, Lingfeng Liu~,
Yuanyuan Gong~, Chunzhi He~, Xiaoyuan Hu~, Yinben Xia~, Xiang Li~, Zekun He~,

Yachen Wang~, Xianneng Zou~, Kun Yang¢, Gianni Antichi�, Guihai Chen¢, Chen Tian¢
¢ Nanjing University | Harvard University ~ Tencent
� Politecnico di Milano and Queen Mary University of London

Abstract
The �ourishing of Large Language Models (LLMs) calls for increas-
ingly ultra-scale training. In this paper, we share our experience
in designing, deploying, and operating our novel Astral datacenter
infrastructure, along with operational lessons and evolutionary
insights gained from its production use. Astral has three important
innovations: (i) a same-rail interconnection network architecture
on tier-2, which enables the scaling of LLM training. To physically
deploy this high-density infrastructure, we introduce a distributed
high-voltage direct current power system and a new air-liquid inte-
grated cooling system. (ii) a full-stack monitoring system featuring
cross-host and hierarchical logging correlation, which diagnoses
failures at scale and precisely localizes root causes. (iii) an operator-
granular forecasting component Seer that e�ciently generates op-
erator execution timelines with acceptable accuracy, aiding in fault
diagnosis, model tuning, and network architecture upgrading. As-
tral infrastructure has been gradually deployed over 18 months,
supporting LLM training and inference for multiple customers.

CCS Concepts
• Networks ! Network architectures; Network monitoring;
Network performance evaluation.

Keywords
Network Infrastructure; Large Language Model; Network Architec-
ture; Network Monitoring; Network Simulations

ACM Reference Format:
Qingkai Meng, Hao Zheng, Zhenhui Zhang, ChonLam Lao, Chengyuan
Huang, Baojia Li, Ziyuan Zhu, Hao Lu, Weizhen Dang, Zitong Lin, Weifeng
Zhang, Lingfeng Liu, Yuanyuan Gong, Chunzhi He, Xiaoyuan Hu, Yinben
Xia, Xiang Li, Zekun He, Yachen Wang, Xianneng Zou, Kun Yang, Gianni
Antichi, Guihai Chen, Chen Tian. 2025. Astral: A Datacenter Infrastructure
for Large Language Model Training at Scale. In ACM SIGCOMM 2025 Con-
ference (SIGCOMM ’25), September 8–11, 2025, Coimbra, Portugal. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3718958.3750521

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1524-2/2025/09
https://doi.org/10.1145/3718958.3750521

1 Introduction
In recent years, Large Language Models (LLMs) have gained pop-
ularity for a wide range of tasks, including text summarization
[13, 37, 44], multimedia content creation [10, 25, 28], code optimiza-
tion [3], and personalized recommendation [34, 36]. This success
has led LLMs to �ourish, and in particular, we have witnessed two
speci�c trends indicative of the exponential scaling of LLMs: (i)
model size has grown exponentially from billions to trillions, e.g., 1.5B
in GPT-2, 175B in GPT-3, and 1T in GPT-4 [13, 37]; (ii) training
datasets have dramatically increased from billions of tokens to tril-
lions of tokens, e.g., ⇠40 billion tokens in GPT-2 to more than 10
trillion tokens in GPT-4 and LLaMA 3 [22, 37, 40].

In this paper, we share our experience in building and running
Astral, our new datacenter infrastructure natively built for LLM
training and inference that can scale to half a million GPUs. Many
companies have already shared similar experiences regarding tens
of thousands of GPUs [20, 27, 39], but we feel this is the right time
to provide ours as well. The reason is motivated by three important
factors: (i) recently, the growth in GPU’s Floating Point Operations
Per Second (FLOPS) has failed to keep pace with the FLOPS required
for training models, e.g., a 4⇥ increase from V100 in 2017 to H100 in
2022, while a 1500⇥ increase from BERT-base [17] to GPT-3-175B
[13]. (ii) GPUs that are supplied to China are specially characterized
by a much lower FLOPS compared to their more advanced products.
(iii) our customers and internal teams take ultra-scale GPUs to develop
models: our company is dedicated to serving both large content
providers requiring more than 10K GPUs for deploying as well
as upgrading their models, and our internal teams exploring the
extremes of LLM’s capabilities.

Training state-of-the-art models with low-tier GPUs is possible,
but it might take too much time, even if we are able to match the
network and interconnection settings of modern deployments. This
was not an option for us as we did not want this to a�ect the quality
of our services alongside our economic bene�ts. The only way for
us to be competitive was to build a datacenter network that scales
to at least half a million low-tier GPUs, so that we could serve our
1.4 billion active users with our in-production LLM that exceeds
one trillion parameters and has been trained on trillions of tokens.
Building and running a datacenter at such a scale brings up several
challenges that span multiple dimensions: from the need to deal
with cooling, excessive wiring, and enormous power consumption
to running Remote Direct Memory Access (RDMA) at scale along-
side providing mechanisms for model tuning and operations so that
we could provide the best possible performance and reliability.

https://doi.org/10.1145/3718958.3750521
https://doi.org/10.1145/3718958.3750521


SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Q. Meng et al.

Network architecture (§2)

Trans. Layer

Net. Layer

Phy. Layer

App. Layer

Op.
dep.

Monitor (§3) Seer (§4)

Exec.
Time

Operator Timeline

upgradingcollecting
correcting

diagnosing

verifying

GPU util.

QP rate

Iter. time

Parameter
 tuningroot cause

architecture 
evolvingaction

Block 1

Block N

Rail N Rail N
…

Pingmesh avail Bw.

op. time

Figure 1: Astral infrastructure for LLM.

Our Astral infrastructure is overviewed in Figure 1. The Astral
network architecture accommodating large-scale GPUs serves as
the foundation for LLMworkloads. Built atop this, a full-stack moni-
toring system is developed to enable comprehensive data collection
and fault diagnosis; meanwhile, an operator-granular forecasting
component Seer is integrated, o�ering valuable insights into fault
diagnosis, model parameter tuning, and architecture upgrades by
calibrating its predictions using monitoring data. The key contribu-
tions are as follows:

• Astral network architecture adopts a novel Aggregation switch
and ToR switch interconnection design, i.e., aggregating same-rail
ToR switches to maximize Pod scale while achieving identical aggre-
gated bandwidth across three tiers for uniform network abstraction,
which improves scalability and enables �exible deployment while
ensuring high training e�ciency. To physically deploy our high-
density infrastructure, we have built a distributed High-Voltage
Direct Current (HVDC) power system for high reliability and intro-
duced a new air-liquid integrated cooling system for high energy
e�ciency (§2).

• Our network is supported by a novel full-stack Astral monitor-
ing system distinguished by its ability to correlate each layer from
the application layer to the physical layer in line with the top-down
system principle so that it is easier to spot RDMA ine�ciencies
or consistency issues. Based on the monitoring system, we build a
cross-host and hierarchical correlation analyzer, which e�ectively
handles comprehensive failure manifestations at a large scale, e.g.,
fail-hang and fail-slow, and precisely localizes root causes (§3).

•We introduce a new forecasting component, Astral Seer, that ef-
fectively generates operator-granular timeline forecasts. Moreover,
Seer leverages realistic monitoring data to calibrate operator execu-
tion time atop basic LLM modelling for high accuracy. Seer aids in
diagnosing in-production failures with an expected timeline for re-
liability and providing model parameter setting recommendations,
model framework evolution, and network architecture upgrades
for high training e�ciency (§4).

Astral infrastructure has been gradually deployed and used in our
production for more than 18 months. Our experience shows that, by
physically deploying Astral infrastructure, LLM training e�ciency

is scaled near-linearly (e.g., 0.6% e�ciency loss in our production
statistics), and the average Power Usage E�ectiveness (PUE) is
improved by 16.34%. Additionally, with the gradual deployment
of Astral monitoring system, the mean time to locate a failure has
been reduced from days to minutes, i.e., by up to 25⇥ reductions.
Moreover, Astral Seer forecasts the performance of LLM training
and inference within seconds while achieving acceptable accuracy
(e.g., 0.3% deviation in Hunyuan models and across other dense
models) when compared with production results.

This work does not raise any ethical issues.

2 Astral Network
We build a new network architecture for LLM training, with the
following key attributes:
Scalability: To expedite model development cycles and harness the
potential of LLMs, scaling LLM training e�ciency near-linearly to
millions of GPUs is crucial. To achieve this, the network architecture
should (i) be able to connect GPUs as scalably as possible given
today’s hardware limitations, and (ii) enable high training e�ciency
at scale by minimizing impacts of GPU-to-GPU communication,
including identical bandwidth at each tier and minimal network
hops from an architecture perspective. Identical bandwidth reduces
the likelihood of bottleneck bandwidth in communications. While
reducing the number of hops decreases the frequency of Equal-Cost
Multi-Path (ECMP) hashing and then minimizes hash polarization
[5, 50]. Both help avoid congestion from a network architecture
perspective, thereby reducing the impact of communications.
Flexibility: As an LLM infrastructure service provider, we should
achieve �exible deployment of LLM tasks to accommodate cus-
tomers’ �uctuating demand for GPUs. This can be achieved by
allocating GPUs within the same block/Pod whenever possible to
reduce the impact of communication overhead. Hence, it is essential
to expand the size of the block (at tier 1) and Pod (at tier 2) and
allocate GPU resources within one block/Pod as much as possible.
However, due to customers’ varying demand for GPU expansion
and contraction, fragmented deployment across Pods often occurs
in production. Thus, identical bandwidth at each tier also aids in
minimizing the impact of cross-Pod communication.
Reliability: Failures are an unwelcome yet common occurrence,
resulting from the complexities of network topology and hardware
instability. Particularly, as LLM training scales, failures become
increasingly disruptive, slowing down the entire job, possibly in-
volving tens of thousands of GPUs. In production, one critical risk
that can lead to failure is optical module damage, whose impact
can be mitigated at the network architecture level.
High energy e�ciency: Since data centers are major energy con-
sumers, energy e�ciency, i.e., saving non-renewable energy and
reducing carbon emissions, is a key consideration when physically
deploying our network architecture in real-world environments.

2.1 Astral Network Architecture
To meet the above key attributes, we design and build Astral net-
work architecture for LLM training, which follows three key prin-
ciples:
P1: Aggregation of same-rail ToR switches maximizes Pod
size. Figure 2 compares the performance of allocating 1K GPU



Astral: A Datacenter Infrastructure for Large Language Model Training at Scale SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Figure 2: All-to-all communication throughput.

Pod8: ~64K

Core Core64 … Core Core64 …64 Group …

Pod1: ~64K

ToR ToR ToR ToR8 Group… ToR ToR ToR ToR8 Group…
64 Group…

Agg Agg64… Agg Agg64… Agg Agg64… Agg Agg64…8 Group…

Cluster: ~512K

ToR(51.2T)
64*400G

64*2*200G

Agg(51.2T)
64*400G
64*400G

Core(51.2T)
128*400G

128…
GPU Server

128
Block: 1024GPU

NIC1

GPU 1
NIC8

GPU 8…

HB Domain
128…

GPU Server
128

Block: 1024GPU

NIC1 NIC8

GPU 1 GPU 8…

HB Domain

Figure 3: Astral network architecture.

for all-to-all collective communication within a single Pod ver-
sus across 32 Pods. As it indicates, fragmented deployment across
multiple Pods decreases the all-to-all collective communication
performance by 19%⇠37%. This is because even for all-to-all traf-
�c, same-rail tra�c accounts for a large proportion after enabling
NVLink-optimized network communication [2, 46]. However, cross-
Pod communication fails to fully utilize same-rail switches with
fewer hops, causing more frequent ECMP hash polarization and
severe congestion. In our observations, even with our optimized
ECMP load balancing1, the queue depth under cross-Pod communi-
cation exceeds the ECN threshold. As a result, maximizing the Pod
size can avoid cross-Pod fragmented deployment and facilitate more
same-rail communication, improving �exibility and scalability.
P2: Identical aggregated bandwidth across all tiers enables
uniformnetwork abstraction.Most LLM infrastructure providers,
drawing on their cloud computing services experience, adopt band-
width oversubscription in the Aggregation-Core layer (i.e., tier 3)
[20, 39]. However, oversubscription at any tier undermines net-
work abstraction by exposing LLM training e�ciency to the risk
of communication bottlenecks. This impedes the linear scaling of
GPU computational performance and limits �exible job deployment,
which contradicts our design rationale. Figure 2 shows the impact of
bandwidth oversubscription at tier 3 on communication throughput.
Speci�cally, bandwidth oversubscription degrades all-to-all collec-
tive communication performance and model training performance
by up to 52% and 3%, respectively. This performance gap arises be-
cause only ⇠15% of communication time remains after overlapping
with computation. Intriguingly, the performance impact varies by
LLM architecture. Dense transformer models mainly transfer AllRe-
duce collective communication tra�c from Data Parallelism (DP)
and point-to-point tra�c from Pipeline Parallelism (PP) between
same-rail switches, thereby minimally traversing Core switches

1The optimized ECMP scheme consists of two steps. First, the UDP source port number
of each �ow is selected to evenly distribute �ows across equal paths from the perspec-
tive of a source-destination pair. This selection leverages hash linearity properties
used by most commodity switching ASICs [51], making a best-e�ort attempt to min-
imize load imbalance. Second, if congestion is still detected based on ECN counters
on switches (collected every �ve seconds), the switches report the congestion to a
centralized controller. The controller then runs a hash simulator using the same hash
algorithm implemented in production switches to reassign appropriate UDP source
ports for the congested �ows, enabling accurate path selection across all �ows from
di�erent source-destination pairs. Such UDP source port reassignment takes e�ect
in the next round of collective communications. The e�ectiveness of reassigning the
UDP source port is shown in Figure 17 in the Appendix, which indicates that the ECN
counters decrease and eventually stabilize after multiple reassignments. The choice
of ECMP as the load balancing mechanism was motivated by operational simplicity,
hardware compatibility, and minimal failure impact, as discussed in the Appendix A.

and thus tolerating a certain degree of bandwidth oversubscription
at tier 3. In contrast, MoE-based transformer models rely on all-to-
all collective communication due to Expert Parallelism (EP) and
are more sensitive to bandwidth oversubscription. As MoE-based
models gain popularity and uniform network abstractions emerge
as a key requirement for tenants, identical aggregated bandwidth
across all tiers becomes essential for our architecture.
P3: Each port of a NIC is connected to a di�erent ToR switch.
To achieve reliability, we employ network redundancy in the infras-
tructure. Speci�cally, our design aligns with recent experience that
each port of a NIC is connected to a di�erent ToR switch to avoid
common optical modules and links damage, which is also adopted
in the network architecture of IBM [21] and Alibaba [39].

Figure 3 overviews the Astral network architecture:
(i) Host side: Given the maximal GPU limits within the intra-

host network during deployment, each host is equipped with 8
GPUs. GPUs within the same host can communicate with each
other via this intra-host network, e.g., NVLink [6], with 400GBps-
900GBps (bidirectional) bandwidth. To o�er the maximum network
capacity available today, we equip each host with 8 NICs, each
with 2⇥200Gbps. Each of these 8 NICs serves a dedicated GPU
(named rail), and thus each GPU has a dedicated 400Gbps of RDMA
network, resulting in a total bandwidth of 3.2Tbps.

(ii) Block side: Following dual-ToR designs [21, 39] for high
reliability, two ToR switches are connected to two ports of the NIC
bound by the same-rank GPUs respectively, forming same-rail links.
Due to 8 NICs on one server, there are 16 switches with 51.2Tbps
capacity in tier 1, which connect 1024 GPUs within a block.

(iii) Pod side: To achieve the maximum number of GPUs on the
same rail, two same-rail ToR switches in each block are connected
to two groups of 64 Aggregation (Agg) switches in tier 2, respec-
tively. Eventually, one Pod can support 64K GPUs for same-rail
communication. Note that the link capacity between ToR and Agg
switches is set to 400 Gbps, which is a balanced choice factoring in
wiring complexity, optical module availability, and the logical port
limits of switching ASICs. To our knowledge, Astral network archi-
tecture so far supports the largest scale of same-rank GPU-to-GPU
communication within a Pod.

(iv) Cluster side: Considering non-oversubscribed link band-
width in tier 3, all Agg switches of the same rank in each group
connect to 64 core switches for cross-rail communication. Finally,
Astral network architecture interconnects 512KGPUs for LLM train-
ing and inference in the data center. Also, we share our experience



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Q. Meng et al.

Substation
MV-

trans.

Diesel gen. Solar gen.

LV-trans.

HVDC+Battery

RACK 1
…

RACK N

LV-trans.
110/10KV

HVDC+Battery

RACK 1
…

RACK N

…

Figure 4: Hierarchy of the distributed
HVDC power system.

(a) Traditional air�ow (b) Optimized air�ow

Figure 5: Temperature distribution with air cooling.

in extending Astral network architecture to connect multiple LLM
data centers separated by hundreds of kilometers in Appendix B,
indicating that the performance degradation could be negligible as
long as the cross-datacenter bandwidth oversubscription ratio is
within a certain range.
Advantages over other production-ready network architec-
tures.Astral network architecture is distinguished by the following
two key aspects: (i) Signi�cantly enhancing same-rail communication
e�ciency.Meta [20] and ByteDance [27] follow the 3-tier CLOS-like
network architecture, without dedicated optimization for same-rail
communication. Alibaba [39] adopts a rail-optimized network ar-
chitecture, enabling same-rail communication on ToR switches,
while nevertheless achieving full interconnection on Agg switches.
Meta [46] also provides a rail-only network architecture to improve
same-rail communication e�ciency. However, due to the absence
of cross-rail connectivity in the rail-only network, cross-rail com-
munication must traverse intra-host high-bandwidth interconnects,
which incurs additional overhead and limits scalability, particu-
larly for all-to-all communication patterns in MoE-based models.
Compared to these network architectures, our Astral network archi-
tecture strives to maximize same-rail communication, i.e., currently
supporting up to 8K GPUs within a single rail, while also enabling
cross-rail communication via Core switches. (ii) Enabling identi-
cal bandwidth across all tiers facilitates better performance scaling
for jobs deployed in a fragmented manner. Meta [20], ByteDance
[27] and Alibaba [39] opt for bandwidth oversubscription between
Agg and Core switches, motivated by their observations of limited
bandwidth capacity demands at tier-3 and a trade-o� to scale GPU
interconnects. However, these network architectures fail to support
�exible deployment of LLM tasks and are less likely to achieve
performance scaling, as bandwidth oversubscription across tiers
increases the likelihood of communication becoming the bottle-
neck. In contrast to these production-ready network architectures,
Astral network architecture preserves identical bandwidth across
all tiers and supports signi�cantly larger-scale GPUs with a more
promising potential for near-linear performance scaling.

2.2 Astral Network Deployment
The physical deployment of new network architecture needs to
address practical issues. We encountered and overcame new chal-
lenges in power supply and heat dissipation when deploying the
Astral network.
Energy-e�cient and stable power management. Since GPU-
heavy workloads in LLM datacenters dramatically increase power

consumption, e.g., increased by 8⇥ from 1 kWh without GPUs to 8
kWh with GPUs for one server, the power supply could become a
critical bottleneck. To provide an energy-e�cient and stable power
supply, we develop a distributed HVDC power system and incorpo-
rate green energy as a supplemental source.

• Hybrid-energy HVDC power system. Traditional Alternating
Current (AC) su�ers from energy ine�ciencies due to energy losses
in multiple current conversions with Uninterruptible Power Sup-
ply (UPS) batteries. Moreover, UPS battery capacity �uctuates by
20%⇠30% under LLM training, which leads to an unstable power
supply. By contrast, HVDC power brings three main bene�ts: (i)
improved energy e�ciency by directly charging the battery; (ii)
enhanced stability by naturally compensating for battery capacity
�uctuations due to its �ner power supply granularity; (iii) high
compatibility with renewable energy sources such as solar and
wind. Therefore, we develop a hybrid-energy HVDC power system
for Astral infrastructure. Figure 4 illustrates the hierarchy of our
distributed HVDC power system, where each unit delivers power to
a row of racks and a cooling system. The distributed HVDC power
supply for shared racks remains constant (approximately their Ther-
mal Design Power (TDP)). In contrast, a single rack can elastically
obtain up to 30% (empirical value) additional power above its TDP
since the peak power can exceed TDP.

• Green energy as a supplemental source. We build roof-mounted
solar power stations and �atland wind power stations to collect and
store solar energy and wind energy as a supplement to electricity.
According to our 2024 reports, the proportion of renewable energy
is 22%, which reduces 778 thousand tons of carbon emissions.
Energy-e�cient yet e�cacious cooling system. Increasing tran-
sistor counts and the end of Dennard scaling result in chips with
TDP that exceed the capabilities of suboptimally designed air cool-
ing, especially for CPUs/GPUs, reaching thermal limits and perfor-
mance degradation. To this end, we optimize the cooling system
from two aspects when gradually deploying Astral infrastructure:

• Optimization #1: Air�ow optimization in the air cooling system
can enable su�cient contact with the heat source. Astral employs
high-density racks to accommodate a block of server and switch
equipment, which poses challenges to su�cient contact between
the cool air�ow and the cooling components. Figure 5a illustrates
an issue where unintentionally designed air�ow, characterized by
air intake from both sides of the server rack, induces uneven rack
temperature distribution, with inter-rack variation reaching 1�C.
This is because excessively high air velocity at the air outlet reduces
the amount of cool air drawn into the nearby racks, resulting in



Astral: A Datacenter Infrastructure for Large Language Model Training at Scale SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Figure 6: Evolution of PUE in production.

Host Env&Conf.
32%

NIC Error
15%

User code
14%

Switch Conf. 14%

Switch BUG 7%

Optical Fiber 7%

CCL Bug 3%

Wire conn. 3%

GPU Hardware 2%
Memory 2%

Link Flap 2%

fail-stop
66%

fail-slow 13%

fail-hang 17%

fail-on-start 4%

cause

Diagnostic 
Telemetry

logs, counters,...

generate

infer

detect

collect

Root Causes Failure Manifestations

Figure 7: Anomalies identi�ed in Astral network.

insu�cient contact with the heat sources and uneven temperature
distribution. In light of the principle that air velocity is inversely
proportional to cross-sectional area when air�ow capacity is con-
stant in �uid dynamics, expanding the cross-sectional area can
e�ectively alleviate this issue. To this end, we substitute the hori-
zontal side air�ow with the vertical bottom-up air�ow as the larger
cross-sectional area at the bottom allows for a moderate air velocity.
Figure 5b shows that air�ow optimization results in a low over-
all rack temperature, with a temperature variation of only 0.11�C
across all racks.

• Optimization #2: Air-liquid integrated cooling system can facili-
tate heat dissipation for high-power components. Given that power-
hungry components still experience high temperatures even with
well-organized air�ow, incorporating a liquid cooling solution, such
as cold plates and immersion cooling, becomes essential. However,
immersion cooling presents practical challenges such as material
compatibility, corrosion, and toxicity. Moreover, we found that a
liquid cold plate is su�cient and sustainable in production. Accord-
ingly, air cooling is utilized for overall heat dissipation, whereas
cold plates are employed towards localized high-power components.
Based on our observations, di�erent workloads (e.g., GPU-intensive
or CPU-intensive workloads) require varying power ratios between
liquid and air cooling. To accommodate these varying power ra-
tios, we integrate independent air and liquid cooling systems into
a uni�ed cooling system, where both share a primary cold source
that provides 100% cooling capacity; otherwise, the cooling system
cannot adapt to di�erent workload patterns.

Figure 6 compares the PUE of the Astral infrastructure with that
of a traditional data center infrastructure. With our cooling systems
and power management, the average PUE of Astral infrastructure
is reduced by up to 16.34%.

3 Astral Monitor and Diagnosis
3.1 Challenges and Key Design Rationales
The tightly coupled nature of distributed training systems makes
them vulnerable to failure propagation, where anomalies in indi-
vidual components can rapidly cascade to interconnected nodes
and subsystems. Figure 7 presents a structured taxonomy with a
statistical distribution of anomalies observed in our production en-
vironments, organized through three analytical dimensions: failure
manifestations, root causes, and diagnostic telemetry.

The failure manifestation refers to the observable symptoms
of training process degradation. We identify four distinct failure
manifestations: Fail-on-start (4% prevalence), where training jobs

abort during initialization; fail-stop (66%), characterized by abrupt
job termination after partial execution; fail-slow (13%), manifesting
as degraded iteration throughput; And fail-hang (17%), exhibiting
complete progress stagnation without termination. Fail-on-start
and fail-stop typically generate explicit error logs upon occurrence.
In contrast, fail-slow and fail-hangmaintain an unhealthy execution
state without throwing diagnostic messages.

The root cause refers to the fundamental reason behind the fail-
ure manifestations, encompassing both software failures (such as
NCCL bugs and miscon�gurations) and hardware issues (including
problems with CPUs, GPUs, switches, and links). These underlying
issues trigger component-speci�c diagnostic telemetry compris-
ing alerts, counters, and Key Performance Indicator (KPI) metrics,
which serve as crucial evidence for root cause analysis.

When a failure occurs, operators must promptly identify the root
cause and implement appropriate corrective actions to resolve the
issue. However, accurately inferring the root cause from telemetry
logs can be challenging due to several factors. During a failure event,
an overwhelming volume of logs is typically generated, complicat-
ing the analysis process. Moreover, there is no longer a one-to-one
relationship between telemetry logs and root causes. For instance,
multiple root-cause errors (e.g., GPU failures and network issues)
can trigger the same NCCL timeout messages. Conversely, speci�c
failure manifestations, such as fail-hang or fail-slow scenarios, may
not generate explicit telemetry logs at all. If the root cause cannot be
accurately identi�ed and addressed, it may lead to repeated training
failures or ine�cient utilization of computational resources.

To cope with the aforementioned challenges, we summarize
three key design rationales for our monitoring system:
Comprehensive full-stack monitoring. The LLM training plat-
form is a complex distributed software stack that spans the under-
lying computing and networking resources to the upper-layer user
interfaces. Full-stack monitoring helps in rapid response to anom-
alies and understanding anomalies. In particular, monitoring the
application layer (i.e., CUDA and NCCL library) can more directly
observe failure manifestations in the training progress, while mon-
itoring the underlying components can directly sense root-cause
errors. Intermediate layers, such as network-wide connectivity, can
help understand the propagation process from the root cause to the
user’s perception of the anomaly.
Cross-hosts and hierarchical correlation analysis. Detecting
and understanding anomalies from unorganized heterogeneous logs
is challenging. Traditional detection methods based on threshold-
based alerts for individual metrics (e.g., communication time) are
not �exible for varying training scenarios and cannot reveal the



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Q. Meng et al.

NCCL Timeline CUDA Event Model Test
Application Layer

RDMA Error QP ms-level Rate
Transport Layer

Network Layer
INT Pingmesh sFlow

5-tuple Info

Physical Layer
Syslog

flow path (per-hop info)
NCCLTest

ECN/CNP Ctr MOD
SNMP

node list & commucation group info

Offline
Online

GPU BurnHostping

Analyzer

WireVerify ConfV.ConfVerify

NCCL Error

Figure 8: Astral Monitoring System.

complete failure stack trace. To this end, cross-host analysis enables
threshold-agnostic anomaly detection through horizontal compari-
son of the metrics across multiple nodes, where similarity-based
checking helps identify outlier nodes that deviate from the majority
regular pattern. Furthermore, hierarchical correlation delves deeper
into root cause analysis by linking application-layer failure mani-
festations with underlayer metrics through associated information
between all the stacked monitors. In this way, we can reveal a clear
propagation path from the root cause to the failure manifestation.
O�line testing before delivery and after unhandled failure.
O�ine testing is essential alongside online monitoring. Given that
a large proportion of fail-on-start and fail-stop failures stem from
pre-existing anomalies (e.g., 32% of failures are caused by the host
environment and con�gurations), conducting o�ine testing before
delivery is vital for minimizing these issues. Furthermore, consider-
ing the continuous iteration of software and hardware, it is di�cult
to identify and isolate all unknown failures by online monitoring
alone. Systematic o�ine toolsets are needed to provide a robust fall-
back strategy by enabling the reproduction and in-depth analysis
of such failures.

Prior e�orts have developed specializedmonitoring tools tailored
for training clusters [11, 16, 27, 48] (see §6 for details). However,
they lack an integrated full-stack framework to structurally asso-
ciate all-layer telemetry logs from multiple heterogeneous entities
(e.g., hosts, links, NICs, and switches). In particular, abnormalities
at the network layer may spread and cause abnormal indicators
of several host monitors and network monitors. However, the in-
herent di�erences between network and host logs limit existing
comparison-based methods, requiring a systematic approach to
correlate them for precise root-cause diagnosis. Simply isolating
the hosts could lead to both anomaly recurrence and resource un-
derutilization. Aegis [11] introduces correlation analysis, such as
using ‘connection reset by peer’ logs to identify faulty devices and
comparing NCCL instrumentation logs across devices to �nd the
slowest-performing nodes. While insightful, this approach primar-
ily identi�es symptoms rather than root causes, and automatic
drill-down into the underlying causes of detected anomalies re-
mains unexplored.

3.2 Astral Monitoring Architecture
We develop a full-stack monitoring system in Astral infrastructure,
as shown in Figure 8. The key design of the system lies in its
ability not only to monitor every component of the cluster, from the
application layer down to the hardware level, but also to identify
correlations across these layers. The monitoring system includes
the following layers:
Application layer: training progress monitoring. Application
layer monitoring provides a direct re�ection of user-perceived train-
ing progress. Given that each iteration inherently involves collective
communication, monitoring NCCL communication operators al-
lows for precise tracking of both the iteration progress and the
associated time costs across individual nodes. Iteration progress,
indicated by work request start and �nish counts, can be leveraged
to identify which node’s communication or computation within a
speci�c iteration remains incomplete in the event of an exception.
Furthermore, per-iteration computation and communication times
serve as key metrics to evaluate whether the training task’s per-
formance meets expectations. We can cross-verify the monitored
iteration time with the results from the expected operator time-
line (i.e., Seer in §4) to identify potential anomalies. Besides, when
encountering failures that cannot be resolved online, we conduct
o�ine training on some template models to perform end-to-end
testing and in-depth analysis.
Transport layer: millisecond-level �ow monitoring. Monitor-
ing the transport layer to ensure high performance and reliable
data transmission is essential during training. To achieve this, we
focus on two primary types of information during transport-layer
data transmission. First, we monitor NCCL and RDMA error logs,
such as Completion Queue Entry (CQE) error events, which contain
the Queue Pair (QP) information of failed transmission. Second,
we employ Access Control Lists (ACLs) to �lter the �rst packet of
an RDMA Request and parse DMA length in the RDMA Extended
Transport Header (RETH), which enables precise calculation of
�ow throughput with millisecond-level temporal resolution. As
shown in Figure 9b, millisecond-level rate monitoring provides
�ner details compared to traditional second-level rate monitoring.
The latter even fails to distinguish an abnormal transmission rate,
as the average rate appears low in both cases due to the transmis-
sion interval. Millisecond-level monitoring introduces additional
bandwidth overhead due to the need to mirror the �rst packet’s
header of each RDMAmessage; however, the overhead is negligible
as discussed in Appendix C.
Network layer: end-to-end path telemetry. The network layer
is responsible for tra�c routing, re�ected in end-to-end connec-
tivity and latency. Congestion or failures may occur at any hop in
the network, adversely a�ecting end-host functionality and perfor-
mance. We propose two complementary path telemetry methods.
First, we employ passive measurement using sFlow, where the �ow
path can be restored by sampling and collecting packets from each
device. Second, we can use INT-armed ping packets to perform
hop-by-hop telemetry of the �ow path to obtain connectivity and
latency at a hop-by-hop granularity. Compared to existing probing
systems [23, 31], combining these two methods enables real-time in-
ference of network �ow paths and rapid identi�cation of congested
nodes via hop-by-hop information.



Astral: A Datacenter Infrastructure for Large Language Model Training at Scale SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

(a) NCCL Timeline (b) QP rate (c) INT per-hop latency (d) PFC count

Figure 9: Anomalies location with hierarchical analyzer.

Physical layer: per-node internal state monitoring. We devise
a comprehensive data collection strategy tailored to heterogeneous
hardware devices. For each device, we systematically collect inter-
nal logs and specialized counter metrics. On end-host systems, we
acquire computational unit diagnostics (e.g., CPU/GPU utilization),
memory subsystem errors, high-speed interconnect metrics (i.e.,
PCIe and NVLink), and OS-level event tracking. Network interface
analysis includes CNP/PFC/ECN packet counters monitoring. We
collect SNMP metrics for network devices while activating Mirror
On Drop (MOD) for packet loss detection. O�ine validation tools
include environmental con�guration checkers, stress testing suites
(Hostping [32], GPU Burn [4]), and automated wire connection
diagnostics.

To fully leverage the multi-layer monitoring metrics for hierar-
chical correlation analysis, we deliberately maintain the relation-
ships between di�erent layers of monitoring metrics. Speci�cally,
at the application layer, we monitor the host lists engaged in each
training task and the communication group information (including
detailed QP data) based on the con�gured parallelism methods. By
associating QP data with the �ve-tuple information (i.e., source
and destination IP addresses, source and destination UDP ports,
and the IP protocol �eld), we can link the application layer to the
transport-layer metrics. In the network layer, we utilize sFlow for
tra�c path reconstruction2 and INT-pingmesh to validate the path
and per-hop details. This not only connects upward to the trans-
port layer but also downward to hop-by-hop physical nodes. This
integrated hierarchical monitoring system facilitates log consolida-
tion and fault analysis. It can delve into the underlying causes of
failure manifestations and deduce the a�ected applications from
the root-cause failures.

3.3 Hierarchical Analysis and Cases
Based on the full-stack monitoring system, we build a correlation
analysis tool, which combines cross-host correlation analysis and
hierarchical correlation analysis to detect failure manifestations
and progressively locate root causes. Our analytical algorithm is
based on two key observations. First, application-layer monitor-
ing o�ers broader coverage, indicating that diverse anomalies will
invariably manifest in user experience at the application layer. Sec-
ond, abnormal indicators at the physical layer can often reveal the
root causes of failures more directly.

2sFlow captures path information by mirroring sampled �ow packets at the switches
they traverse. In addition, the ECMP hash function that determines the path is provided
by our switch vendor.

Hierarchical Correlation Algorithm. The algorithm commences
with the application-layer monitoring, which is closest to the user’s
perception. By continuously monitoring each host’s computation
time and communication time in each iteration, thresholds and
anomaly detection strategies are introduced to alert task-level anom-
alies. We use job-related thresholds obtained by fast forecasts using
the Seer for abnormal judgment. In addition to threshold judg-
ment, we also compare horizontally across hosts. If a node lags
signi�cantly behind other nodes during fail-slow or fail-stop, it is
considered an abnormal node. However, to ascertain the root causes
of these host anomalies, further analysis at the subsequent layer is
necessary:
Branch #1: handling computation anomalies. When a computa-
tion anomaly occurs on a single host, it is associated with abnormal
log information at the physical layer of that device. If a fatal error
log is matched, actions including isolation, checkpoint loading, and
restarting are performed. In cases where computation anomalies
occur on multiple devices, empirical evidence suggests that they are
typically caused by software or user code anomalies. An alarm will
be triggered, requiring manual intervention to determine whether
to halt or continue operations.
Branch #2: handling communication anomalies. If the applica-
tion layer detects a communication anomaly, errCQE events and the
QP rate information are collected through the maintained job infor-
mation. To delve deeper into the root cause of the failure, network
path information (i.e., the sequence of switches and egress ports,
and corresponding hop-by-hop latencies for a �ow) is gathered
based on the �ve-tuple information maintained in the QP metadata.
Here, we develop two di�erent correlation tools:

• Identi�cation of failure points through path overlapping. Net-
work device failures typically impact multiple passing net-
work �ows. If a set of errCQE events occurs, the failure
points can be identi�ed by locating the overlapping points
of multiple a�ected �ow paths.

• Identi�cation of congestion hotspots via INT per-hop delay. If
the QP rate is abnormal, INT ping detects the hop-by-hop
delay and pinpoints the abnormal link. Subsequently, the
switch’s internal metrics are examined to determine whether
there are behaviors of PFC pauses or packet drops.

When the root cause of the network-side abnormality is identi�ed,
we adopt a global optimization routing strategy to switch paths by
modifying the UDP source port of the �ow.

We use a real case to demonstrate the e�ectiveness of the moni-
toring system for abnormal locating:



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Q. Meng et al.

(a) Fail-stop (b) Fail-hang (c) Fail-slow

Figure 10: Stability improvement after deploying the monitoring system in production.

Step #1: Distinguishing computation and communication
anomalies at the application layer. As shown in Figure 9a, we
can swiftly identify the device experiencing abnormal computation
or communication using the NCCL timeline. In this particular case,
our system detected that most devices communicated for a much
longer time than the thresholds from the expected operator timeline
in Seer.
Step #2: Investigating anomalies in transport and network
Layers. Upon identifying irregularities in the communication rate,
we conducted a detailed analysis of the millisecond-level rate data
for each QP. As shown in Figure 9b, speci�c nodes exhibited QP
rates below 50% of the designated link bandwidth. Leveraging the
�ve-tuple information linked to each QP, the system interrogated
the sFlow path database to trace the �ow path. Subsequent anal-
ysis based on INT heatmap (e.g., Figure 9c) revealed forwarding
delays of 0.6�s, 179�s, and 266�s at each hop. From these observa-
tions, the system deduced congestion in the downlink between the
aggregation and the ToR switch.
Step #3: Identifying root causes of the fail-slow at the physi-
cal layer. Through the collection and analysis of hardware counters
from the switches, it was observed that the PFC pause counters
signi�cantly exceeded the normal range (in Figure 9d). By corre-
lating this data with the type and volume of �ows traversing the
link during the speci�ed time frame, the root cause was pinpointed
as persistent downstream link congestion resulting from ECMP
selecting ine�cient paths at upstream links.

One year after deployment, Figure 10 summarizes changes in the
location time for three types of faults: fail-stop, fail-hang, and fail-
slow, since the implementation of the monitoring system. Although
the number of faults has increased (due to the expansion of the
network scale), the Mean Time To Locate Failure (MTTLF) for fail-
stop and fail-hang faults has been reduced to minutes, achieving up
to 12⇥ and 25⇥ reductions, respectively. And the location time for
fail-slow anomalies has also been shortened by nearly 5 times. Still,
there are always some anomalies that the automatic correlation
system cannot recognize. We can only continuously evolve the
monitoring system as discussed in Appendix D.

4 Astral Seer
The high cost of LLM training makes it essential to forecast the
execution timeline of computation, communication, and memory
access behaviors. By leveraging this foresight, we can determine
optimal parameter selection, validate testbed results, and re�ne
model frameworks o�ine to improve performance and reliability.
To this end, we introduce a brand-new forecasting component
Astral Seer.

Operator Timeline

Op. Dependency

Execution Time

Profiler

Charkra

Transport 
protocol

Network 
architecture

Communication
primitives

JSON

GPU 
parameters

Configuration Correction

msg. size

BW

Op. execution time

＋

Device 0

Device 1

Expert
Craft

Verify

id: 0
name: SA
op: comp 
deps: []

Template EMB
SA

MLP

Time

Figure 11: Astral Seer framework.

4.1 Goals of Seer
Astral Seer is designed to achieve three pivotal goals:

•Tuning the parameters of the model framework, e.g., parallelism
and overlap strategies, and con�gurations in the network, e.g., link
bandwidth and transport protocol for optimal performance before
practical deployment.

•Verifying the execution time of in-production LLM training and
inference at runtime, thereby aiding in diagnosing failures during
practical deployment.

•Exploring novel model frameworks, e.g., new operators and
overlap optimization, and network architecture, e.g., intra-host
network and cross-datacenter network topologies, to upgrade de-
ployment.

4.2 Key Properties for Seer
To achieve the above goals, Astral Seer adheres to the following
properties:

•High e�ciency: The LLM work�ow can be decomposed into
a series of operators involving computation, communication, and
memory access. E�ciently obtaining the execution timeline of LLM
operators is a fundamental prerequisite for �nding the optimal



Astral: A Datacenter Infrastructure for Large Language Model Training at Scale SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

(a) Astral Seer foresight (b) Testbed result

Figure 12: Timeline comparisons between Astral Seer foresight and testbed result.

parameters and con�gurations before model deployment, as well
as for verifying in-production results to serve as a reference for
diagnosis during runtime.

•Acceptable accuracy: Accurately forecasting the execution time-
line of each LLM operator is highly valuable. However, unlike sim-
ulators, which strive for complete consistency with production
results (as they are mainly used in algorithm research), our As-
tral Seer only requires foresight into the timeline with acceptable
accuracy as a reference.

•Extensibility and con�gurability: LLM experts frequently ex-
plore new operators and overlap strategies to improve training
performance. Meanwhile, they favor con�guring di�erent setups
for their speci�c demands. Hence, our Astral Seer should allow easy
extension and con�guration.

4.3 Astral Seer Framework
In Astral Seer, we e�ectively generate operator-granular timeline
forecasts and calibrate our operator execution time with packet-
level behaviors to achieve high accuracy. Figure 11 overviews our
Astral Seer framework, which mainly consists of the following two
components:
Operator dependency generation. Given that LLM developers ei-
ther leverage existing LLM frameworks or introduce new operators
to upgrade frameworks, we provide two methods for generating
operator dependency:

(i) Converting from realistic pro�ling data on GPUs: One direct
and precise way to generate operator dependency is converting
from model instances of one iteration collected from GPUs. We use
PyTorch pro�ler to collect GPU traces and export the pro�ling data
to JSON �les. By leveraging Pytorch Chakra, model execution can
be converted into an executor graph, which includes operators and
their dependencies. Our Astral Seer focuses on typical computation,
communication, and memory access operators. Table 1 in Appendix
showcases the operators used by LLaMA 3 in Seer.

(ii) Extending with handcraft: The essence of operator depen-
dency generation is to build the work�ow of AI model training
and inference in the form of operators. Model research and devel-
opment experts can follow our templates for operators and their
dependencies to manually introduce their newly proposed opera-
tors and overlap with existing operators. This template lies in JSON
�le format, primarily involving the operator dependency, attribute,
and corresponding execution time.
Self-correcting operator execution. Next, we obtain execution
times corresponding to operators. Although using packet-level
device simulators to obtain execution time can achieve fair accuracy,

it signi�cantly compromises e�ciency and is even slower than
conducting real experiments. Given that the primary goal of Seer
is to enable high e�ciency with acceptable accuracy, we obtained
the operation execution time by modeling the LLM framework and
then iteratively re�ned it through realistic experiments to improve
accuracy.

(i) Basic modeling: The execution time of operator kernels can be
deduced from the basic model. We formulate the operator execution
time as the tensor size divided by the theoretical bandwidth. Specif-
ically, we re�ne the atomic operation times of computation (e.g.,
matrix multiplication and addition), memory access, and communi-
cation under di�erent parallelism strategies (e.g., Tensor Parallelism
(TP), PP, and DP). Each operator can be decomposed into a combina-
tion of multiple atomic operations. See Appendix E for the detailed
formulation.

(ii) Self-correction of modeling: Theoretical bandwidth often fails
to accurately re�ect actual throughput, as the latter is a realistic
measurement resulting from packet-level behaviors in�uenced by
on-training datapath I/O contention and network congestion [9, 30,
41, 45, 47]. Therefore, to improve accuracy, we use actual through-
put instead of the theoretical bandwidth in our basic modeling.
Speci�cally, we perform a polynomial curve �t on the throughput
measured from the Astral infrastructure. Our bandwidth correc-
tion, which implicitly accounts for packet-level behaviors, primar-
ily involves the correlations between arithmetic operations and
measured GPU FLOPS, memory access tra�c and measured High
Bandwidth Memory (HBM) throughput, as well as message size and
measured network throughput. Eventually, the operator execution
time is calibrated with the actual throughput that inherently re�ects
packet-level e�ects.

Given that the actual throughput is a�ected by hardware param-
eters and software mechanisms. We o�er typical modular hardware
and software suites for con�gurations: GPU con�gurations include
speci�c GPU devices for generating the GPU FLOPS, HBM size, and
HBM bandwidth; andNetwork con�gurations involve network topol-
ogy, congestion control, and load balance schemes, for generating
the ReduceScatter, AllGather, and All-to-All bandwidth.

With operator dependencies and operator execution time, any
discrete-event simulation tool can be used to construct the time-
line of the end-to-end LLM training and inference process. In brief,
Astral Seer can generate LLM operators’ timelines within seconds.
Also, it has been demonstrated to have high accuracy in production.
Figure 12 compares the timeline of one iteration in our Hunyuan
model between Seer’s foresight and testbed result, showing an



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Q. Meng et al.

Figure 13: Training e�ciency across datacenters.

acceptable 0.3% accuracy deviation. Seer maintains acceptable ac-
curacy across dense models, e.g., LLaMA 2 and LLaMA 3. But for
MoE-based models, e.g., DeepSeek R1, the accuracy deviation is
relatively higher due to unpredictable expert selection and as-yet
uncalibrated operators. We are continuously evolving Seer to better
accommodate diverse LLM architectures.

4.4 Case Studies
In addition to diagnosis use cases in §3, we also present cases that
bene�t model tuning and network upgrades.
• Case #1: Astral Seer facilitates determining which communication
tra�c across datacenters can minimally impact training e�ciency,
and what the bandwidth oversubscription ratio for cross-datacenter
links should be. Due to power supply constraints in data center
areas and the need to aggregate remaining GPU resources, several
LLM infrastructure providers are building networks that connect
multiple datacenters [14, 15, 49]. This involves two natural con-
cerns: First, which communication tra�c across datacenters can
minimally impact training e�ciency? Previous literature shows
that PP generates the least tra�c (compared to TP and DP) and uti-
lizes the basic Send/Recv for communication, which is insensitive
to network bandwidth [39]. Then, the intuition is to make PP tra�c
pass through datacenters. Nevertheless, we notice that this intuition
is not universally applicable. In practice, both PP and DP may be
well-suited for cross-datacenter training. Figure 13 shows the cross-
datacenter training e�ciency on 1K GPUs. As we see, enabling DP
tra�c across datacenters can achieve better training e�ciency in
some cases. This is because DP communication is low frequency and
can be easily overlapped in asynchronous communication, even
though it generates relatively large tra�c. We can also observe
that enabling memory-optimized ZeRO-DP [42] tra�c across data-
centers results in worse performance due to its extremely heavy
communication tra�c. To conclude, allowing tra�c across the data
center is contingent on the speci�c case, and Astral Seer can provide
recommendations. Second, what is the appropriate bandwidth for
cross-datacenter links? Figure 13 illustrates the impacts of varying
intra-datacenter to across-datacenter bandwidth oversubscription
ratios on training e�ciency. As it shows, the training e�ciency
does not drop signi�cantly until the bandwidth oversubscription
ratio reaches 16:1. These impacts could be case-speci�c. Fortunately,
Astral Seer can assist infrastructure service providers in making
bandwidth oversubscription decisions.
•Case #2: Astral Seer aids in �guring out the training e�ciency after
upgrading the intra-host network. Common wisdom tells us that

(a) GPT-3-175B Training (b) MoE Training

(c) MoE Inference (Pre�ll) (d) MoE Inference (Decoding)

Figure 14: Performance impacts of intra-host network scale.

building a large intra-host network with more GPUs (i.e., directly
interconnected via NVSwitch) can e�ectively deliver high perfor-
mance. However, there is no corresponding quantitative analysis
on how large the intra-host network should be to accommodate
the corresponding GPUs. By leveraging Astral Seer, we can �gure
out the scale of the intra-host network that is su�cient for per-
formance. Figures 14a and 14b report the training performance of
GPT-3-175B and our in-production MoE-based model under di�er-
ent scales of the intra-host network. As we observe, the MoE-based
model bene�ts more from a large intra-host network because it
introduces more all-to-all communication tra�c compared to the
GPT-3 model. Figures 14c and 14d demonstrate the inference per-
formance of our MoE-based model during the pre�ll phase and
decoding phase under di�erent scales of the intra-host network.
These results indicate that increasing the scale of the intra-host
network can also contribute to higher inference e�ciency.

5 Deployment and Experience
Astral LLM infrastructure has been gradually deployed since July
2023. As of today, we have interconnected 128K GPUs within two
Pods based on Astral network architecture and are extending to
512K-GPUs datacenter. In the following, we share our experience
in physically deploying the Astral infrastructure and serving the
LLM services.
Power consumption patterns and our power allocation strat-
egy.We characterize the power usage patterns of LLM training and
inference in production over several iterations and one day: (i) Ex-
ceeding TDP in an iteration: Figure 15 shows GPU power usage time
series during multiple training and inference iterations. For LLM
training, the peak power goes up to the GPU’s TDP during both
forward and backward computation phases, but decreases upon
entering the communication phase. For LLM inference, the peak
power goes up to the TDP during the pre�ll phase and drops well
below the TDP during the decoding phase. Given that peak power
often reaches or exceeds TDP, our distributed HVDC power system
overprovisions GPU power to ensure power safety. Speci�cally,
each HVDC power system provides the total TDP to the shared



Astral: A Datacenter Infrastructure for Large Language Model Training at Scale SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

(a) GPU power usage for training (b) GPU power usage for inference

Figure 15: GPU power usage over multiple iterations.
Figure 16: GPU power usage over a day.

racks, where each rack can elastically obtain up to 30% additional
power (experience value) above the TDP. (ii) Tidal e�ect during a
day: Figure 16 shows GPU power usage time series over one day in
a production environment. It exhibits a tidal pattern characterized
by high power consumption during the day and a gradual decline
between 10 p.m. and 8 a.m. This is because LLM inference, which
involves interaction with users, is seldom utilized during nighttime
hours. Following the principle of maintaining stable power con-
sumption (since we signed a constant power contract with utility
companies), we schedule LLM training and inference tasks. Based
on the tidal pattern of LLM inference workloads, our sales model
incentivizes customers to perform LLM training at night by o�ering
cheap rental prices.
Cooling system selection for LLM. As the company that owns
the largest social software in China, we have a long history of build-
ing a data center, and its scale is now larger than most enterprise
networks. Our cooling system has previously undergone three sig-
ni�cant upgrades: from a direct expansion air conditioning system
(in 2006), to a centralized chilled water system (in 2010), and then
to a distributed air-cooling air handling unit architecture (in 2018).
As LLM workloads emerge, air-cooling has reached its TDP and
then liquid cooling becomes an inevitable choice. When choosing
two advancing liquid cooling technologies, i.e., immersion and cold
plate, we �rst considered the technology with mature ecosystem
and multiple supply chains for large-scale use. Then, we considered
whether the operation and maintenance of technology is easy and
sustainable. Last but not least, we considered compatibility with
old data center facilities and air-cooled servers. Considering these
factors, each service infrastructure provider can choose the most
suitable technology for their situation. Since we have a large num-
ber of air-cooled servers and air-cooled data center facilities, cold
plate liquid cooling technology is a more suitable choice in our
datacenter. Given that the power ratio of liquid cooling to air cool-
ing depends on workloads which is di�cult to accurately predict
during a datacenter’s life cycle (nearly 10 years), we launched an
air-liquid integrated cooling system.
Aggregation of same-rail ToR switches facilitates scalability.
At the nascent stage of constructing Astral network architecture,
we have tried a fully interconnected network on tier 2. However, our
statistics in production reported that most tra�c is within the same
rail, bene�ting from NVLink-optimized network communication
PXN [2, 46]. As a result, a fully interconnected network on tier 2
not only decreased the number of GPUs for same-rail transmission
but also exacerbated hash polarization, a�ecting training e�ciency

at scale. Then, we decided to aggregate the same-rail ToR switches
on tier 2 to maximize the same-rank GPU interconnects for same-
rail transmission. Our in-production Hunyuan-MoE model training
statistics indicate that the improvement of training e�ciency is
almost consistent with the expansion of the GPU scale, with only a
0.6% performance loss on 8K GPUs (details are shown in Figure 19 in
Appendix). We further monitored the network link utilization and
did not see any hotspot paths under high tra�c volume, bene�ting
from our Astral monitoring system that timely detects congestion
and schedules the congested �ow to a low-load path.
Wiring and con�guration consistency check.Astral network ar-
chitecture enables 64K GPUswithin a single Pod and accommodates
512K GPUs within a three-tier switching network, complicating
wiring. In the early stage of physically deploying Astral infrastruc-
ture, the on-site sta� made a lot of wiring mistakes and were stuck
in correcting them. We ran the wiring verify tool in Astral moni-
toring system’s o�ine toolsets to address this issue, which collects
the slot ID, MAC address, and IP address through the dmidecode
command and address resolution protocol to establish the relation-
ship between switch ports and host slots, and then compares it
with the network topology rules. Also, since the servers are often
rented by customers, the con�gurations, such as DCQCN and PFC
parameters, NVIDIA drivers, and NCCL version, among servers
are inconsistent. In production, we noticed that such inconsistency
degraded training performance and caused failures. Hence, we used
nvidia-smi and NCCL logs to check these con�gurations, which
have also been integrated into our o�ine toolsets. In consequence,
we employ Astral monitoring system to conduct essential checks
before delivering hosts to customers.
Speci�c driver version can a�ect the scaling of training ef-
�ciency. During a large-scale LLM training involving 8K GPUs,
we encountered an unexpected fail-hang fault. As was usual, we
started with NCCL and RDMA error logs in the monitoring system
but did not see anything particularly wrong, making it challeng-
ing to identify the root cause. Frustratingly, such a fail-hang did
not manifest when the scalability of the GPU decreased, rendering
binary search diagnosis ine�ective for isolating the problematic
machine. Therefore, we resort to a dumb way of replacing and
rebooting machines in batches. Each iteration of this process took
approximately one hour. Several dozen experts in our team worked
continuously for 26 hours to replace the machine and this issue
did not occur. Through correlation with our monitoring system
maintenance records, we traced the issue to an NVIDIA driver up-
date as the only suspicious change. Finally, after consulting with



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Q. Meng et al.

NVIDIA experts, we con�rmed that this issue stemmed from a
speci�c version of the NVIDIA driver.
PCIe issue causes PFC storms, halving the performance of
the entire cluster running multiple jobs. In this incident, we
encountered a dramatic drop in training e�ciency to 50% when
multiple customers trained their models simultaneously on the
Astral infrastructure. Some customers reported that their model
training e�ciency was reduced by half. Our original Astral moni-
toring system only identi�ed the congested end-host that generated
PFC. However, the original monitoring system could not monitor
the physical layer of this PCIe anomaly, making it unable to pin-
point the root cause of the host congestion. After several hours of
diagnosis, we �gured out that the PCIe of one machine was broken,
which eventually triggered PFC and caused congestion spreading,
severely a�ecting training e�ciency. Subsequently, we integrated
physical layer monitoring for this PCIe anomaly into our monitor-
ing system, empowering it to identify and handle such anomalies
automatically.
E�ective scope of cross-host and hierarchical correlation
analysis for abnormal behaviors. Cross-host and hierarchical
correlation analysis can e�ectively address most issues caused by
single-device failures or performance degradation that disrupt the
entire cluster. For example, when a failure occurs, the log of the
abnormal device may be missing, or the training progress (e.g.,
completed communication/computation operations) may be sig-
ni�cantly slower. Nevertheless, our analysis has limitations when
dealing with issues not tied to a speci�c device, such as incorrect
strategies at the training framework layer that cause occasional
resource preemption and underutilization of operators. It can only
reveal that di�erent devices experience random anomalies at di�er-
ent steps, but cannot identify the root cause.
Self-correcting model improves accuracy.Many LLM timeline
tools have been provided in recent years. To avoid repeated de-
velopment, we had full expectations to utilize existing solutions
such as SimAI and ASTRA-sim. However, after several days of use,
one crucial issue we noticed was low e�ciency. Speci�cally, for
one iteration of 1K GPU training, we ran ASTRA-sim for one day
on a 48-core server to obtain the experiment results. Even though
SimAI leverages UNISON [12] that o�ers a parallel-e�cient and
user-transparent network simulation kernel to speed up discrete-
event simulation, it still requires several hours to complete. This
remains insu�cient to meet our requirements. In addition, in the
currently open-sourced version of SimAI, PP communication tra�c
is not transmitted over the inter-host network, which may lead
to a biased estimation of network communication time. We con-
�rmed this issue with the SimAI team. In consequence, we built
Astral Seer. In the beginning, we only constructed basic modeling
without correction that used the full GPU FLOPs, HBM bandwidth,
and network bandwidth. In some cases, the results between the
testbed and the Seer were consistent. However, we realized that
Seer’s results could deviate from the testbed results by more than
5% when communications become a bottleneck. To this end, we
introduced self-correcting modeling driven by realistic testbed data.
One limitation could be the data in various cases. But, as an infras-
tructure provider, we serve many customers under various cases,
which naturally have lots of data. Therefore, Astral Seer achieves
acceptable accuracy after calibration.

6 Related Work
Network architecture for LLM.Many companies have released
their network architecture tailored for LLM. Alibaba provides HPN
[39], which interconnects 15K GPUs within one Pod and imposes
bandwidth oversubscription across Pods. ByteDance and Meta have
published their CLOS-like network architecture, accommodating
10K GPUs [27] and 32K GPUs [20], respectively. They do not ac-
count for reliability due to single-ToR failures. Google discloses
torus topology [29] to connect 4K TPUv4, which, however, proves
unsuitable for commodity GPUs due to the heterogeneous ports
with signi�cantly varying speeds. By contrast, we propose a 3-tier
network architecture that can support 512K GPU interconnection
without bandwidth oversubscription.
Monitoring system for LLM. Existing e�orts have developed spe-
cialized monitoring tools tailored for LLM clusters. TRANSOM [48]
and Minder [16] collect various KPI metrics (e.g., GPU Utilization)
and hardware counters (e.g., PFC counts). MegaScale [27] and Aegis
further enable progress-aware monitoring through CUDA events
and probing of NCCL libraries. They use univariate or multivari-
ate anomaly detection methods (e.g., Z-score [8], LSTM-VAE [38])
to identify outlier hosts. By contrast, we share experience on our
full-stack monitoring that empowers cross-host and hierarchical
correlation.
Operator timeline tools for LLM. Existing AI simulators can
forecast operator execution timelines. However, packet-granular
simulators, such as ASTRA-sim [1] and SimAI [7], are ine�cient at
ultra-scale. Instead, operator-granular simulators, such as FlexFlow
[26], Daydream [52], dPRO [24], DistSim [33], Proteus [18] and
Echo [19], achieve high e�ciency. However, they do not incorpo-
rate packet-level behaviors, which could raise accuracy concerns.
Owing to their limits of being unable to achieve both e�ciency and
accuracy, we developed Astral Seer.

7 Conclusion
This paper presents Astral, our new datacenter infrastructure na-
tively built for LLM, which is capable of interconnecting half a
million GPUs. Astral features a same-rail interconnection network
architecture, a full-stack monitoring system with cross-host and hi-
erarchical correlation, and operator-granular performance forecast-
ing. These components come together to deliver a high-performance,
scalable, �exible, and reliable datacenter infrastructure for LLM
workloads. We envision that Astral can be a powerful knob for
exploring the extremes of LLM’s capabilities.

Acknowledgments
We thank our shepherd Soudeh Ghorbani and other anonymous
SIGCOMM reviewers for their insightful comments. This work was
supported by the National Natural Science Foundation of China un-
der Grant Number 62325205, the Key Program of theNatural Science
Foundation of Jiangsu Province under Grant Numbers BK20243053
and BK20243059, Gusu Innovation Project for People under Grant
Number ZXL2024360, and the Nanjing University-China Mobile
Communications Group Co., Ltd. Joint Institute. Yinben Xia and
Chen Tian are corresponding authors.



Astral: A Datacenter Infrastructure for Large Language Model Training at Scale SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

References
[1] 2025. ASTRA-sim. https://astra-sim.github.io/ Accessed on 2025-01-19.
[2] 2025. Doubling all2all Performance with NVIDIA Collective Communication

Library 2.12. https://developer.nvidia.com/blog/doubling-all2all-performance-
with-nvidia-collective-communication-library-2-12/ Accessed on 2025-01-19.

[3] 2025. GitHub Copilot. https://github.com/features/copilot. Accessed on 2025-01-
19.

[4] 2025. GPU Burn. https://github.com/wilicc/gpu-burn Accessed on 2025-01-19.
[5] 2025. Load Balancing on Aggregated Ethernet Interfaces. https://www.juniper.

net/documentation/us/en/software/junos/high-availability/topics/topic-
map/load-balancing-aggregated-ethernet-interfaces.html Accessed on
2025-01-19.

[6] 2025. NVLink and NVSwitch. https://www.nvidia.com/en-us/data-center/
nvlink/ Accessed on 2025-01-19.

[7] 2025. SimAI. https://ennanzhai.github.io/pub/nsdi25spring-simai.pdf Accessed
on 2025-01-19.

[8] 2025. Z-Score: Meaning and Formula. https://www.investopedia.com/terms/z/
zscore.asp#:~:text=Z%2Dscore%20is%20a%20statistical,traders%20to%20help%
20determine%20volatility Accessed on 2025-01-19.

[9] Saksham Agarwal, Arvind Krishnamurthy, and Rachit Agarwal. 2023. Host
Congestion Control. In Proceedings of the ACM SIGCOMM 2023 Conference (New
York, NY, USA) (ACM SIGCOMM ’23). Association for Computing Machinery,
New York, NY, USA, 275–287. https://doi.org/10.1145/3603269.3604878

[10] Jean-Baptiste Alayrac, Je� Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katie Millicah, Malcolm Reynolds, Roman
Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,
Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida
Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol
Vinyals, Andrew Zisserman, and Karen Simonyan. 2022. Flamingo: a visual
language model for few-shot learning. In Proceedings of the 36th International
Conference on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article 1723, 21 pages.

[11] Alibaba. 2025. Evolution of Aegis: Fault Diagnosis for AI Model Training Cloud
Service in Production. In available on request.

[12] Songyuan Bai, Hao Zheng, Chen Tian, Xiaoliang Wang, Chang Liu, Xin Jin, Fu
Xiao, Qiao Xiang, Wanchun Dou, and Guihai Chen. 2024. Unison: A Parallel-
E�cient and User-Transparent Network Simulation Kernel. In Proceedings of the
Nineteenth European Conference on Computer Systems (Athens, Greece) (EuroSys
’24). Association for Computing Machinery, New York, NY, USA, 115–131. https:
//doi.org/10.1145/3627703.3629574

[13] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Je�rey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS ’20). Curran Associates Inc., Red Hook,
NY, USA, Article 159, 25 pages.

[14] Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae Jeon, and Youngjin Kwon.
2023. EnvPipe: Performance-preserving DNN Training Framework for Saving
Energy. In 2023 USENIX Annual Technical Conference (USENIX ATC 23). USENIX
Association, Boston, MA, 851–864. https://www.usenix.org/conference/atc23/
presentation/choi

[15] Jae-Won Chung, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal, and Mosharaf
Chowdhury. 2024. Reducing Energy Bloat in LargeModel Training. In Proceedings
of the ACM SIGOPS 30th Symposium on Operating Systems Principles (Austin, TX,
USA) (SOSP ’24). Association for Computing Machinery, New York, NY, USA,
144–159. https://doi.org/10.1145/3694715.3695970

[16] Yangtao Deng, Xiang Shi, Zhuo Jiang, Xingjian Zhang, Lei Zhang, Zhang Zhang,
Bo Li, Zuquan Song, Hang Zhu, Gaohong Liu, Fuliang Li, Shuguang Wang,
Haibin Lin, Jianxi Ye, and Minlan Yu. 2024. Minder: Faulty Machine Detection
for Large-scale Distributed Model Training. arXiv:2411.01791 [cs.DC] https:
//arxiv.org/abs/2411.01791

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL] https://arxiv.org/abs/1810.04805

[18] Jiangfei Duan, Xiuhong Li, Ping Xu, Xingcheng Zhang, Shengen Yan, Yun Liang,
and Dahua Lin. 2024. Proteus: Simulating the Performance of Distributed DNN
Training. IEEE Transactions on Parallel and Distributed Systems 35, 10 (2024),
1867–1878. https://doi.org/10.1109/TPDS.2024.3443255

[19] Yicheng Feng, Yuetao Chen, Kaiwen Chen, Jingzong Li, Tianyuan Wu, Peng
Cheng, ChuanWu,WeiWang, Tsung-Yi Ho, and Hong Xu. 2024. Echo: Simulating
Distributed Training At Scale. arXiv:2412.12487 [cs.LG] https://arxiv.org/abs/
2412.12487

[20] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi
Yang, Shuqiang Zhang, Mikel Jimenez Fernandez, Shashidhar Gandham, and
Hongyi Zeng. 2024. RDMA over Ethernet for Distributed Training at Meta Scale.
In Proceedings of the ACM SIGCOMM 2024 Conference (Sydney, NSW, Australia)
(ACM SIGCOMM ’24). Association for Computing Machinery, New York, NY,
USA, 57–70. https://doi.org/10.1145/3651890.3672233

[21] Talia Gershon, Seetharami Seelam, Brian Belgodere, Milton Bonilla, Lan Hoang,
Danny Barnett, I-Hsin Chung, Apoorve Mohan, Ming-Hung Chen, Lixiang Luo,
Robert Walkup, Constantinos Evangelinos, Shweta Salaria, Marc Dombrowa,
Yoonho Park, Apo Kayi, Liran Schour, Alim Alim, Ali Sydney, Pavlos Manio-
tis, Laurent Schares, Bernard Metzler, Bengi Karacali-Akyamac, Sophia Wen,
Tatsuhiro Chiba, Sunyanan Choochotkaew, Takeshi Yoshimura, Claudia Misale,
Tonia Elengikal, Kevin O Connor, Zhuoran Liu, Richard Molina, Lars Schnei-
denbach, James Caden, Christopher Laibinis, Carlos Fonseca, Vasily Tarasov,
Swaminathan Sundararaman, Frank Schmuck, Scott Guthridge, Jeremy Cohn,
Marc Eshel, Paul Muench, Runyu Liu, William Pointer, Drew Wyskida, Bob Krull,
Ray Rose, Brent Wolfe, William Cornejo, John Walter, Colm Malone, Cli�ord
Perucci, Frank Franco, Nigel Hinds, Bob Calio, Pavel Druyan, Robert Kildu�, John
Kienle, Connor McStay, Andrew Figueroa, Matthew Connolly, Edie Fost, Gina
Roma, Jake Fonseca, Ido Levy, Michele Payne, Ryan Schenkel, Amir Malki, Lion
Schneider, Aniruddha Narkhede, Shekeba Moshref, Alexandra Kisin, Olga Dodin,
Bill Rippon, Henry Wrieth, John Ganci, Johnny Colino, Donna Habeger-Rose,
Rakesh Pandey, Aditya Gidh, Aditya Gaur, Dennis Patterson, Samsuddin Salmani,
Rambilas Varma, Rumana Rumana, Shubham Sharma, Aditya Gaur, Mayank
Mishra, Rameswar Panda, Aditya Prasad, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, David Cox, Ruchir Puri, Dakshi Agrawal, Drew Thorstensen, Joel Belog,
Brent Tang, Saurabh Kumar Gupta, Amitabha Biswas, Anup Maheshwari, Eran
Gampel, Jason Van Patten, Matthew Runion, Sai Kaki, Yigal Bogin, Brian Reitz,
Steve Pritko, Shahan Najam, Surya Nambala, Radhika Chirra, Rick Welp, Frank
DiMitri, Felipe Telles, Amilcar Arvelo, King Chu, Ed Seminaro, Andrew Schram,
Felix Eickho�, William Hanson, Eric Mckeever, Michael Light, Dinakaran Joseph,
Piyush Chaudhary, Piyush Shivam, Puneet Chaudhary, Wesley Jones, Robert
Guthrie, Chris Bostic, Rezaul Islam, Steve Duersch, Wayne Sawdon, John Lewars,
Matthew Klos, Michael Spriggs, Bill McMillan, George Gao, Ashish Kamra, Gau-
rav Singh, Marc Curry, Tushar Katarki, Joe Talerico, Zenghui Shi, Sai Sindhur
Malleni, and Erwan Gallen. 2025. The infrastructure powering IBM’s Gen AI
model development. arXiv:2407.05467 [cs.DC] https://arxiv.org/abs/2407.05467

[22] Aaron Gratta�ori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun
Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis,
Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank
Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra,
Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon
Lee, Jan Ge�ert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo
Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasu-
den Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Hea�eld, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan,
Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsim-
poukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike
Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi,
Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh
Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Ro-
han Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro,
Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,
Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey
Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky,
Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,

https://astra-sim.github.io/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://github.com/features/copilot
https://github.com/wilicc/gpu-burn
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/load-balancing-aggregated-ethernet-interfaces.html
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/load-balancing-aggregated-ethernet-interfaces.html
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/load-balancing-aggregated-ethernet-interfaces.html
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://ennanzhai.github.io/pub/nsdi25spring-simai.pdf
https://www.investopedia.com/terms/z/zscore.asp#:~:text=Z%2Dscore%20is%20a%20statistical,traders%20to%20help%20determine%20volatility
https://www.investopedia.com/terms/z/zscore.asp#:~:text=Z%2Dscore%20is%20a%20statistical,traders%20to%20help%20determine%20volatility
https://www.investopedia.com/terms/z/zscore.asp#:~:text=Z%2Dscore%20is%20a%20statistical,traders%20to%20help%20determine%20volatility
https://doi.org/10.1145/3603269.3604878
https://doi.org/10.1145/3627703.3629574
https://doi.org/10.1145/3627703.3629574
https://www.usenix.org/conference/atc23/presentation/choi
https://www.usenix.org/conference/atc23/presentation/choi
https://doi.org/10.1145/3694715.3695970
https://arxiv.org/abs/2411.01791
https://arxiv.org/abs/2411.01791
https://arxiv.org/abs/2411.01791
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1109/TPDS.2024.3443255
https://arxiv.org/abs/2412.12487
https://arxiv.org/abs/2412.12487
https://arxiv.org/abs/2412.12487
https://doi.org/10.1145/3651890.3672233
https://arxiv.org/abs/2407.05467
https://arxiv.org/abs/2407.05467


SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Q. Meng et al.

Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie
Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong,
Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang,
Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, XueweiWang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon,
Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet,
Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew
Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ram-
chandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu
Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan,
Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram
Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl
Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim,
Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph
Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowl-
ing, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood,
Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei
Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Cag-
gioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi,
Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Han-
nah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry
Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Je� Marcus,
Je� Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U,
Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal
Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee
Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt,
Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Has-
son, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya
Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike
Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Niko-
lay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart,
Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan
Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyag-
ina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Ra� Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Ran-
gaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru
Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy,
Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen,
Steve Kehoe, Steve Satter�eld, Sudarshan Govindaprasad, Sumit Gupta, Summer
Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney
Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robin-
son, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked,
Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao,
Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying
Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian,
Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[23] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. 2015. Pingmesh: A Large-Scale System for Data Center Network Latency
Measurement and Analysis. SIGCOMM Comput. Commun. Rev. 45, 4 (Aug. 2015),
139–152. https://doi.org/10.1145/2829988.2787496

[24] Hanpeng Hu, Chenyu Jiang, Yuchen Zhong, Yanghua Peng, Chuan Wu, Yibo
Zhu, Haibin Lin, and Chuanxiong Guo. 2022. dPRO: A Generic Performance

Diagnosis and Optimization Toolkit for Expediting Distributed DNN Training. In
Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu
(Eds.), Vol. 4. 623–637. https://proceedings.mlsys.org/paper_�les/paper/2022/
�le/b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf

[25] Jun Huang, Zhen Zhang, Shuai Zheng, Feng Qin, and Yida Wang. 2024. DISTMM:
Accelerating Distributed Multimodal Model Training. In 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24). USENIX Associa-
tion, Santa Clara, CA, 1157–1171. https://www.usenix.org/conference/nsdi24/
presentation/huang

[26] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and
Model Parallelism for Deep Neural Networks.. In Proceedings of Machine
Learning and Systems, A. Talwalkar, V. Smith, and M. Zaharia (Eds.),
Vol. 1. 1–13. https://proceedings.mlsys.org/paper_�les/paper/2019/�le/
b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf

[27] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang,
Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2024.
MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs.
In 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). USENIX Association, Santa Clara, CA, 745–760. https://www.usenix.
org/conference/nsdi24/presentation/jiang-ziheng

[28] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. BLIP-2: bootstrap-
ping language-image pre-training with frozen image encoders and large language
models. In Proceedings of the 40th International Conference on Machine Learning
(Honolulu, Hawaii, USA) (ICML’23). JMLR.org, Article 814, 13 pages.

[29] Hong Liu, Ryohei Urata, Kevin Yasumura, Xiang Zhou, Roy Bannon, Jill Berger,
Pedram Dashti, Norm Jouppi, Cedric Lam, Sheng Li, Erji Mao, Daniel Nelson,
George Papen, Mukarram Tariq, and Amin Vahdat. 2023. Lightwave Fabrics:
At-Scale Optical Circuit Switching for Datacenter and Machine Learning Systems.
In Proceedings of the ACM SIGCOMM 2023 Conference (New York, NY, USA) (ACM
SIGCOMM ’23). Association for Computing Machinery, New York, NY, USA,
499–515. https://doi.org/10.1145/3603269.3604836

[30] Juncai Liu, Jessie Hui Wang, and Yimin Jiang. 2023. Janus: A Uni�ed Distributed
Training Framework for Sparse Mixture-of-Experts Models. In Proceedings of
the ACM SIGCOMM 2023 Conference (New York, NY, USA) (ACM SIGCOMM ’23).
Association for Computing Machinery, New York, NY, USA, 486–498. https:
//doi.org/10.1145/3603269.3604869

[31] Kefei Liu, Zhuo Jiang, Jiao Zhang, Shixian Guo, Xuan Zhang, Yangyang Bai,
Yongbin Dong, Feng Luo, Zhang Zhang, Lei Wang, Xiang Shi, Haohan Xu, Yang
Bai, Dongyang Song, HaoranWei, Bo Li, Yongchen Pan, Tian Pan, and Tao Huang.
2024. R-Pingmesh: A Service-Aware RoCE Network Monitoring and Diagnostic
System. In Proceedings of the ACM SIGCOMM 2024 Conference (Sydney, NSW,
Australia) (ACM SIGCOMM ’24). Association for Computing Machinery, New
York, NY, USA, 554–567. https://doi.org/10.1145/3651890.3672264

[32] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiaolong Zhong, Lizhuang Tan,
Tian Pan, and Tao Huang. 2023. Hostping: Diagnosing Intra-host Network
Bottlenecks in RDMA Servers. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). USENIX Association, Boston, MA, 15–29.
https://www.usenix.org/conference/nsdi23/presentation/liu-kefei

[33] Guandong Lu, Runzhe Chen, Yakai Wang, Yangjie Zhou, Rui Zhang, Zheng Hu,
Yanming Miao, Zhifang Cai, Li Li, Jingwen Leng, and Minyi Guo. 2023. DistSim: A
performance model of large-scale hybrid distributed DNN training. In Proceedings
of the 20th ACM International Conference on Computing Frontiers (Bologna, Italy)
(CF ’23). Association for Computing Machinery, New York, NY, USA, 112–122.
https://doi.org/10.1145/3587135.3592200

[34] Kiran Kumar Matam, Hani Ramezani, Fan Wang, Zeliang Chen, Yue Dong,
Maomao Ding, Zhiwei Zhao, Zhengyu Zhang, Ellie Wen, and Assaf Eisenman.
2024. QuickUpdate: a Real-Time Personalization System for Large-Scale Rec-
ommendation Models. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24). USENIX Association, Santa Clara, CA, 731–744.
https://www.usenix.org/conference/nsdi24/presentation/matam

[35] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. 2021.
E�cient Large-Scale Language Model Training on GPU Clusters Using Megatron-
LM. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 58, 15 pages.
https://doi.org/10.1145/3458817.3476209

[36] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. arXiv:1906.00091 [cs.IR]

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/2829988.2787496
https://proceedings.mlsys.org/paper_files/paper/2022/file/b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf
https://www.usenix.org/conference/nsdi24/presentation/huang
https://www.usenix.org/conference/nsdi24/presentation/huang
https://proceedings.mlsys.org/paper_files/paper/2019/file/b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://www.usenix.org/conference/nsdi24/presentation/jiang-ziheng
https://doi.org/10.1145/3603269.3604836
https://doi.org/10.1145/3603269.3604869
https://doi.org/10.1145/3603269.3604869
https://doi.org/10.1145/3651890.3672264
https://www.usenix.org/conference/nsdi23/presentation/liu-kefei
https://doi.org/10.1145/3587135.3592200
https://www.usenix.org/conference/nsdi24/presentation/matam
https://doi.org/10.1145/3458817.3476209
https://arxiv.org/abs/1906.00091


Astral: A Datacenter Infrastructure for Large Language Model Training at Scale SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

https://arxiv.org/abs/1906.00091
[37] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge

Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Bal-
com, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Je� Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdono�,
Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brit-
tany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah
Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Eco�et,
Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada
Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson,
Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gor-
don, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Je� Harris, Yuchen He, Mike Heaton,
Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny
Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali
Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kil-
patrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner,
Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kon-
drich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael
Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming
Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan
Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov,
Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew,
Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, VinnieMonaco, EvanMorikawa, Daniel Mossing, TongMu,MiraMurati,
Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind
Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub
Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascan-
dolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde
de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly
Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford,
Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schul-
man, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina
Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Pet-
roski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B.
Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle,
Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang,
Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter
Welinder, Jiayi Weng, Lilian Weng, Matt Wietho�, Dave Willner, Clemens Winter,
Samuel Wolrich, HannahWong, LaurenWorkman, SherwinWu, Je�Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. 2024. GPT-4 Technical Report.
arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774

[38] Daehyung Park, Yuuna Hoshi, and Charles C. Kemp. 2018. A Multimodal
Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Varia-
tional Autoencoder. IEEE Robotics and Automation Letters 3, 3 (2018), 1544–1551.
https://doi.org/10.1109/LRA.2018.2801475

[39] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang
Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng Wang, Pengcheng
Zhang, Xianlong Zeng, Eddie Ruan, Zhiping Yao, Ennan Zhai, and Dennis Cai.
2024. Alibaba HPN: A Data Center Network for Large Language Model Training.
In Proceedings of the ACM SIGCOMM 2024 Conference (Sydney, NSW, Australia)
(ACM SIGCOMM ’24). Association for Computing Machinery, New York, NY,
USA, 691–706. https://doi.org/10.1145/3651890.3672265

[40] Alec Radford, Je� Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[41] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024. CASSINI:
Network-Aware Job Scheduling in Machine Learning Clusters. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). USENIX
Association, Santa Clara, CA. https://www.usenix.org/conference/nsdi24/
presentation/rajasekaran

[42] Samyam Rajbhandari, Je� Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory optimizations Toward Training Trillion Parameter Models. In SC20:
International Conference for High Performance Computing, Networking, Storage

and Analysis. 1–16. https://doi.org/10.1109/SC41405.2020.00024
[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[44] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and E�cient Foundation Language Models.
arXiv:2302.13971 [cs.CL] https://arxiv.org/abs/2302.13971

[45] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur,
Jorgen Thelin, and Ion Stoica. 2020. Blink: Fast and Generic Collectives for
Distributed ML. In Proceedings of Machine Learning and Systems, I. Dhillon,
D. Papailiopoulos, and V. Sze (Eds.), Vol. 2. 172–186. https://proceedings.mlsys.
org/paper_�les/paper/2020/�le/cd3a9a55f7f3723133fa4a13628cdf03-Paper.pdf

[46] Weiyang Wang, Manya Ghobadi, Kayvon Shakeri, Ying Zhang, and Naader
Hasani. 2024. Rail-only: A Low-Cost High-Performance Network for Training
LLMs with Trillion Parameters. In 2024 IEEE Symposium on High-Performance
Interconnects (HOTI). 1–10. https://doi.org/10.1109/HOTI63208.2024.00013

[47] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia,
Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. 2023. TopoOpt:
Co-optimizing Network Topology and Parallelization Strategy for Distributed
Training Jobs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). USENIX Association, Boston, MA, 739–767. https:
//www.usenix.org/conference/nsdi23/presentation/wang-weiyang

[48] Baodong Wu, Lei Xia, Qingping Li, Kangyu Li, Xu Chen, Yongqiang Guo, Tieyao
Xiang, Yuheng Chen, and Shigang Li. 2023. TRANSOM: An E�cient Fault-
Tolerant System for Training LLMs. arXiv:2310.10046 [cs.DC] https://arxiv.org/
abs/2310.10046

[49] Jie You, Jae-Won Chung, and Mosharaf Chowdhury. 2023. Zeus: Understanding
and Optimizing GPU Energy Consumption of DNN Training. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23). USENIX
Association, Boston, MA, 119–139. https://www.usenix.org/conference/nsdi23/
presentation/you

[50] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu, Chenchen Qi, Xuemei
Shi, and Guohui Wang. 2021. Hashing Linearity Enables Relative Path Control
in Data Centers. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 855–862. https://www.usenix.org/conference/atc21/
presentation/zhang-zhehui

[51] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu, Chenchen Qi, Xuemei
Shi, and Guohui Wang. 2021. Hashing Linearity Enables Relative Path Control
in Data Centers. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 855–862. https://www.usenix.org/conference/atc21/
presentation/zhang-zhehui

[52] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. 2020. Daydream:
Accurately Estimating the E�cacy of Optimizations for DNN Training. In 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
337–352. https://www.usenix.org/conference/atc20/presentation/zhu-hongyu

https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/LRA.2018.2801475
https://doi.org/10.1145/3651890.3672265
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://doi.org/10.1109/SC41405.2020.00024
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.mlsys.org/paper_files/paper/2020/file/cd3a9a55f7f3723133fa4a13628cdf03-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/cd3a9a55f7f3723133fa4a13628cdf03-Paper.pdf
https://doi.org/10.1109/HOTI63208.2024.00013
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang
https://arxiv.org/abs/2310.10046
https://arxiv.org/abs/2310.10046
https://arxiv.org/abs/2310.10046
https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui
https://www.usenix.org/conference/atc20/presentation/zhu-hongyu


SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Q. Meng et al.

Figure 17: The e�ectiveness of our optimized ECMP.

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A Rationale for Adopting ECMP Load Balancing
Although ECMP has relatively low e�ciency, we still adopt it in
production because: First, compared to per-packet load balanc-
ing schemes, ECMP, which assigns a �xed path to each �ow, can
simplify fault diagnosis in practical operations. Also, our fault di-
agnosis tools rely on a �xed path and would require substantial
redesign otherwise. Second, per-�ow ECMP is compatible with
existing hardware. For example, some legacy NICs, e.g., the CX-6
standard (non-DX) version, only support in-order delivery. Oth-
ers, such as CX-7 and BF-3, support out-of-order delivery only for
RDMA Write operation, but not for RDMA Write with Immediate
operation which is commonly used in LLM workloads. Finally, in
contrast to per-packet load balancing schemes, per-�ow ECMP con-
�nes the impact of failures to a limited set of �ows. When a link
fails, only those �ows mapped to the failed path are a�ected.

B Astral Network Extension
To consolidate computing power, we are extending the Astral net-
work architecture to connect multiple LLM data centers separated
by hundreds of kilometers. In general, the distance between LLM
data centers can be hundreds kilometers, resulting in high prices
of long-distance optical �ber (e.g., ⇠70$/km each month and 250K$
of 300km in our rental records for one year) comparable to GPUs.
Thus, there is a trade-o� between optical �ber bandwidth over-
subscription and training performance loss. From our experience
with today’s training framework, choosing either PP tra�c or DP
tra�c instead of TP tra�c across datacenters has the potential to
mitigate the side e�ects of bandwidth oversubscription and long
latency, depending on the amount of data volume and communica-
tion frequency as mentioned in §4.4. Figure 18 shows the realistic
experiment results of using PP tra�c across datacenters, indicating
that intra-datacenter to across-datacenter bandwidth oversubscrip-
tion of 8:1 does not a�ect performance, while 32:1 causes 4.6%
performance degradation.

C Astral Monitoring System Overheads
Millisecond-level monitoring introduces additional bandwidth over-
head due to the need to mirror the �rst packet’s header of each

Figure 18: Training perfor-
mance across datacenter.

Figure 19: Training per-
formance at scale.

Table 1: Lists of computation, memory access and communi-
cation operators in Seer for LLaMA 3.

Operators Types
Input

Embedding
LoadWeight Mem.
EmbeddingComputation Comp.

Transfomer
Layer

PPRecv Comm.
RMSNormLoadWeight Mem.
RMSNormComputation Comp.
GQAQKVLoadWeight Mem.
GQAQKVComputation Comp.
GQACoreAttn Comp.
GQAAttnProjLoadWeight Mem.
GQAAttnProjComputation Comp.
AttnTPAllReduce Comm.
SwiMLPUpProj Mem. + Comp.
SwiMLPGateProj Mem. + Comp.
SwiMLPDownProj Mem. + Comp.
MLPTPAllReduce Comm.
PPSend Comm.

Output Layer Logit Mem. + Comp.

RDMA message. In our deployments, this results in an average
bandwidth overhead of approximately 0.8Mbps per node. For a clus-
ter with 100K GPUs, the total monitoring tra�c is about 10Gbps.
This represents only about 0.00005% of the total link bandwidth,
rendering the overhead negligible. INT Ping also introduces addi-
tional storage overhead, as each ping packet carries extra metadata
to detect hop-by-hop nodes and measure latency. For example, in a
10K-GPU cluster, this results in only 173 GB of storage usage per
day, and we retain the data for only the most recent 15 days.

D Evolving Astral Monitoring System
Astral monitoring system o�ers a viable solution for an automatic
correlation analysis tool. This hierarchical correlation analysis es-
sentially draws on the underlying operational habits of experienced
operations engineers when locating anomalies. However, there are
always some anomalies that the automatic correlation system can-
not recognize. Speci�cally, there are certain failures that do not
adhere to the preset logic, such as persistent congestion resulting
from the abnormal response of network interface cards (NICs) to
PFC frames. For these newly emerging anomalies, we need to use
o�ine tools for in-depth analysis. To append the new anomaly to
the automatic monitoring framework, we just need to patch the



Astral: A Datacenter Infrastructure for Large Language Model Training at Scale SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

new detector at the lower level (i.e., physical layer). With layer-by-
layer abstraction, upper-level monitoring is mainly responsible for
identifying abnormal manifestations and locating abnormal nodes,
introducing minimal changes when dealing with new failures. In
this way, we can establish a continuously evolving monitoring
system.
There are edge-case failures that are challenging to handle.
A few failure types are di�cult for the online monitoring system to
diagnose. During operations, we found that certain software bugs
and hardware anomalies require manual intervention. For example,
a training task exhibited daily performance �uctuations across
multiple nodes within a speci�c time range. Our monitoring system
detected increased CPU utilization on a large number of devices, yet
cross-host analysis failed to identify any root-cause nodes, and no
critical abnormal logs were captured. After manual investigation,
engineers identi�ed the issue: routine port scanning by the network
security team repeatedly connected to a port NCCL was actively
listening on, causing abnormal CPU usage. The problem was solved
after the port was added to the whitelist.

E Basic Modeling in Astral Seer
Here, we present the formulation for atomic computation, memory
access, and communication operator execution time. Speci�cally,
we formulate the atomic computation operator time as:

)<D;C8?;820C8>= =
(2= � 1) ⇥< ⇥ ?

5 ;>?B
(1)

)0338C8>= =
< ⇥ =

5 ;>?B
(2)

where<= is the demand matrix addition �ops of matrix �,⌫ 2 R<⇥= ; and
(2= � 1)<? is the demand matrix multiplication �ops of matrix� 2 R<⇥=

and matrix ⌫ 2 R=⇥? . Each computation operator can be decomposed into
multiple atomic operations.

The atomic memory access operator execution time of matrix
� 2 R<⇥= is expressed as:

)<4< =
< ⇥ = ⇥ 5

⌘1<_1F
(3)

where 5 is the binary �oating-point format used by the computer,
de�ned by its bit-width. For example, 5 is 16 bits in the FP16 format.

Taking the basic 3D-parallelism, i.e., TP, PP, and DP, in trans-
former models as an example [35, 43], the communication operator
execution time can be categorized in accordance with communica-
tion types as:

)C?_2><< =
1 ⇥ B ⇥ ⌘ ⇥ 5

=4C_1F
(4)

)??_2><< =

1⇥B⇥⌘⇥5
C?_6A>D?B

=4C_1F
(5)

)3?_2><< =

<>34;_?0A0_=D<⇥5
C?_6A>D?B⇥??_6A>D?B

=4C_1F
(6)

where 1, B , and ⌘ represent batch size, sequence length and hidden
size in model framework, respectively; C?_6A>D?B and ??_6A>D?B
are TP group size and PP group size, respectively;<>34;_?0A0_=D<
is the total number of model parameters.


	Abstract
	1 Introduction
	2 Astral Network
	2.1 Astral Network Architecture
	2.2 Astral Network Deployment

	3 Astral Monitor and Diagnosis
	3.1 Challenges and Key Design Rationales
	3.2 Astral Monitoring Architecture
	3.3 Hierarchical Analysis and Cases

	4 Astral Seer
	4.1 Goals of Seer
	4.2 Key Properties for Seer
	4.3 Astral Seer Framework
	4.4 Case Studies

	5 Deployment and Experience
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Rationale for Adopting ECMP Load Balancing
	B Astral Network Extension
	C Astral Monitoring System Overheads
	D Evolving Astral Monitoring System
	E Basic Modeling in Astral Seer

