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Abstract

In modern datacenters, the effectiveness of end-to-end con-
gestion control (CC) is quickly diminishing with the rapid
bandwidth evolution. Per-hop flow control (FC) can react to
congestion more promptly. However, a coarse-grained FC
can result in Head-Of-Line (HOL) blocking. A fine-grained,
per-flow FC can eliminate HOL blocking caused by flow
control, however, it does not scale well.

This paper presents Pyrrha, a scalable flow control ap-
proach that provably eliminates HOL blocking while using
a minimum number of queues. In Pyrrha, flow control first
takes effect on the root of the congestion, i.e., the port where
congestion occurs. And then flows are controlled accord-
ing to their contributed congestion roots. A prototype of
Pyrrha is implemented on Tofino2 switches. Compared with
state-of-the-art approaches, the average FCT of uncongested
flows is reduced by 42%-98%, and 99th-tail latency can be
1.6x-215x lower, without compromising the performance
of congested flows.

1 Introduction

Given the increasingly stringent performance requirements
on datacenter networks, avoiding congestion and the re-
sulting delays has become critical for many applications.
Indeed, measurement studies show that congestion events
are frequent in today’s datacenters, e.g., bursty key-
value stores [[18, 30l], web search services with massive
queries [11], and data-parallel/machine-learning systems
with partition/aggregation traffic patterns [29, 90, (92} [13]
260, 91, 4, [70, 133]. Generally, congestion occurs at an
output port when the arrival rate of traffic exceeds its link
bandwidth. Queues build up at congested ports. With an
inflated buffer, flows could endure a long queuing delay or
even face packet loss, hence flows’ completion times (FCT)
can be prolonged [LL1 56].

State-of-the-art approaches to handle congestion is end-to-
end congestion control (CC) [[L1 95,165} 156, [19} 155} 61} [15}

*First author and second author contribute equally to this work.

35,16, [14] 186} [58]. Congestion can be detected by senders
when congestion signals are sent back or feedback delay
is observed. Usually, it costs senders at least one Round-
Trip Time (RTT) to be aware of the congestion, and then
senders may take several RTTs to converge to an appropriate
transmission rate. In modern datacenters, the effectiveness
of end-to-end CC is quickly diminishing with the rapid
bandwidth evolution [36} 43| [74, 22]|(§ 2-1).

With the increasing link speed and performance require-
ments of datacenter networks, an intriguing and emerging
alternative is per-hop flow control (FC), which can react
to congestion much more promptly. It suppresses the
transmission of the upstream entity before overwhelming the
downstream queue, which avoids a large buffer occupancy.
Generally, traffic in the same queue is controlled as a whole.
Once the queue length exceeds a given threshold, a pause
frame can be sent to pause the upstream entity [16, [17],
avoiding further buffer build-up where congestion occurs.
However, a coarse-grained flow control might spread the
congestion to the whole network, inducing Head-Of-Line
(HOL) blocking, and hurting the performance of victim
flows [40,154},162,157]]. Here HOL blocking refers to flows be-
ing paused innocently (§[2.2). A naive approach to eliminate
HOL blocking could be to isolate each flow into different
queues and control each of them separately. However, such
a per-flow granularity flow control is not scalable since
the hardware resources of switches are limited. State-of-
the-art flow control approaches hence aim at reducing the
number of queues required by compromising the granularity
of isolation [36]. Thus, the HOL blocking can not be
eliminated entirely (§ 2.3).

This paper explores how to eliminate HOL blocking in
a scalable manner, i.e., minimizing the required number
of queues. We observe that when congestion occurs, flow
control first takes effect on the root of the congestion, i.e.,
the port where congestion occurs. Then several congestion
hotspots (i.e., output port with buffer build-up) can appear
along the back pressure path of flow control. These involved
hotspots form a congestion tree, where the root of the
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tree is the root of the congestion. Simply controlling the
transmission of flows based on hotspots could induce HOL
blocking. Instead, if we separately control the transmission
of flows according to the congestion root they participate
in, flows will not be paused innocently. As the number
of concurrent congestion roots observed on each port is
moderate, only a reasonably small number of queues on each
port are required for traffic isolation in each switch [20].

Based on these insights, this paper presents Pyrrha, a
congestion-root-based per-hop flow control protocol (§ [3).
A framework is constructed for analyzing egress-based flow
control algorithms. We analytically prove that Pyrrha is a
HOL-blocking-free per-hop flow control protocol with the
minimum queue requirements.

In Pyrrha, each switch maintains a snapshot of the con-
gestion status of the downstream network. Flows that would
pass through the same congestion root in their downstream
paths could be pushed into a dedicated congestion queue
locally in each upstream switch. Then, flows passing through
different congestion roots can be controlled separately as
soon as possible. Pyrrha solves a set of challenges.

e How to identify a hotspot’s role? When congestion
occurs, multiple congestion roots may be claimed in suc-
cession. This could occur when an upstream congestion
hotspot claims itself root while its downstream hotspot
disagrees, and vice versa. With a local view, it is hard
to tell which root is the exact root in the upcoming
congestion. Intuitively, given the behavior of flow control,
congestion roots always locate on the most downstream
ports that flows pass through. Inspired by the root-
selection procedure of classic spanning tree algorithms [7}
32|, Pyrrha employs a distributed self-stabilizing merge
mechanism. A port can claim itself a self-nominated
congestion root independently when it detects its queue
buildup for the first time. It then abdicates its claim in
favor of a self-nominated downstream root if (part of)
its flows pass through the downstream claimer. Quickly,
participating hotspots can converge to a congestion tree.
Naturally, the congestion root is detected. (§ [4.1).

e How to identify a congested flow upon its arrival?
For each arriving flow to a switch, its entire following
path should be deterministic to the switch to identify a
congested flow. Inspired by recent industrial path control
practice [73}152], Pyrrha proposes a hash-function-aware
design for switches. Every switch can determine the path
that a flow will take. With that information, the switch
could match the path against the congestion status snap-
shot of the downstream network to determine whether it
is a congested flow (§ @.2).

e How to handle events-tangling scenarios? Conges-
tion trees could overlap with each other which could
result in a congested flow traversing several conges-
tion roots. Besides, the congestion root in networks
may vary with transient bursty traffic. Without careful

e Per-hop Flow
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Figure 1: Our vision of labor division between CC/FC.

scheduling among congestion queues, such flows could
be mistakenly paused/resumed or delivered out-of-order.
Pyrrha proposes a resource-efficient hierarchical queue
structure corresponding to the physical topology. The
design ensures both correct flow control semantic and in-
order delivery even in highly dynamic scenarios (§ {.3)).
A prototype of Pyrrha is implemented on Tofino2 [48].
Testbed evaluations and large-scale NS-3 simulations have
been performed. We compare Pyrrha with existing flow
control protocols (e.g., Priority Flow Control (PFC) [46]],
and BFC [36]]). And we also incorporate Pyrrha with
existing congestion control protocols ( e.g., DCQCN [95]],
TIMELY [65], and HPCC [56]). We find that the average
FCT of uncongested flows is reduced by 42.8%-98.2%,
and 99th-tail latency can be 1.6x-215x lower, without
compromising the performance of congested flows. In
addition, Pyrrha reduces the maximum buffer occupancy by
up to 1.8x-6.2x (§ |§[) As a contribution to the research
community and to ensure reproducibility, our artefacts is
made publicly available online [S9]. This work does not raise
any ethical issues.

2 Background and Motivation

2.1 CCis Falling and FC is Rising

A variety of datacenter applications produce bursty traffic,
which can result in different types of congestion, e.g., incast,
and load imbalance. To handle congestion, existing efforts
focus on developing end-to-end congestion control (CC). CC
can be classified into reactive and proactive. With reactive
CC, congestion can be detected by switches (e.g., ECN
in DCTCP [11]] and DCQCN [95]], INT measurements in
HPCC [56]], PINT [19]], PowerTCP [6] and Poseidon [86]) or
end-hosts (e.g., Timely [65]], Swift [55], and On-Ramp [61]).
After receiving congestion signals or if packet delays are
observed, senders adjust the transmission rate. It may
cost a flow several RTTs to converge to an appropriate
rate even in a stable network condition. With proactive
CC, bandwidth is allocated before the transmission (e.g.,
ExpressPass [25, I58]], Homa [67], NDP [41]], Aeolus [43],
and pHost [31]]). However, whether to transmit in the first
RTT is a dilemma, and proactive CC either wastes the
first RTT or risks reintroducing congestion. Recently there
are CCs [14] 169] which detect congestion at sub-RTT by
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Figure 3: Performance comparison under MoE workloads (collided phase).

leveraging switches to send back control frames directly.
However, they can not quickly react to congestion especially
when congestion occurs at the last hop (e.g., incast).
Several trends. The control loop of CC is too long to handle
transient congestion, given the fast evolution of datacenter
networks: (i) The high port bandwidth allows to send out
more flows within the first RTT, even before congestion con-
trol could step in [36}/43]]. Transient bursty traffic results in a
large buffer occupancy and at the same time mislead the rate
adjustment of CC. (ii) The buffer size cannot catch up with
the increased speed of its high bandwidth per port [36} [22]].
It becomes harder for switches to buffer transient congestion
and wait for end-to-end CC'’s intervention. (iii) The growing
scale of datacenter networks and the emerging workloads
(e.g., distributed training) lead to more bursty traffic (e.g.,
a larger scale incast) (74,142, 73].

Our vision. To handle bursty traffic, per-hop FC protocols
should step in. As shown in Figure [l we propose a labor
division between CC and FC:

¢ (i) Per-hop FC handles transient congestion. A switch
can control the traffic transmission quickly by per-hop
flow control frames. It is in a unique position to quickly
manage flows that have already been injected into the
network to avoid performance downgrades.

e (ii) CC takes its part to handle persistent congestion.
CC can adjust the flow rates to increase/decrease the
forthcoming traffic injection into the network when con-
gestion occurs and to handle fairness issues.

2.2 HOL Blocking Problem of Simple FC

In RoCEv2 [16], PFC [46] ensures that the buffer does not
overflow. PFC pauses the upstream entity at a per-port or
per-priority-class queue granularity when the ingress queue
length exceeds a given threshold. Further, when the upstream

ingress queue exceeds the threshold, a pause frame will be
sent to its upstream entities.

However, the intervention of PFC could spread conges-
tion. When PFC is applied, flows that do not contribute to
downstream congestion could be paused when they share
the same queue with congested flows. The congestion scope
can spread from congested ports to piles of innocent ports.
Hence, it could downgrade the performance of uncongested
flows. We define the above congestion spreading phe-
nomenon as the HOL blocking caused by flow control, i.e.,
a flow is paused innocently by the congested port that it does
not pass through. HOL blocking could cause a throughput
downgrade. More severely, PFC is vulnerable to deadlock
with routing loops [40, 54, 62, |57]].

Typical incast workloads.To demonstrate the HOL block-
ing problem, we conduct a simulation where incast flows are
mixed with non-incast flows. 720-to-1 incast flows are gen-
erated with an average size of four Bandwidth-Delay Product
(BDP) and non-incast flows are generated with a load of
0.8 following the Poisson arrival process (setting details in
§[6). Figure [2(a)] depicts the real-time throughput. To make
it more clear, we use vulnerable flows to denote uncongested
flows sharing paths with congested flows in the remainder of
the paper since they are more likely to be hurt by congested
flows. Other uncongested flows are denoted as background
flows. Hence, the throughput of vulnerable flows is severely
hurt since they are paused by downstream switches with
congested flows as a whole, leading to a large queuing delay.
Besides, since a PFC pause frame storm occurs, congestion
is spread to the whole network. Consequently, background
flows suffer a throughput downgrade from Ims to 4ms.

MoE workloads. We investigate the performance of
Pyrrha under the traffic of a popular type of pre-trained large
language model called Mixture-of-Expert (MoE). According
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to [42], the traffic pattern can be characterized by an imbal-
anced alltoall where a significant portion of the traffic is sent
to a few “hot’ experts. Owning to the synchronization nature
of the training process, the traffic exhibits a periodic on-off
pattern [75) [76]. Following [75], two groups of periodic
traffic are generated.

Figure [3] shows the performance of flows with collided
phase, i.e., where their phase overlaps (the results of the
interleaved phase are detailed in Appendix [B). In the case
of DCQCN+PFC, two groups of alltoall suffer from HOL-
blocking as they compete for bandwidth, which in turn
triggers PFC. The peak bandwidth lasts for approximately
1 ms during which non-hot experts complete their traffic
reception, followed by hot experts continue receiving their
traffic. The throughput of the alltoall-1 group is notably
suppressed, even dropping to zero upon the arrival of the
alltoall-2 group. Once a portion of the alltoall-2 flows
finishes, alltoall-1 begins to grasp some of the bandwidth,
as indicated by the red rectangle in the figure. While for
DCQCN+Pyrrha, benefiting from the rapid reaction to the
congestion, two groups of flows do not disturb each other,
accelerating the tail latency by a factor of 1.46x.

2.3 State-of-the-art Flow Control is Flawed

To overcome the HOL blocking problem caused by coarse-
grained control on queues, a naive scheme is per-flow queue
FC scheme. Figure demonstrates the simulation results
under the same settings as in Figure [2(a)] when the switch
assigns a dedicated queue to each flow passing through
it. Vulnerable and background flows fully utilize the link,
at the same time the throughput of incast flows does not
downgrade (see [39] for theoretical analysis). However, tens
of thousands of flows can be observed on ports [84]. Hence
a per-flow granularity scheme is non-scalable.

Existing flow control approaches try to reduce the number
of queues by compromising the isolation granularity.
Destination-based flow control. This line of work tries
to isolate congestion by separating flows transmitting to
different destinations. Revisiting super-computing litera-
ture decades ago, per-destination Virtual Output Queues
(VOQs) [23} 27, 151] are assigned to separate flows with
different destination addresses [85 |68]]. However, per-
destination VOQs are not scalable since the number of
VOQs required scales with the number of hosts in networks.
Floodgate [60] is a per-hop flow control leveraging per-
destination windows to identify incast traffic in datacenter
networks. Then, incast traffic can be isolated from non-
incast traffic. However, it should maintain a per-destination
state of the remaining sending window which demands much
memory resources on switches. In summary, they only
aim at eliminating HOL blocking caused by the last-hop
incast and cannot handle other types of congestion such as
load imbalance. In addition, they require per-destination
resources which build barriers to deployment at scale.

Queue-based flow control. A second line of work targets at
assigning flows into a limited number of queues to alleviate
HOL blocking. Since it cannot isolate congested flows
from uncongested flows entirely, HOL blocking cannot be
avoided. In BFC [36], flows are assigned to a number of
queues (i.e., 32-128 queues per port) according to their flow-
ids and hash functions. A flow is assigned to an empty
queue if possible and could share it with other flows when
all queues are occupied. As shown in Figure with
relatively large incast flows, both vulnerable and background
flows maintain a very low throughput from 2ms to 12ms.
The tail latency of flows is prolonged by 6 x compared with
the per-flow queue scheme. This is because incast flows can
occupy queues for a long time. Vulnerable and background
flows sharing the same queue with incast flows are severely
hurt, and their transmission rate is mistakenly controlled by
the network bottleneck (i.e., the destination ToR of incast).

To sum up, existing solutions cannot totally avoid HOL-
blocking, and some of them are impractical.

3 Pyrrha Overview

Our target is to eliminate HOL blocking caused by flow
control in the most cost-effective way. In this section, we first
illustrate why congestion root is the appropriate granularity
of flow control along with the basic idea of Pyrrha, followed
by a list of challenges.

3.1 Basic Idea

Before illustrating our basic idea, we introduce several
concepts in flow control when congestion occurs. Figure [
shows a typical congestion tree rooted at P5.

* Congestion Hotspot. When the congestion occurs, a flow
control scheme starts to pause upstream, inducing several
hotspots along its back-pressuring path. A congestion
hotspot is an output port whose input rate exceeds its
output rate and its queue accumulates.

* Congestion Root. As its name implies, a congestion
root is the root cause of the congestion, where congested
flows finally aggregate. Meanwhile, it is the root of the
corresponding congestion tree.

* Congestion Tree. A congestion tree can be made up of
a root (e.g., P5), non-root hotspots (e.g., P1-P3) and leaf
ports (already controlled by the root but have not paused
its upstream yet). In our paper, a congestion tree is named
after its root (e.g., T5 denotes the tree whose root is P5).

Why congestion-root-based FC? A non-differentiating
treatment of flows passing through congestion roots and
hotspots could result in HOL-blocking since flows passing
through hotspots might not contribute to the congestion. To
avoid involving innocent flows, flow control should decide
the right scope of flows to control. Intuitions are that
if a flow control only applies pause to flows contributing
to the congestion root, HOL-blocking can be eliminated.
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Figure 4: Congestion tree illustration.

Meanwhile, flows passing through different congestion roots
should be handled separately to avoid interfering with others.
Quick reaction to congestion: identify congested flows
upon arrival. Once a congestion root is detected, the
congestion root information is propagated to its upstream
switches when it is detected. Then each switch maintains
a congestion status snapshot of its downstream networks. A
congested flow can be detected upon its arrival in networks
by checking whether its path matches existing congestion
roots. Hence, its transmission can be controlled several
hops earlier before it arrives at congestion roots. It reduces
the occurrence of severe congestion and relieves the buffer
pressure on following hops, especially on congestion roots.
Fine-grained isolation: manage traffic according to its
contributed congestion roots. By default, flows are pushed
into a physical output queue (OQ). For separate control,
congested flows passing through the same congestion root
should be pushed into a dedicated isolation queue (IQ)
assigned to the corresponding congestion root. Different
categories of flows, e.g., congested flows contributing to dif-
ferent congestion roots, and uncongested flows are isolated
respectively. Then, the transmission of congested flows can
be controlled precisely by pausing the exact queue assigned
to the congestion root, which avoids congestion spreading.

Based on the above ideas, we propose Pyrrha, a practical
fine-grained flow control scheme based on congestion roots.
Pyrrha achieves good properties, as shown next.

Theorem 3.1. Pyrrha is a HOL-blocking free per-hop flow
control protocol requiring the minimal number of queues.

Proof. Inspired by the gradient graph [78,[77], we represent
flows and queues as vertices, and their traversing relationship
as edges. Congested flows contributing to the congested
queue’s congestion can be represented as its immediate
neighbors. Based on this representation, congested flows
can be identified as the neighbors of a congested queue.
Similarly, potentially paused flows by a congested queue can
be identified in our graph representation. In order to prove
that Pyrrha is HOL-blocking-free, we formally prove that the
set of congested flows and the set of potentially paused flows
are identical for any congested queue. Futhermore, we prove
that any flow control using fewer queues than Pyrrha cannot

avoid HOL blocking. We use Dirichlet’s box principle and
proof by contradiction to establish this impossibility result.
Our formal proof appears in [39]. [

3.2 Design Challenges

Identify congestion roots. Correctly identifying the con-
gestion root is the prerequisite of proper flow control. In tree
T5 of Figure [d] P1-P3, and P5 should agree that P5 is the
root of incast. Otherwise, if P1 incorrectly identifies itself
as an independent root, vulnerable flow VS— VR becomes a
victim.

Identify congested flows. To control the transmission
of flows separately, congested flows should be identified
precisely. When an uncongested flow is mistakenly identi-
fied (e.g., VS—VR) as a congested flow, it can be paused
innocently. To recognize a congested flow quickly, a switch
should obtain the flow’s path to be traversed in its down-
stream network so that it can check the path against its
downstream network snapshot.

Handle tree-tangling scenarios. Several concurrent con-
gestion trees can be intertwined among themselves. If non-
root ports of trees are overlapped, these ports can play differ-
ent roles in different congestion trees. These ports should
not entangle transmission control received from different
trees. When a tree is covered by another one, it results
in a flow contributing to several congestion roots, which
appear frequently in real systems. One may wonder why
congestion still occurs at a port after part of its passing flows
is controlled by its downstream congestion roots. This is
because the congestion at the port is caused by itself other
than its downstream ports. Figure [5{b) depicts an example
that the path of a flow can first match a congestion root
(P6) and then match another congestion root (P5). The
transmission of the congested flow should be controlled by
both congestion roots, i.e., only when both congestion roots
send a RESUME frame can the flow be transmitted. Besides,
the transmission control of the flow should not interfere other
flows sharing one of the congestion roots.

In addition, when the competing traffic changes, the con-
gestion tree can shrink or expand, leading to congestion roots
varying over time. For P3 in Figure |4 initially, packets of
flows {S4-S5}—R1 are controlled in the IQps. If flows {S1-
S3}—RI finish, P3 is likely to become the new congestion
root later. Flows {S4-S5}—R1 are no longer the congested
flows of P5, instead, they are congested flows of P3. Later-
arrived packets of these flows should be carefully scheduled
in case they are transmitted before packets previously queued
into the IQps, which results in out-of-order delivery.

4 Pyrrha Design

Figure [5] demonstrates the architecture of Pyrrha. The
bottom part of the figure denotes the packet propagation
among Pyrrha switches. And the upper part depicts the
three major components of a Pyrrha switch. Congestion
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Figure 5: Pyrrha architecture.

Root Identification (§ @) responds to downstream switches
to detect congestion and identify the corresponding root.
The congestion information is carried in flow control frames
(e.g., PAUSE) and propagated to upstream switches in a
hop-by-hop manner. Congested Flow Identification (§ {.2)
maintains the snapshot of downstream network congestion
states to help quickly recognize congested flows through
path matching. Isolation queues (IQs) are structured in a
hierarchy corresponding to the topology by Congested Flow
Management (§ @.3). Besides, details and discussions are put

in § .4 and § @3]
4.1 Congestion Root Identification

Initial detection. Inspired by the root-election process of
spanning tree protocols, a congested port can claim itself
a self-nominated congestion root candidate independently.
Initially, each port is attached with a OQ and flows are
pushed into the OQ by default. Hence the queue length
increase on the OQ can be regarded as an indication of
congestion. When a data packet arrives at the OQ, a
switch checks whether the queue length exceeds a given
threshold K pause (e.g., several per-hop BDPs). If so, a hotspot
is detected and the hotspot regards itself as a congestion
root. Subsequent packets that arrive at the hotspot trigger
a PAUSE frame to the corresponding upstream port from
which the packet arrived.

Congestion root identification. According to behavior of
flow control, a root is always the most downstream hotspot
in a tree. Hence, we can identify the real congestion roots by
merging upstream congestion tree into a more downstream
one. As shown in Figure [5(a), when a congestion-root-
candidate hotspot (P1) receives a PAUSE frame from a
downstream root (P5), it indicates that part of its passing-
through flows also traverses this downstream hotspot. Hence
it recognizes itself as a false-positive congestion root. A
new IQ for this new congestion root (P5) is assigned. All
following packets matching the new root will enter the cor-
responding IQ. Then, the old congestion tree is canceled and
merged into the new congestion tree. Note that this process

Downstream

oQ

1
]
1
]
1
]
1Q,5 P71}
1
]
1
]
1
]

Empty IQ
&& leaf

Deeper
Downstream Switch
Figure 6: IQ state transitions.

___________

can be iterative when there exist multiple layers of hotspots
in a congestion tree. The false-positive congestion roots are
eventually merged and the root of the new congestion tree is
the real congestion root.

Merging process. To start merging, the false-positive
congestion root notifies all its child nodes by sending a
control message MERGE. MERGE is sent to all its upstream
entities belonging to the (old) false-positive congestion root,
carrying the ID of both old and new congestion roots. As
shown in Figure [6] switches receiving the MERGE frame
change the state of the corresponding IQ to soft-merging
and propagate the notification to its upstream further. Soft-
merging means that the old IQ now belongs to no congestion
tree and can be unassigned once empty. The packets
queuing in the old IQ are not controlled by the false-positive
congestion root. Instead, only packets passing through the
real congestion root are controlled (§ F3). The merging
process finishes within a one-way delay, hence false-positive
congestion roots have a negligible impact on performance.

4.2 Congested Flow Identification

Intuitions are that a congested flow passes through at least
one congestion root.
Determining a flow’s exact path. To determine whether a
data packet belongs to a congested flow, the entire onward-
path of each arriving packet at a switch should be deter-
ministic. Pyrrha is compatible with traffic load balancing
protocols that can locally get deterministic onward paths
for flows [1} 44, 79, 164, 52]. Among those load balancing
protocols, hash-based protocols (e.g., per-flow ECMP and
PLB [73]]) are most widely deployed given its no-reordering
properties [87]. Pyrrha proposes a hash-function-aware
design. Pyrrha’s switch calculates a packet’s onward-path
by using its IP tuples, routing hash functions, and seeds of
its downstream switches, together with flow labels carried in
its header if necessary as input. Besides, source routing is
compatible with Pyrrha naturally since Pyrrha’s switch can
derive the onward-path of a packet by parsing its header.
The memory and computation resource to get a flow’s path
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is moderate, and following optimizations are facilitated by
leveraging the industry-standard practices in datacenters. (i)
Given that switches in datacenter only support limited types
of hash functions (e.g., CRC or XOR) to conduct efficient
calculation [87, 93| [72], Pyrrha switch only needs to store
the type of the hash function of other switches along with
their hash seeds. (ii) In many widely deployed topologies [l
37,162,182, the multiple equal path property and the up-down
routing strategy can be leveraged to optimize the overhead.
In those topologies, the forwarding tables of all core switches
are identical. Hence, Pyrrha switch only needs to store one
replica for redundant forwarding tables. Furthermore, for
fat-tree, the path from a core switch to a given destination
is unique, hence Pyrrha switch only conducts hash function
calculation for the first two hops.

For other adaptive load balancing approaches, e.g., per-
packet spraying and DRILL [67, [34], which determine the
path of flows through dynamic states, Pyrrha is a comple-
mentary solution to handle the hotspots caused by destina-
tion collision (i.e., incast), where load balancing falls short.
Experiments in Appendix[6.3|show that Pyrrha is compatible
with DRILL and further improves the tail latency by 18.3%
compared to pure Pyrrha. Pyrrha also handles corner cases
where flows are re-routed to different paths due to link
failures (Appendix § [A).

Matching and maintaining snapshot. Pyrrha’s switch
maintains the congestion-root table of the downstream net-
works. As shown in Figure [5[b), the table maintains a snap-
shot of the congestion states of its downstream networks.
When a PAUSE frame indicating a new congestion root is
received, the congestion root is recorded in the table. When
a packet arrives at the switch, its path can be obtained via
above mentioned methods. The switch checks whether its
path matches any entry in the congestion-root table. For
port P1 in Figure [B[b), packets that will traverse P5 in its
downstream path are identified as belonging to a congested
flow. Hence, it’s enqueued to a separate IQ, which is
paused/resumed based on the state of the corresponding root.
Otherwise, the packet belongs to an uncongested flow and is
put in the OQ.

4.3 Congested Flow Management

To handle tangled scenarios where congestion trees are
intertwined among each other or congestion roots vary over
time, Pyrrha leverages a hierarchical methodology to manage
congested flows corresponding to that of the topology. It
can be supported by a Hierarchical Isolation Queue (HIQ)
architecture, which manages congested flows in a hierar-
chy. Pyrrha installs HIQ during compilation according to
its location in networks and manages the usage of queues
dynamically during runtime through a mapping table. We
also provide single-tier IQs prototype to fully support the
function of HIQ.

Handling congested flow in hierarchy. Congestion trees
are intertwined when non-root ports of trees are overlapped

or a tree is covered by another one. For the first scenario,
IQs on ports can naturally isolate control from different
congestion roots on non-root ports. For the latter one, a
congested flow could pass through multiple congestion roots.
To ensure precise control isolation, a congested flow should
match all corresponding 1Qs before it is forwarded. A
hierarchical organization of IQs based on the location of
their corresponding congestion roots in the topology enables
a congested flow to match appropriate 1Qs sequentially.
Especially, when per-flow load balancing is used, a flow at
most encounters one congestion root among switches at the
same level. It ensures in-order delivery when a congested
flow alters its matched IQs.

Hierarchical Isolation Queue (HIQ) architecture. HIQ
consists of several levels of 1Qs. Each IQ is positioned in
a hierarchy according to its distance to the corresponding
congestion root in the physical topology. Hence, the number
of layers of the HIQ is determined by its location in the
network. As shown in Figure Ekc), in a two-tier network,
an uplink port of a ToR switch maintains two levels of IQs,
since the farthest potential congestion root is two hops from
it. Figure Ekc) depicts the HIQ architecture on P7, i.e.,
the leaf port in Figure 5(b). P7 fully utilizes the two-level
architecture of the HIQ, since the farthest congestion root
P5 is two hops from it. Especially, the OQ is connected to
the last level of the HIQ architecture. A dedicated scheduler
is equipped for each level of queues to schedule the traffic
transmission. Only when an IQ is in a resumed or soft-
merging state can its packet be dequeued and pushed into
the next-level 1Qs/OQ. From the perspective of a packet,
this process is performed iteratively until it reaches the OQ.
In the scenario depicted in Figure [5] when a flow that will
traverse congestion root P6 and PS5 arrives at the upstream
switch of port P6, it matches the HIQ from-near-to-far. After
a packet is dequeued from 1Qpg, it is pushed into a next-level
1Qps.-When there is no more matched IQ, it is pushed into
the OQ. Hence, the packet can be forwarded to the next hop
only after all matched congested roots are resumed. In this
way, congested flows are controlled locally precisely.

IQs in HIQ are arranged by levels, supporting in-order
delivery naturally. Considering the merging procedure in
Figure [5(a), the congestion root is changed from P1 to P5.
1Qp; is in the soft-merging state and packets in it can be
mixed with congested and uncongested traffic. Pyrrha should
handle them separately to avoid HOL blocking. Congested
flows of root PS5 are dequeued from 1Qp; and then pushed
into the next level IQps. Uncongested flows are forwarded
to OQ. In this way, precise isolation is achieved without
inducing re-ordering.

Handling secession of the congestion root. Once the OQ
length of the congestion root decreases below the resume
threshold, it sends back RESUME to its upstream. Likewise,
upstream switches could resume their upstream when their
own IQ decreases below the resume threshold. It is an
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iterative process that the congestion tree eliminates starting
from the leaf switches to the root. A congestion port
becomes a leaf when it has not sent PAUSE yet, or when the
status of all its upstream entities is set to unassigned. The
IQ of the leaf switch is unassigned when it becomes empty.
When all the upstream IQs of a congestion root are marked
unassigned and the queue length of OQ of the congestion
root is below the resume threshold, the congestion root
disappears naturally. Figure [6]depicts the state transition of
the IQ usage. Only when an empty 1Q is in a resumed or
soft-merging state can it be marked as unassigned.

4.4 Miscellaneous Detailed Design
Congestion information propagation. There are three
types of flow control frames in Pyrrha, e.g., PAUSE, RE-
SUME, and MERGE. These control frames carry the conges-
tion information and control the transmission of congested
flows accurately in a hop-by-hop manner. Correspondingly,
there are three states for an IQ, i.e., paused, resumed, or soft-
merging. The state transitions of an IQ are shown in Figure[6]
When a congestion root is detected, a PAUSE frame is
sent back to the upstream port through the ingress port of
which the data packet is just received. Once a data packet is
pushed into the OQ which is attached to the congestion root,
Pyrrha switch checks the packet’s ingress port and sends
back the PAUSE frame. A PAUSE frame carries the ID
of the congestion root (i.e., identified as switch-id:port-id).
Likewise, when the queue length of IQ exceeds the threshold
Kpause; a PAUSE frame carrying the root ID is sent back to
its upstream switch.
Cooperation on end-hosts. To handle persistent congestion,
end-hosts should control the upcoming traffic into networks.
Pyrrha can cooperate with congestion control protocols. And
Pyrrha can perform better if end-hosts can respond to PAUSE
(or RESUME and MERGE) frames. To pause and resume
at a per-flow granularity, end-hosts could leverage a pull-
based transmission model, which can be implemented by
programmable smart NICs in RDMA networks. Especially,
Pyrrha can also handle end-host congestion (e.g., PCle
congestion) by backpressuring the traffic it receives.
Handling rare packet loss. Pyrrha reduces queuing length
significantly. Hence, buffer overflow rarely occurs. How-
ever, Pyrrha does not guarantee lossless for rare cases where
every port of a switch becomes the victim port of a k-1:1
incast lasting for one-hop RTT in turn, where k denotes
the number of ports on switches. In this certain case,
Pyrrha can start to drop packet and leverage IRN [66] for
fast retransmission.

4.5 Scalability Discussions

Queue consumption. In the most extreme scenario, the
number of congestion roots can be the number of ToRs in the
network. However, the concurrent amount of congestion in
networks is usually moderate. It is reported that only 3% of
the links in edge and aggregation layers appear as a hotspot
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Figure 7: Queue usage analysis.
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for more than 0.1% of time intervals [20, 21]]. Moreover, the
concurrent roots can be much less than that of hotspots.

To investigate the IQ usage, evaluations under stressful

workloads where (m — 1) out of m ToRs send traffic simul-
taneously to the left 1/m of the ToRs are conducted. A
k=12 fat-tree topology is employed and each host sends 40
one-BDP flows continuously to create a substantial network
burst. Figure [/] illustrates the 1Q usage of Pyrrha as the
fraction of senders varies. The IQ utilization ranges from
6-20, approximately proportional to the number of pods k,
which considered to be relatively moderate. Since commod-
ity switches can support thousands of VOQs [23} 27 511,
assigning a dedicated queue to each downstream root is
feasible. To handle corner cases where 1Qs are not enough,
similar to BFC, Pyrrha leverages hash functions [39, [71] to
choose an 1Q according to the congestion root ID, at a cost
of sacrificing precise isolation.
Deadlock prevention. Pyrrha is deadlock robust since
OQs never get paused. To prevent cyclic buffer dependen-
cies (CBD) caused by routing loops, Pyrrha switch checks
whether the congestion root carried in the PAUSE frame is
identical to its own identifier. If so, it ignores the PAUSE
frame directly. (see detailed discussions in [59]].)

S Implementation and Testbed Experiments

We implement a Pyrrha prototype on Tofino2, a state-of-
the-art programmable switch ASIC [48]] with Reconfigurable
Match Table (RMT) architecture. In this section, we briefly
describe the key modules of the prototype, followed by the
overhead analysis. Testbed evaluations show that Pyrrha can
achieve good performance (§ [5.2). More implementation
details are deferred to Appendix [D]and|[E]

5.1 Prototype of Pyrrha

We implement a Pyrrha prototype on Tofino2 with 2.5k lines
of P4 code and 2k lines of Python code. The operations of
Pyrrha is implemented entirely in the data plane at line rate.
Key modules and the pipeline. The Pyrrha prototype is
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mainly composed of several modules, i.e., (i) congestion root
matcher, (ii)) queue manager, (iii) queue state detector, and
(iv) signal packet module.

(1) Upon arrival, the data packet first undergoes a standard
processing procedure, including forwarding and admission
control. Subsequently, the data packet is forwarded to
the congestion root matcher, an integral component of the
path calculation unit and a congestion root table, facilitating
the congested flow identification. Specifically, the path
calculation unit calculates the packet’s egress ports of its
onward path. The congestion root table records the status
of ports, indicating whether the port is congested or not. (ii)
Then packets enter the queue manager for queue assignment.
The queue manager assigns queues to traffic based on the
congestion roots it would pass through. Central to its design
is a multi-segment stack, wherein each segment manages the
available queues for a specific egress port.

(iii) The queue state detector checks whether the length of
the assigned queue exceeds the pause threshold or decreases
below the resume threshold, and then triggers appropriate
signal packets. The queue length is retrieved by utilizing
ghost threads in Tofino2.

(iv) When it is necessary to send a signal packet, the signal
packet module leverages the packet trigger functionality to
construct signal packets, such as PAUSE and RESUME.
Upon receiving a PAUSE or RESUME, the module engages
Tofino2’s AFC (Advanced Flow Control) mechanism to
pause (or resume) the queue.

Feasibility of HIQ The architecture of HIQ is supported
in current Metro Ethernet (MetroE) service routers [3} 2.
And a recent work of implementing multi-level scheduler
on ASIC [94] also verifies its feasibility. According to
private talks with chip vendors, they consider it possible to
implement HIQ in their next-generation switching chips. For
instance, the two-layer HIQ can be obtained by connecting
two traffic manager models in series and specifying the
next-level IQ to be pushed in when a packet is dequeued.
Although HIQ is not supported by the architecture of Tofino2
currently, the features of HIQ can be fully supported via
single-tier queues (Appendix [C).

Complexity and overhead. Tofino2 adopts pipeline ar-
chitecture, wherein the resource allocation is determined at
compile time. It enables us to ascertain Pyrrha’s resource
requirements without running it in a large-scale cluster.
According to the statistics reported in megascale [49], the
scale of current data centers can reach up to 10,000 hosts.
Therefore, we use a k=36 fat-tree topology with 11,664 hosts
as a representative case. Pyrrha prototype can easily scale
to it, with around 11 MB (i.e., 44.5% of Tofino2) of the
memory resource consumption. Specifically, the memory
usage of Pyrrha prototype is mainly composed of three units,
i.e., path calculation unit, congestion root table, and queue
manager, overall consuming 9.25 MB. And the processing
logic consumes around 1.88 MB. (i) As analyzed in §
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Figure 10: Throughput of testbed experiments.

the memory consumption of the path calculation can be
optimized by leveraging the industry standard, occupying
0.44MB SRAM. (ii) The congestion root table is organized
hierarchically, where the n'" table records ports that are n hop
away from the switch, and the port is identified as <switch-
id, port-id>. Hence, the storage usage of the congestion
root table is proportional to the number of ports in networks,
occupying 176 KB SRAM. (iii) The queue manager firstly
checks whether the congested flow is assigned with a queue
through a IsAssigned Table and assigns a queue if necessary
by looking up a multi-segment Queueld stack which records
the available queue. Then it updates the Queueld record
table to record the queue assignment status. This module
overall consumes 8.64MB SRAM. Furthermore, leveraging
the rapidly maturating HIQ technology [94], Pyrrha can
scale to topologies that is an order of magnitude larger.
(detailed analysis are deferred to Appendix |E).

5.2 Testbed Evaluation

Topology. We use a 2-level leaf-spine topology as shown in
Figure@], consisting of three ToR, two core switches, and two
hosts per rack, all connected via 100 Gbps links.
Workloads. We evaluate Pyrrha under incast-mix scenarios.
Incast flows are generated by letting hosts S1 and S2 transmit
flows to host R1 simultaneously. Vulnerable flows are
generated by letting host VS send flows to host VR. Flows
S2—R1 and VS— VR share the same port on the core switch.
Web Server and Web Search flows are generated following a
Poisson arrival process (§[6).

Pyrrha reduces the FCT of vulnerable flows. Figure [9]
demonstrates the FCT performance of vulnerable flows. For
PFC, vulnerable flows are HOL blocked by incast flows,
suffering a large queuing delay. Pyrrha quickly detects the
congestion on the destination ToR switch and isolates incast
flows into a dedicated queue. Thus, the FCT of vulnerable
flows is greatly reduced.

Pyrrha improves the throughput. Figure shows the
throughput when flows on three hosts S1, S2, and VS start
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Figure 11: Performance of FC. The deep/light color in the figures represents the average/99th-tail value for each bar.

to arrive at 1s, 4s, and 7s, respectively. Pyrrha improves
the throughput of vulnerable flows to 66.7 Gbps without
compromising the overall throughput of incast flows (100
Gbps). The network throughput is improved by 26.7 Gbps.

6 Simulation Evaluation

Topology. A non-blocking clos-network is used. It contains
4 core switches, 10 ToRs, and 160 hosts, similar to the
topology used in [67]). Each ToR is connected to its hosts
and cores via 100/400 Gbps links, respectively. The per-hop
propagation delay is 600ns. The base RTT is 5.1us, and the
base BDP is 64KB. A 3-tier fat-tree topology with 1024 hosts
is also leveraged to investigate the scalability of Pyrrha.
Workloads. Under incastmix scenarios, flows following
a Poisson arrival process with a load of 0.8 and periodic
incast flows each composed of 30-40 MTUs with a load of
0.5 are generated. An incast destination does not receive
Poisson arrival flows hence the traffic load does not exceed
link bandwidth. The incast degree is 720-to-1. For Poisson
arrival flows, three workloads are used [67, 180, [11], where
Memcached is composed of small flows, where most of the
flows are smaller than 1KB, and Web Server and Web Search
are large flows mixed with small flows where a small ratio of
large flows dominate the average flow size.

Parameters. There are two parameters of Pyrrha, i.e., the
threshold to pause (i.e., Kpuus times one-hop BDP) and the
threshold to resume (i.e., Kyegme times one-hop BDP). In our
evaluations, K g, 15 set to 2, and K egme 18 set to 1. Besides,
the maximum number of IQs can be used is set to 100, but
Pyrrha only uses a dozen of IQs in most cases. A dedicated
subsection discusses why these values are used (§B.1). The
switch buffer capacity is 20MB. Pyrrha uses shared buffer
mode. PFC uses dynamic threshold and o = 2.

Metrics. Average/99th-tail FCTs are evaluated. We monitor
maximum buffer on each hop to investigate the composition
of buffer reallocation that Pyrrha brings.

6.1 Comparing with Flow Control

In this section, we use large-scale NS3 simulations to com-
pare Pyrrha [S9]] with existing flow control protocols (e.g.,
PFC and BFC). For BFC, two versions with 32 and 128
queues per port are used, as in its paper (e.g., BFC is used to
denote BFC-32). Figure[TT|shows the FCT and throughput.

6.1.1 PFC

PFC hurts the performance of uncongested flows since they
can be paused innocently by their downstream ports when
incast occurs. This especially hurts the performance of work-
loads that are composed of small flows (e.g., Memcached).
For Web Server workload, PFC even spreads the congestion
to the whole network thus background flows that do not
share the same destination pods of incast flows also get hurt.
The throughput performance depicted in Figure [II(T)] is a
side note to this issue. For background flows, it achieves
stable high throughput until PFC pause frame storm occurs
at 1.5ms. Then background flows endure a significant
throughput loss that lasts for about milliseconds.

6.1.2 BFC
BFC assigns flows to multiple queues according to flow
identifiers (FID) and hash functions. It can partially alleviate
HOL blocking caused by congested flows and improve the
performance of uncongested flows to an extent compared
to PFC. However, HOL blocking occurs when congested
flows and uncongested flows share the same queue, or flows
are hashed into the same flow FIDs. Hence, BFC can not
obtain extremely low latency as Pyrrha does. Along with
the number of queues used by BFC increases, i.e., from
32 to 128, the performance of BFC is improved. For Web
Search workload, the tail latency of BFC is not good because
BFC sets a relatively smaller threshold to detect congestion
compared to PFC. It can risk spreading congestion.

The third group of bars in Figure shows the per-
formance of incast (congested) flows. More results of
incast flows are deferred to Appendix [B] Pyrrha does not
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compromise the performance of incast flows compared to
PFC. BFC reduces the average FCT of incast flows because
BFC splits different flows into different queues and incast
flows may use several queues simultaneously. Incast flows
can use more bandwidth during the resume phase via the
round-robin scheduling mechanism among queues.

6.2 Cooperating with Congestion Control

In this section, we incorporate Pyrrha with state-of-the-
art CC (e.g., DCQCN and HPCC). Experiment results of
TIMELY is left in Appendix [B] The authors’ contributed
simulation codes, if available, are used in our evalua-
tions [10, [53]. Following [56} [61], a per-flow sending
window on hosts is added to all approaches, limiting the in-
flight packets of a flow. PFC is used to provide a lossless
network for CC by default. Besides, to fully understand
the performance of CC, we also evaluate pure CC and use
IRN [66] to handle packet loss. IRN leverages selective
retransmission to perform an efficient loss recovery.

6.2.1 DCQCN

Since Pyrrha reduces the buffer occupancy by a large extent,
we set K, = S0KB and K, = 200KB to cooperate with
DCQCN. Figure [T2] depicts the average and 99th-tail FCT
across different workloads. DCQCN alone can not handle
incast flows quickly thus PFC is triggered. Particularly,
under Web Server, a PFC pause frame storm occurs. PFC

is triggered from the destination ToR of incast and finally
reaches the hosts that the source ToR switches connected to,
which affects background flows.

Given that PFC has some side effects, one may wonder
how DCQCN performs when leveraging IRN for retransmis-
sion instead of relying on PFC. However, IRN is not a cure
for DCQCN. As shown in Figure 26(b)] although DCQCN
with IRN reduces the FCTs of small flows compared to
DCQCN with PFC, FCTs of larger flows are prolonged.
Packet loss hurts the goodput of networks. Besides, when all
inflight packets are lost, loss recovery can only get triggered
via timeouts. Timeout retransmission hurts the performance
of small flows and the tail latency of large flows.

When adding Pyrrha to DCQCN, Pyrrha can significantly
benefit uncongested flows (e.g., vulnerable and background
flows) by quickly recognizing and isolating incast flows.
Pyrrha reacts quickly on in-network congestion by handling
it locally, which is especially beneficial to small flows.
Therefore, Pyrrha’s performance improvement on small
flows is the most significant. When the flow size increases,
the improvement becomes relatively less obvious. Because
large flows give more time for DCQCN to take effect.

Figure [T4] shows the maximum buffer occupancy among
different hops. Instead of letting congested flows over-
flow the congestion root, Pyrrha can quickly control their
transmission locally. Then the buffer occupancy on the
congestion root, i.e., the destination ToR switch, can be
greatly reduced. Since Pyrrha pushes back congested flows,
the buffer occupancy on the source ToR switch is increased.

From another perspective, when adding DCQCN to
Pyrrha, the FCT of small flows can be improved further
compared to pure Pyrrha. This is because DCQCN can
control the transmission of flows based on a finer granularity
than a pause-resume manner. For flows sharing the same
path, DCQCN can adjust the rate of each flow individually
while Pyrrha controls them as a whole. And congestion
control favors small flows since large flows are more likely
to be marked and convey the congestion signals back to
senders. In addition, the buffer occupancy on the core switch
can be further reduced, as shown in Figure

6.2.2 HPCC

When adding Pyrrha to HPCC, uncongested flows carry the
queue length of the OQ to avoid unnecessary rate reduction
on them. And congested flows carry the queue length of
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1Qs. For clarity, Figure @ shows the FCT distribution of
HPCC. Pyrrha helps improve the performance of HPCC.
While HPCC achieves good performance on a portion of
small flows, as shown in Figure[26(g)] this is because HPCC
leverages INT to get the in-network information to reduce the
queue length aggressively, which benefits small flows. As a
cost, its tail latency is prolonged since the transient small
flows could interfere with the rate adjustment process and
influence the network throughput.

6.3 Additional evaluations and Discussions

Performance under Large-scale Topology. To investigate
the scalability of Pyrrha, evaluations under k=16 fat-tree
topology (i.e., 1024 hosts) is conducted. Figure [T5] shows
the performance of different protocols under Web Server.
The trend of performance differences between different algo-
rithms is very similar to that of the results in §[6] We analyze
the results from two perspectives: (i) When comparing FC
with CC protocols, especially for flows smaller than 100KB,
fine-grained FC protocols such as BFC and Pyrrha out-
perform PFC as well as CC protocols. This advantage is
attributed to the rapid response of fine-grained FC to network
congestion, which provides a degree of mitigation against
HOL blocking. (ii) In terms of cooperation between FC and
CC, as depicted in Figure when Pyrrha is integrated
with CC, small flows can achieve the lowest latency. This
is because Pyrrha rapidly reacts to the network congestion,
preventing HOL blocking for traffic that has already been
injected into the network. Concurrently, CC address the
persistent congestion associated with larger flows.

Cooperating with adaptive load balancing scheme. Load
balancing schemes handle congestion by re-arranging the
traffic to avoid path collision. However, they can not handle
congestion caused by destination collision (i.e., incast),
and Pyrrha acts as a complementary solution to handle
it. Pyrrha works together with adaptive routing by only

recognizing and handling the congestion of incast.

We investigate the performance when Pyrrha works with
DRILL, an adaptive load scheme that chooses the forwarding
port according to the queue length dynamically. Simi-
lar to § [6] incast-mix traffic is generated and a k=8 fat-
tree topology is used. Results in Figure [I6] show that
Pyrrha works well with DRILL. The integration of DRILL
with Pyrrha further reduces the latency of Poisson flows
compared to pure Pyrrha. The performance gain is attributed
to DRILL’s ability to distribute traffic effectively, thereby
preventing queue buildup at the upstream (e.g., SrcToR,
SrcAgg, and Core), as shown in Figure[I6(b)] However, this
optimization comes with a trade-off in the latency of incast
flows, which is higher compared to the pure Pyrrha.
Additional evaluations. In Appendix [B] we further explore
the performance of Pyrrha under several scenarios, (i) when
the size of incast flows varies, (ii) when facing multiple
congestion roots, (iii) MoE traffic with interleaved phase,
and (iv) when the congestion roots vary. We also compare
Pyrrha with per-flow queue scheme and CC without sending
window. Besides, the parameter selection and merging
mechanism of Pyrrha is evaluated. A variant of Pyrrha using
single-tier queues is investigated (§ [C.2).

Discussions. Discussions regarding how Pyrrha handles link
failures, as well as a review of related works, are put in the

Appendix [A]
7 Conclusion

This paper was motivated for a labor division between con-
gestion control and flow control. It is time to embrace per-
hop flow control in datacenter networks to react to conges-
tion promptly. We presented Pyrrha, a congestion-root-based
per-hop flow control. It controls the transmission of flows at
a fine granularity without congestion spreading, requiring a
minimum number of queues. The performance of flows can
be significantly improved. We are currently discussing with
a major vendor the implementation of Pyrrha in its products.
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Figure 17: When the size of incast flows varies.

A Discussions

Dealing with link failures. For link failure that exactly
occurs at the port of congestion roots, Pyrrha sends RE-
SUME frames to its upstream switches to avoid unnecessary
further control. For link failure on other ports, the failure
is transparent to Pyrrha when source routing is used. When
hash calculation is used to get flows’ path, the calculation
can be dynamically adjusted by introducing a rerouting
table when route changes by leveraging existing rerouting
protocols to propagate the rerouting information.

Related works. The IEEE standard group advocates Con-
gestion Isolation (CI) [47], supporting the isolation of con-
gested data flows within datacenter. An egress port can
identify flows causing congestion and isolate them locally.
The progress of the IEEE standard proved the necessity
of Pyrrha from the side. However, CI can only control
congested flows that already arrived at the congested port.
Besides, CI uses only one dedicated queue for all congested
flows, resulting in HOL blocking among congested flows
passing through different congested ports.

In addition, there are several existing lines of work that
go beyond flow control and congestion control. dcPIM [24]]
takes several RTTs to match senders and receivers before
starting transmission to avoid congestion. TCD targets
solving the problem that traditional flow control (e.g., PFC
and CBFC [17]) interferes with the congestion detection of
congestion control protocols. It proposes an undetermined
state by leveraging the ON-OFF pattern caused by flow
control, and only the flow identified as congested reduces
its rate according to congestion control. It can give more
penalty to congested flows afterward but does not handle
congestion that already occurs. ABM [5] is an efficient
buffer-sharing scheme that leverages both spatial and tem-
poral features of the buffer. Queue scheduling approaches
target at providing approximate fair queuing [81) |89] or
strict priority [12} 38} 9] [83]]. Scheduling approaches do not
differentiate congested flows from those uncongested thus
they can not eliminate HOL blocking. CASSINI [76) [75]]
adjusts the communication phases of ML jobs to share the
bandwidth. These works are orthogonal to Pyrrha.
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B Supplemental Results

When the size of incast flows varies. Now we investigate
the performance of uncongested flows when the size of incast
flows varies. As shown in Figure[I7} Pyrrha achieves a stable
performance when the size of incast flows increases. This is
expected since Pyrrha can already control the transmission
of incast flows when the size of incast is smaller than one
BDP (§ [6.2). The performance of BFC downgrades to a
large extent with long incast flows. Because long incast flows
occupy the queues continuously, HOL blocking uncongested
flows sharing the same queue with them. For CC protocols,
the FCT of uncongested flows becomes stable after the incast
size increases to three BDPs since congestion control begins
taking effect.

When facing multiple congestion roots. We investigate
the scenario where multiple congestion roots exist. An
uneven hash function is used to conduct load imbalance. ToR
switches can choose among four core switches to forward,
the possibility to route to the first core switch is 50%, and the
other three paths share the left 50% uniformly. This is called
hash polarization, which can occur in datacenter networks.
Flows are generated as the incastmix scenario (§[6.2). Hence,
there are multiple congestion roots in networks, e.g., load
imbalance on the upstream ports of ToR switches and incast
on their downstream ports.

Figure[I9]shows the performance of different approaches.
Pyrrha reduces the average and tail FCT of non-incast flows.
Pyrrha detects the congestion on source ToR switches and
sends congestion notifications to the connected source hosts.
Then, senders can send other flows that do not pass the
imbalanced ports to utilize the network. For congested flows
passing through both load imbalance and incast ports, their
transmission is well controlled. Hence, the queuing delay
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Figure 21: Performance comparison under MoE workloads (interleaved phase).

of Poisson flows is quite small. For CC approaches, they
can not alleviate the throughput downgrade caused by load
imbalance, hence FCTs of Poisson flows are prolonged.

Supplemental results under k=16 fat-tree. Figure [20]
shows the additional evaluations of Pyrrha, TIMELY, and
HPCC under the k=16 fat-tree. The results are consistent
with Figure [6.3] where Pyrrha is compared with DCQCN.

Per-flow queue scheme. Figure 22]shows the performance
of flow control protocols in incastmix scenarios, including
the per-flow queue scheme. For Memcached, the per-flow
queue scheme can achieve as low latency as Pyrrha for back-
ground flows. While for vulnerable flows, the per-flow queue
scheme can not reduce their tail latencies. Due to the fact that
the per-flow queue scheme does not start to control a newly
arrived congested flow until it is transmitted to the congested
port. It induces a large buffer occupancy at the network
bottleneck. Moreover, vulnerable flows and congested flows
share the same bottleneck at core switches. When there are a
large number of congested flows, vulnerable flows can only
get a small fraction of bandwidth share. As a by-product, the
per-flow queue scheme reduces the average FCTs of incast
flows, as shown in Figure [T8]

CC with no window. Figure 26| shows the performance of
Pyrrha, DCQCN, and HPCC when no sending window is
applied. In comparison to protocols with sending window,
the same traffic pattern as Figure [I2]is generated. Without
the sending window, the queuing delay on source ToR is
increased across all protocols, as shown in Figure
The rationale is the absence of initial transmission control
allows for a greater volume of traffic to be injected into
the network, leading to longer queue length and increased
queuing delays at the source ToRs before CC or FC steps
into. DCQCN experiences a larger degree of congestion as
each flow can concurrently inject a larger volume of traffic

into the network. Likewise, DCQCN+IRN suffers from a
larger loss rate which results in performance degradation. In
the absence of the sending window, HPCC endures a more
severe performance degradation since HPCC is designed
to be a window-based protocol. Benefiting from the fast
reaction to network congestion, the latency of Pyrrha is
slightly increased compared to that with sending window.

Performance under MoE workloads (interleaved phase).
Figure [21] depicts the performance of two groups of alltoall
flows with interleaved phase, i.e., the two groups of traffic do
not overlap with each other. With the interleaved phase, two
groups of flows are slightly affected by each other. By adding
Pyrrha to DCQCN, there is still performance improvement
of the latency of flows, as depicted in Figure This
is because the traffic of alltoall-1/alltoall-2 itself can induce
transient congestion and Pyrrha can handle it better.

Comparing with TIMELY. We use the parameters recom-
mended by the TIMELY authors in their paper. As shown in
Figure[25] when adding Pyrrha on TIMELY, the performance
improvement of TIMELY is similar to that for DCQCN.

Deep dive of the per-hop queuing delay. To fully under-
stand how Pyrrha works, we investigate the flows’ queuing
time among different hops, where the experiments settings is
the same as in § [6.2] Figure 23] shows the result. Queuing
time is split into three parts, where SrcToR denotes the
uplink ports of ToR, i.e., the first hop of packets. Likewise,
DstToR denotes the downlink ports of ToR, i.e., the last hop
of packets. The average queuing time reflects the extent
of HOL blocking that uncongested flows encounter. For
DCQCN, vulnerable flows are HOL blocked by incast flows
at the core switches. When adding Pyrrha to DCQCN, it
eliminates the queuing time for vulnerable flows signifi-
cantly. For Web Server, Pyrrha also helps reduce the queuing
delay of background flows since it does not cause congestion
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spreading, and only flows causing congestion are paused.
Pyrrha reacts quickly on congestion at the last hop, hence
the queuing time of incast flows is mainly composed of the
time spent on the srcToR and core switches.

Pyrrha is robust when congestion roots vary. We provide
additional testbed results when congestion roots vary. The
testbed setting is the same as in § [5.2]  When flows on
three hosts S2, VS, and S1 start to arrive at 1s, 4s, and
7s, respectively, the congestion root changes from the core
switch to the destination ToR. Pyrrha can also converge
quickly and achieve good throughput.

B.1 Parameter and Mechanism Validation

Parameter Selection. In this section, the performance
of Pyrrha under different parameters is evaluated. We
scan parameters under incastmix scenarios of Memcached.
Figure 27 depicts the 99th-tail FCT of the vulnerable flows.
Kesume 18 set to 1 when sweeping Kpuuse, and Kpgyse 1s set to
10 when sweeping K,esume. Pyrrha is relatively insensitive to
different Kpquse and Kyegume value, which is preferred in the
industry.

As shown in Figure[27(a)] Pyrrha achieves the smallest tail
latency when K. ranges from 2 to 35. When the value
of Kpause 18 larger than 35, the tail latency increases. This
is because Pyrrha reacts slowly on congestion with a large
pause threshold.

As shown in Figure 27(b)] the tail latency of Pyrrha re-

mains unchanged when sweeping K,egme. For that, with
a fixed value of Kpuse, the timing and correctness of con-
gestion root identification are the same, and K,egme only
affects the queuing delay arrangement of congested flows on
different hops.
Mechanism validation. With merging, Pyrrha is insensitive
t0 Kpguse and Kyegume. As shown in Figure without
merging, when K5 varies (e.g., 2-35), the inaccurate root
detection induces queuing of vulnerable flows. While with
merging, those false-positive congestion roots caused by
inappropriate parameters could be corrected. The queuing
delay shown in Figure 28(a)] and 28(b)| validates it.

Figure m demonstrates the performance when K,egume
varies. Notice that K, here is set to 10, and the incorrect
congestion detection exists. Figure shows that the
queuing delay increases when K,gume is set to a smaller
value. This is due to a small resume threshold could be strict
to resume and vulnerable flows in the 1Q of the false-positive
root can be blocked for a long time. With merging, different
values of K,esme does not influence the queuing delay, as

shown in Figure28(d)]
C 1Q Management

C.1 Methodology

The function of HIQs (e.g., hierarchical congestion matching
and in-order delivery) can be achieved by leveraging single-
tier IQs. Considering a two-tier HIQ matches congestion
roots belonging to two different levels. We denote the single-
tier IQ matching two-level congestion roots as 1Q,4, and IQBj
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Kpause and Kresume-

respectively and use lower case letters a; and b; to denote
the corresponding congestion roots. For a network with two
congestion roots a; and bi, there can be flows matching
congestion roots aj, b1, and a; A b;. To handle these three
types of congestion flows, for HIQs, 1Q4, and 1Qp, can be
arranged into two levels. For single-tier 1Qs, three dedicated
1Qs (i.e., 1Q4,, IQp, and 1Qu,p,) are needed. Generally,
to isolate different congested flows as in two-tier 1Qs (e.g.,
n first level 1Qs IQy,,...,IQ4, and m second level 1Qs
1Qp,,...,1Qa,,), the single-tier IQs need additional 7% m 1Qs
(i.e., IQA1A31 ge e 'IQAn/\Bm)'

For single-tier IQs, to ensure in-order delivery, it should
be careful when a congested flow alters its chosen queue.
Scenarios where a flow changes the queue it uses only occur
when (i) a congestion root vanishes , or (ii) a new congestion
root is detected. For the first scenario, since the IQ to be
unassigned must be empty, packets of the flow are not in
different queues hence in-order delivery is satisfied naturally.
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Figure 28: Queuing time variation of vulnerable flows across different value of

The second scenario is described in § B where a new
congestion root by is detected after a;. Then 1Qp, and
1Q4, B, are assigned to traffic passing b and traffic passing
both congestion roots. Following arrival packets passing
through both congestion roots a; and by alters from IQy, to
1Q4, AB, - A order mark is inserted into the 1Qy4, , and IQa, B,
can not be resumed until the order mark is dequeued from
1Q4,. Note that IQ4, can be paused by congestion root by
before the order mark is dequeued due to that flows passing
through both port a; and b; can be pushed into 1Q4, before
congestion root b; is detected. Given that Pyrrha detects
congestion roots rapidly, packets in IQ,4, can be moderate
hence the order mark can be dequeued in a short time.

C.2 Experimental Verification

To reduce the complexity, we can analog two-tier HIQs
which is enough for two-tier Clos-networks. For three-tier
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Figure 29: Performance when using single-tier congestion
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Clos or fat-tree networks, it only matches congestion roots
that two hops away from the destination host. And we
leverage CC protocols to handle the congestion close to the
source host.

We evaluate the performance of Pyrrha when single-tier
congestion queues are used to analog the behavior of a
two-tier HIQ in a three-tier topology. Figure [29] shows
the performance of Pyrrha and Pyrrha handling downstream
congestion roots by leveraging single-tier 1Qs. Results show
that when comparing Pyrrha (downstream)+DCQCN with
Pyrrha+DCQCN, the latency of flows smaller than 100KB
is increased. But Pyrrha (downstream)+DCQCN reduces the
latency of flows significantly compared to pure DCQCN.

D Pyrrha Prototype and Discussion

In this section, we present our Tofino2 prototype, with Figure
[30] depicting its pipeline. We divide the pipeline into three
parts, each detailed in a separate subsection (Appendix[D.1]-
[D.3). Finally, we summarize the Tofino2 features leveraged
in our prototype and examine the practicality of implement-
ing Pyrrha on the RTC (Run-To-Completion) architecture,
e.g., Juniper Trio [88].

D.1 Ingress Pipeline

Packet Classifier. The packet classifier is located at the front
of the ingress pipeline. The module determines the packet
type according to the Ethertype field in the Ethernet header.
(We use Ethertypes that are not used by the IEEE standard
to mark different types of packets.) There are three types
of packets: data packet, signal packet, and generated packet.
Different types of packets then go through different modules.
Forward Engine. Only data packets go through the for-
warding engine. The forwarding engine looks up the table
deployed in advance and determines the egress port of
the data packet. This module is similar to that of most
commercial switches.

Congestion Root Matcher. This module contains two sub-
module: route calculation unit and hierarchical congestion
root table. The methodology of route calculating is described
in § and the optimization to reduce the resource usage
is detailed in Appendix And as described in §

the hierarchical congestion root table records the congestion
roots and their states in a hierarchical manner. When a
data packet passes, the module first calculates its route,
then matches its route against the congestion root table
hierarchically. If the packet matches one or more congestion
roots in PAUSE state, the matched congested root id(s) is
(are) carried in its metadata, which is stored in PHV and
will be used in the following modules. When a signal
packet passes, the module first calculates the location of the
congestion root it indicates, then modifies the state of the
corresponding congestion root in the hierarchical congestion
root table.

Queue Manager. This module manages the mapping be-
tween the congestion root id and queue id. When a packet
passes, the module tries to match the congestion root id
it carried in metadata against mapping table. If there is
no matched entry, the module assigns a new queue to this
congestion root. When a queue is unassigned, the module
deletes the corresponding entry.

Queue State Detector. Ghost is used in this module to
detect the change in queue state. When Ghost is triggered by
predefined thresholds (Kpause OF Kyesume), @ Ghost packet is
generated to the ingress pipeline and writes the queue length
into a register in this module. When passing through this
module, the data packet tries to read the value in the register
corresponding to the queue in which it will be queued. Then
the data packet compares the queue length it read with the
previous queue length stored in another register. If the queue
length exceeding Kpquse or falling below Kjegme for the first
time, a PAUSE/RESUME packet is needed to be sent. In
such case, the module marks the packet.

At the end of the ingress pipeline is the signal packet
module, which contains three sub-modules corresponding to
three types of packet.

Signal Packet Creator. Only data packets will pass through
this module. Recalling that in the Queue State Detector
module, the data packet is marked if a signal packet is needed
to be sent. Then this module will check the marker and
uses Pktgen to generate a new packet if the marker is valid.
The new programmable Pktgen trigger of Tofino2 enables
carrying some data plane metadata in the generated packet,
which greatly expands programmability.

Signal Packet Constructor. The generated packets will
pass through this module. This module will reorganize the
metadata and construct the header of the signal packet.

Signal Packet Handler. This module will pause/resume
the IQ based on the queue information carried in the signal
packet. The dataplane pause/resume is achieved via AFC, a
new feature of Tofino2. If the signal packet switches some
flows from a working queue to another queue, the signal
will be modified to a Order Mark and pushed into the origin
queue. Otherwise, the signal packet is useless and dropped
by the module.
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Figure 30: Pipeline of Pyrrha implementation on Tofino2

D.2 Traffic Manager

In the Traffic Manager, we configure a highest priority queue
as the queue through which the signal packets pass. Other
queues are configured as the same priority and scheduled in
a Round-Robin manner. Among these queues, one is used
as OQ, and the rest of the queues are used as IQ, which are
managed by Queue Manager in Ingress Pipeline.

D.3 Egress Pipeline.

Packet Classifier. The functionality of this module is similar
to the Packet Classifier in Ingress Pipeline. All packages
are divided into three types: mirror packet, data packet, and
Order Mark.

Queue State Detector. Unlike the Queue State Detector in
Ingress Pipeline, this module uses the queue length carried
by the egress packet to detect the change of queue state. This
module mainly focuses on one kind of queue state: CLEAR.
If an IQ is clear, it means we can unassign it when other
conditions are met.

Signal Packet Creator. Because the programmable Pktgen
trigger is not available in Egress Pipeline, this module uses
mirror, another Tofino feature, to create signal packets. To
deliver the signal packet to Ingress Pipeline, the module
mirrors the packet to the top-priority queue of the loopback
port. For the data packet with a CLEAR mark, this module
just mirrors the header to create a small-size signal packet.
For the Order Mark, this module mirrors the whole packet
and then drops the origin packet.

Signal Packet Constructor. In this module, the mirrored
packet is constructed as a signal packet. For the packet
mirrored from the data packet’s header, the module discards
all the origin headers and reconstructs the signal header. For
the packet mirrored from the Order Mark, the module only
makes minor modifications.

D.4 Feasibility on RTC switches

In our Tofino2 prototype, we utilized the following features
that may not be supported by all programmable switches:
Ghost thread, packet trigger, and AFC (Advanced Flow
Control). (i) Ghost thread is used to get queue lengths at
the ingress pipeline. (ii) The packet trigger functionality
can generate new packets at the end of both the ingress

and egress pipelines. (iii) AFC enables the pausing and
resuming of queues in the programmable data plane. We
then discuss how to implement these features on other
types of programmable switches that adopt RTC (Run-To-
Completion) architecture, e.g., Juniper Trio [88].

(1) In programmable switches, queue lengths are typically
visible after packets pass through TM (Traffic Manager), i.e.,
during the process of egress. For Tofino, the Ghost thread
is required due to the hardware limitation that information
can not be directly conveyed from to egress to ingress.
However, in the RTC architecture, the memory is shared
between ingress and egress, thus Ghost thread is naturally
not required.

(i1) The packet trigger functionality is not directly supported
by current RTC switches. Fortunately, through private
discussion with a vendor of the RTC switch chips, we have
learned that the feature can be easily implemented using
background threads and will be integrated into its forthcom-
ing RTC architecture switch chip. More precisely, the design
involves dedicated background threads and associated data
structures that are reserved for packet generation. These
background threads are continuously active, polling the data
structures for the notifications of packet generation. When
a need arises to generate new packets, the necessary packet
generation information is written into the corresponding data
structure. Upon detection of this information, the back-
ground threads initiate the generation process accordingly.
(iii) Currently, AFC is not supported by existing RTC chips.
The support for AFC in Tofino2 demonstrates the feasibility
of exposing this functionality to the programmable data
plane. Considering the necessity to support prevalent flow
control protocols such as PFC, the capability to pause and
resume queues should be a standard functionality in RTC.
We are optimistic that future releases of RTC switch chips
will support this essential functionality.

E Resource Usage on Tofino2

In this section, we detail the resource overhead of the Pyrrha
prototype on Tofino2. Tofino2 adopts pipeline architecture,
wherein the overhead of storage and computational resources
is determined at compile time. It enables us to ascertain
Pyrrha’s resource requirements without running it in a large-
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scale cluster. We separately compile three key data structures
that are related to the size of the topology to report their over-
head across different topological scales (Appendix [E.THE.3).
Subsequently, we present the resource usage of processing
logic, which remains constant irrespective of the scale of
topology (Appendix [E4). Ultimately, we analyze the com-
putational and storage resource complexities of Pyrrha and
provided an exhaustive account of resource utilization under
several typical network conditions. (Appendix

According to the statistics reported in megascale [49],
the scale of current data centers can reach up to 10,000
nodes. Therefore, we use a fat-tree topology with 11,664
hosts as a representative case for our analysis. In addition,
we investigated the largest scale of topology that Pyrrha can
support theoretically, i.e., approximately an order of mag-
nitude larger than the state-of-the-art datacenter networks.
The results demonstrate that Pyrrha is capable of scaling to
large-scale networks. Our prototype of Pyrrha can support
a typical modern data center with over 10,000 hosts. Lever-
aging the rapidly maturating HIQ technology [94], Pyrrha is
capable of scaling up to support topology approximately an
order of magnitude larger than the typical modern datacenter
networks.

Our overhead analysis focuses on the ToR switches since
they should track the most extensive status information for
their downstream networks, thereby consuming the largest
amount of resources. It is notable that the data plane
storage and the forwarding plane buffers are segregated in
the Tofino2. Thus Pyrrha’s consumption of storage does not
impact the forwarding performance.

E.1 Path Calculation

This section details how we implement hash-based path cal-
culation for fat-tree topology in our Tofino2 prototype. The
path calculation can be divided into two parts: determining
available egress ports and selecting the forwarding port from
available ports by hashing. Given the fact that switches in
datacenter only support limited types of hash functions (e.g.,
CRC or XOR) to conduct efficient calculation [87, 93] and
use switch-specific hash seeds to avoid hash polarization.
Hence, Pyrrha switch only needs to store a bitmap to indicate
the type of the hash function of other switches along with
their hash seeds (§ [E.I.T).

In many widely deployed topologies [8, 37, 62} [82], the
characteristics of up-down routing and equal paths can be
leveraged to optimize the overhead of storing other switches’
forwarding tables. We demonstrate that path calculation
can be done within O(n) resource usage where n is the
number of hosts in the topology. For a fat-tree with 11,664
hosts, Pyrrha’s path calculation occupies 0.44MB SRAM
(i.e., 1.8% of Tofino2) (§ [E1.2). If IP addresses are
organized regularly as discussed in [8]], the storage cost can
be further reduced to 0.18% of Tofino2 (§ [E.I.3)). Otherwise,

a Pyrrha switch needs to store forwarding tables on other
switches to calculate the path, incurring extra storage over-
head.

E.1.1 Hash functions used in the data center

Current switches only provide a limited number of hash
functions to prevent complex hashing from impeding for-
warding rates [87, I50]]. To avoid traffic polarization caused
by identical hash functions across different switches, it is a
common practice to employ switch-specific seeds to derive
switch-specific hash functions [28]. Before performing the
hash function, the input data (e.g., IP tuple) is XORed with
the switch-specific seed, making the output of identical input
data and hash function different among switches. Switches’
hash seeds are not hardcoded but accessible through the con-
trol plane interface [28]]. Therefore, a switch can calculate
the hash outcomes of other switches by storing a limited
number of hash functions and other switches’ hash seeds.

E.1.2 Path Calculation without regular addressing.

To calculate the path, Pyrrha switch needs to store the
forwarding tables of other switches. In this subsection,
we mainly focus on the structure and the storage over-
head of forwarding tables in fat-tree topology. As shown
in Figure under two topology-relevant optimization,
Pyrrha switch can calculate path in k& = 36 (i.e., 11,664
hosts) fat-tree with 0.44 MB of SRAM. The SRAM usage
is acceptable in Tofino2, which has 25 MB SRAM in total.
These optimizations can also be applied to other clos-based
topologies.

No optimization. Without optimization, a switch needs to
store all forwarding tables on other switches. Take fat-tree
topology as an example; the size of the forwarding table on
a switch is of the order O(n), where n is the number of hosts.
The number of the switch is of the order O(n?/3). Thus, the
size of extra storage usage to calculate the path is of the order
O(n°/3). Storing all forwarding tables will occupy 12.6 MB
in the fat tree with a host number of 3456 (k=24).

Up-down routing optimization. In many topologies, rout-
ing adheres to the up-down principle, where packets are
first forwarded upward and then downward [45]]. In such
topologies, switches only need to store upstream routing
entries for upward hops and downstream routing entries for
downward hops. In a fat-tree, a switch must store entries
for all switches in its source pod, all entries for core-layer
switches, and only downstream entries for switches in other
(k— 1) pods. Though it can not reduce the complexity of the
resource usage, this optimization can save storage resources
on the order of O(ns/ 3) in the fat tree. Storing forwarding
tables will occupy 14.1 MB in the fat tree with a host number
of 5,488 (k=28) under up-down routing optimization.

Equal path optimization. In many topologies, there are
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Figure 31: The SRAM usage of three data structures.

multiple equal paths between nodes. Take the source ag-
gregation switch as an example. When a packet destined
for another pod arrives, the switch only needs to forward
it to any one of the upward links without differentiating
between the various upward links. Therefore, the edge
switch only needs to store the forwarding table entries of
the hosts within their own pod to determine the forwarding
decisions on aggregation switches within that pod. Similarly,
edge switches only need to store one routing table that maps
different IPs to different pods for all core switches, as core
switches are only concerned with which pod the packet needs
to be forwarded to. For the aggregate switches of the other
k — 1 pods, the edge switch only needs to store k — 1 different
forwarding tables. This optimization can reduce the storage
resources usage to the order of O(n4/ 3). Storing forwarding
tables will occupy 2.56 MB in the fat tree with a host number
of 11,664 (k=36) under equal path optimization.

Full optimization (used in our prototype). Combining the
two optimizations mentioned above, we can further reduce
the storage resource overhead to the order of O(n). The
storage usage of storing forwarding tables is reduced to 0.44
MB in the fat tree with a host number of 11,664 (k=36) under
full optimization. In addition, we investigated the largest
scale of topology that Pyrrha can support theoretically, i.e.,
approximately an order of magnitude larger than the state-
of-the-art datacenter networks. In our prototype, storing
forwarding tables will occupy 8.7 MB in the fat tree with
a host number of 524288 (k=128) under full optimization.

Next, we introduce the specific content of the forwarding
tables to storage and then analyze the complexity. (i) A ToR
switch is required to store K /2 downstream entries for itself.
If the destination IP of a packet is missed in the downstream
entries, the switch should select a port from upward ports
by hash to forward the packet. The complexity is of
O(n'/3). (ii) The ToR should store store k?/4 downstream
entries, for all aggregation switches within the same pod.
If the destination IP is not within the pod, the aggregation
should select an upward port by hash to forward the packet.

The complexity is of O(n?/3). (iii) The ToR should store
k3 /4 entries for all core switches, containing the mappings
between destination IPs and their corresponding pods, with
a complexity of O(n). (iv) Additionally, for the aggregation
switches in each of the other k — 1 pods, k— 1 tables need
to be stored, each with a size of k?/4, to store the mappings
of different destination IPs within that pod to the appropriate
edge switches, with a complexity of O(n). (v) For all other
edge switches, tables of size k/2 that record the mappings
between destination IPs and hosts should be stored, also with
a complexity of O(n). Therefore, under full optimization, the
storage overhead complexity for maintaining the forwarding
tables is O(n).

Apply optimizations on other topologies. The two op-
timizations mentioned above can be applied to most clos-
based topologies [37, 163} 82].

E.1.3 Path Calculation with regular addressing

In this subsection, we discuss how to conserve storage
overhead for forwarding tables based on the regularity of
the topology’s addressing. Our discussion is based on the
fat-tree topology with addressing method presented in [8]].
We believe that this approach can be applicable to the vast
majority of topologies with regular addressing schemes.
IP address format. The address of a host is
10.pod .switch.host, where pod is the pod number, switch
is the edge switch’s position in the pod (counting from left
to right) the host connected to, and host is the host’s position
among hosts connected to the switch.
Switch ID and port ID format. The result of path calcula-
tion is the switch ID and egress port ID that a packet traverses
at each hop. The switch ID and port ID format given below
supports fat-tree topology with k up to 128. Aligned with IP
addresses, IDs are counted from left to right.

The switch ID is 16 bits in length. For edge and aggre-
gation switches, the upper 8 bits represent the pod number,
while the lower 8 bits denote the switch’s position among the
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Algorithm 1: Path Calculation In Fat-tree

Input: ruple: IP-tuple of the incoming packet.
1 Procedure PathCalculation (tuple)

2 if tuple.dstIP.pod == tuple.srcIP.pod then

3 if tuple.dstlIP.switch == tuple.srcIP.switch then
4 ‘ edgeLocal < true

5 else

6 ‘ aggLocal < true

7 if edge_local == false then

8 edgePortID «+ {1,Hash (tuple, localSeed) }

9 if agg_local == false then

10 aggSeed <+ LookupSeed (edgePortID)

1 aggPortID <+ {1,Hash (tuple, aggSeed) }
Source SwitchID | Itis already known
edge switch PortID edgePortID
Source SwitchID | {srcIP.pod,0,edgePortID[6 : 0]}
aggregation switch | PortID aggPortID
Core switch SwitchID | {0,edgePortID[6 : 0],0,aggPortID[6 : 0]}

PortID {dstIP.pod}

Destination SwitchID | {dstIP.pod,0,edgePortID[6: 0]}
aggregation switch | PortID {1,dstIP.switch}
Destination SwitchID | {dstIP.pod,1,dstIP.switch}
edge switch PortID {dstIP.host }

Table 1: Obtain switch ID and port ID from existing data.

same layer switches in the pod. For core switches, the upper
8 bits indicate the position of the connected aggregation
switch (noting that a core switch connects to aggregation
switches at the same position across different pods). The
lower 8 bits are the switch’s position among core switches
connected to the same aggregation switch. Switch IDs may
be identical across different layers by design to conserve
encoding space and reduce computational overhead. This
does not cause issues since Pyrrha’s congestion root table is
hierarchical (§[5.1).

The port ID is 8 bits in length. Edge switches and
aggregation switches’ ports can be categorized as uplink and
downlink ports. The highest bit of the uplink port ID is 1,
while it is O for a downlink port. The remaining 7 bits are
the port’s position within its respective uplink or downlink
category. For core switches, the port ID is the connected pod
number.

Path Calculation. After careful optimization, the path
calculation in fat-tree only needs up to one lookup and two
hash functions. We next explain how to calculate path hop-
by-hop on the source edge switch. The pseudocode for path
calculation is shown in Algorithm [I] Note that the logic of
the P4 code is Match-Action Table (MAT) based, and the
pseudocode only presents the calculation logic. After two
rounds of hashing, the path for each hop can be obtained
using the method described in Table([I] In both the algorithm
and the tables, curly braces {} denote the bit concatenation,

and square brackets [] denote the bit slice, which can be
easily implemented by setting the key of the MAT. In the
concatenation, the O and 1 are both 1 bit in width.

(1) Path at source edge switch. The source edge switch is
aware of its own switch ID. When calculating the port ID,
it is necessary to first determine whether the destination is
under the same source edge switch (line 2}4). If so, there
is no need to perform any calculations. Instead, the switch
simply considers itself as the destination edge switch and
uses {dstIP.host} as the port ID. If not, it calculates the port
ID via hashing IP-tuple and its own hash seed (line 3).

(i1) Path at source aggregation switch. The source ag-
gregation switch id is {srcIP.pod,0,edgePortID[6 : 0]} as
edgePortID[6 : 0] is both the edge switch’s up port position
and the aggregation switch’s position according to fat-tree’s
scheme. Similar to the prior case, Pyrrha needs to determine
whether the destination is in the same pod (line @]—@) If so,
no calculation is needed and this aggregation switch is con-
sidered as a destination aggregation switch in the following
logic. If not, Pyrrha will perform the hash function. Before
calculating the source aggregation switch’s hash output, the
source edge switch needs to look up the hash seed (line [I0).
The hash seed table does not need to store the hash seeds for
all switches; for an edge switch, it only needs to store the
hash seeds of the aggregation switches within the same pod.
(iii) Path at core switch. The switch ID of the core switch the
packet will pass by is {0, edgePortID[6 : 0],0,aggPortID[6 :
0]}. The upper 8 bits are the position of the aggregation
switch it connected to and the lower 8 bits are the position
of the aggregation switch port it connected to. The egress
port ID at the core switch is the destination pod ID, which is
available in the IP-tuple.

(iv) Path at destination aggregation switch. The switch ID of
the destination aggregation switch the packet will pass by is
{dstIP.pod,0,edgePortID[6 : 0]}. The switch position (i.e.,
the lower 8 bits) is the same as that of the source aggregation
switch, eliminating the need for calculation. The port ID at
the destination aggregation switch can be obtained from the
switch field of the destination IP address.

(v) Path at destination edge switch. The switch ID and port
ID can be directly obtained from the destination IP address.

Resource usage. Table [2| shows the resource usage of
path calculation with regular addressing on the edge switch.
Pyrrha use only a slight amount (0.18%) of SRAM to store
hash seeds and only two hash function calls. The hash
function is built-in in Tofino2, thus do not occupy any
extra resource. Among those resources, the most utilized
resource is the TableID, which only occupies 2.5% of the
total TableID resources available in the Tofino2.

E.2 Hierarchical Congestion Root Table

We store the downstream congestion snapshot in a hierarchi-
cal congestion root table. The k' table records ports that
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Resource Usage | Percentage

Exact Match Input xbar 40 1.56%

Ternary Match Input xbar 0 0.00%

VLIW Instructions 7 1.09%

Comp. | Hash Bits 60 0.77%
Hash Calls 2 1.67%

Stateful ALU 0 0.00%

Logical TableID 8 2.50%

SRAM 5 0.31%

Stor.

TCAM 0 0.00%

Table 2: Resource usage of path calculation with regular
addressing.
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Figure 32: The components of queue assignment module
with the process of queue assigning depicted.

are k hop away from the switch, whose keys are <switch-
id, port-id>, and the value is a bit, denoting its congestion
status. As shown in Figure [31(b)] the storage usage of the
congestion status snapshot is of the order O(p) where p is
the number of ports in the network (i.e., O(n) where n is the
number of hosts for most topology). When the number of
hosts is small, the usage of SRAM does not increase with the
number of hosts. This is because Tofino2 allocates SRAM in
blocks, and when the number of hosts is low, the size of each
data structure fits within a single block. In our prototype, the
hierarchical congestion root table occupies 176 KB in a fat
tree with a host number of 11,664 (k=36) and 0.44 MB for
524,288 host (k=128).

E.3 Queue Assignment Module

The queue assignment employs a lazy update design to
conserve queue resources. The components of the dynamic
queue assignment module and the procedure of queue as-
signment are shown in Figure B2] The queue allocation
module introduced in this section is applicable to both single-
layer 1Qs and HIQs. For HIQs, the queue allocation module
is also hierarchical, with each layer of queues being allocated
by a corresponding layer of the queue allocation module.
Before entering queue assignment module, a packet is
first processed by a congestion root matching module to

determine whether it will pass through congestion roots
(Appendix D.1I)). If it will, the packet will carry the IDs of
all the congestion roots it will pass and proceed to the queue
assignment module.

The packet first passes through IsAssigned Table, which
has two dimensions: port ID and congestion root ID. This ta-
ble stores bits to indicate whether a queue has been assigned
to a congestion root on a port. Note that in our Tofino2
prototype, we use single-tier IQs to emulate two-level HIQs
(§ Q) Therefore, the congestion root ID is a concatenation of
the IDs of the two potential congestion roots in two layers.
If the corresponding bit in the table is 0, it indicates that the
corresponding 1Q has not been assigned. The packet then
modifies this bit to 1 and enters the Multi-segment QueuelD
Stack to attempt to obtain a queue ID.

The Multi-segment QueuelD Stack utilizes only two ta-
bles, Stack Pointer Table and Stack Content Table, yet it can
independently assign queues in each port. The Stack Pointer
Table is indexed by port ID and stores the top pointer of
the queue ID stack corresponding to each port. The Stack
Content Table holds the remaining available queue IDs for
each port. When queue assignment is required, the packet
first accesses the Stack Pointer Table to obtain the stack top
pointer and then increments the top pointer in the table by
1. Subsequently, it reads the available queue ID from the top
of the Stack Content Table. Finally, this queue ID is written
into the QueuelD Record Table, which has the same indexing
as the IsAssigned table and stores the queue IDs that have
already been assigned.

The pipeline architecture of Tofino2 ensures a strict order
in table access among packets. After queue assignment is
completed, subsequent packets that pass through the same
port and congestion roots will find the corresponding bit in
the IsAssigned table set to 1. Then, they will not perform
any operations when passing through the Multi-segment
QueuelD stack. Instead, they will directly read the queue
ID from the QueuelD Record Table.

When unassigning a queue, the operations are basically
the reverse of queue assignment. When an IQ is clear and
the IQ is the leaf of the congestion tree, a signal packet is
created, which carries the IQ ID to be unassigned as well as
the port ID and congestion root ID. It sets the corresponding
bit in the IsAssigned table to 0. Then, it increments the
stack top pointer in the Stack Pointer Table by 1 and writes
the unassigned IQ ID into the new stack top in the Stack
Content table. Finally, it clears the corresponding record in
the QueuelD Record Table.

The SRAM usage of the queue assignment module is
shown in Figure The resource usage of the queue
assignment module mainly stems from the IsAssigned table
and the Queueld Record table. When using single-tier 1Qs,
the congestion root ID is a concatenation of the IDs of
two layers of congestion roots, which results in a space
complexity of O(n°/3) for these two tables where 7 is the
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Resource Usage | Percentage

Exact Match Input xbar 89 3.48%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 45 7.03%

Comp. | Hash Bits 684 8.22%
Hash Calls 6 5.00%

Stateful ALU 14 17.50%

Logical TableID 63 19.59%

SRAM 120 7.50%

Stor.

TCAM 31 6.46%

Table 3: Resource usage of Pyrrha’s precessing logic.

Resource Usage | Percentage

Exact Match Input xbar 277 10.82%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 123 19.22%

Comp. | Hash Bits 1647 19.80%
Hash Calls 36 30.00%

Stateful ALU 61 76.25%

Logical TableID 124 38.75%

Stor. SRAM 712 44.50%
TCAM 31 6.46%

Table 4: Resource usage of Pyrrha prototype under 11,664
hosts topologies with irregular addressing.

number of hosts in the topology. The SRAM usage of the
queue assignment module is shown in Figure Queue
assignment module for single-tier IQs will occupy 8.64 MB
in the fat tree with a host number of 11,664 (k=36), which is
adequate to support the scale of typical modern topology.

Leveraging the rapidly maturating HIQ technology [94],
on Pyrrha switch that support HIQ, the IsAssigned table
and Queueld Record table can be decomposed hierarchically
as in Appendix thereby reducing the space complexity
to O(n). We also implement a queue assignment module
suitable for HIQ on Tofino2 to investigat the largest scale
of topology that Pyrrha can support theoretically, the result
shows only 2.2MB of SRAM is required to support up to
524,288 hosts.

E.4 Resource Usage of Processing Logic

In addition to the above three data structures, whose re-
source usage varies with the network scale, our prototype
also includes some processing logic with fixed resource
usage. This includes queue length detection, signal packet
creating, constructing, handling, as well as queue pausing
and resuming (Appendix [D). The resource overhead of this
processing logic is shown in Table |3} The results indicate
that in our prototype, Pyrrha’s resource usage is moderate
and acceptable for Tofino2.

Resource Usage | Percentage

Exact Match Input xbar 233 9.10%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 98 15.31%

Comp. | Hash Bits 1251 15.04%
Hash Calls 33 27.50%

Stateful ALU 44 55.00%

Logical TableID 104 32.50%

SRAM 294 18.38%

Stor.

TCAM 31 6.46%

Table 5: Resource usage of Pyrrha with HIQs under 524,288
hosts topologies with regular addressing.

Resource Usage | Percentage

Exact Match Input xbar 250 9.77%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 89 13.91%

Comp. | Hash Bits 1426 17.14%
Hash Calls 29 24.17%

Stateful ALU 35 43.75%

Logical TableID 98 30.62%

Stor. SRAM 450 28.13%
TCAM 31 6.46%

Table 6: Resource usage of Pyrrha with HIQs under 221,184
hosts topologies with irregular addressing.

E.5 Overall Resource Usage

In this subsection, we analyze the complexity of the overall
resource utilization of Pyrrha on the Tofino2 prototype. Sub-
sequently, we present Pyrrha’s detailed resource usage across
several representative network conditions. According to the
statistics reported in megascale [49], the scale of current data
centers can reach up to 10,000 nodes. Therefore, we use a
fat-tree topology with 11,664 hosts as a representative case
for our analysis. In addition, we investigated the largest scale
of topology (i.e., a k = 128 fat-tree with 524,288 hosts) that
Pyrrha can support theoretically.

Complexity analysis. The computational resources utilized
by Pyrrha are predominantly determined by the on the
maximum number of network hops, with a minor correlation
to the network’s scale. Regarding storage resources, the
overhead of Pyrrha’s data structures is moderate. Denote
the number of hosts in the topology as n. With irregular
addressing, the storage overhead can be reduced to an order
of O(n) through two optimizations. With regular addressing,
the storage cost for path calculation is negligible. The
storage overhead of a hierarchical congestion root table is
also on the order of O(n). In our prototype, the storage cost
for the queue assignment module is O(n%/3). On switches
that support HIQs, the storage cost for the queue allocation
module is O(n).
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Resource Usage | Percentage

Exact Match Input xbar 297 11.60%

Ternary Match Input xbar 76 5.76%

VLIW Instructions 108 16.87%

Comp. | Hash Bits 1799 21.62%
Hash Calls 33 27.50%

Stateful ALU 44 55.00%

Logical TableID 112 35.00%

SRAM 845 52.81%

Stor.

TCAM 31 6.46%

Table 7: Resource usage of Pyrrha with HIQs under 524,288
hosts topologies with irregular addressing.

Overall, the computational resource overhead of Pyrrha
remains constant across most network topologies. In our
prototype, the storage overhead for Pyrrha is O(n5/ 3). On
switches that support HIQ, the storage overhead is O(n).
Detailed usage. We present detailed reports of resource
usage for Pyrrha on the Tofino2 prototype across several
typical network environments. We first report the resource
usage of Tofino2 prototype under the scale of a typical
modern data center [49], which is shown in Table In
a network with 11,664 hosts (i.e., fat-tree with k=36), the
Stateful ALU and Logical TableID are the most utilized
computational resources, accounting for 76.25% and 38.75%
of the capacity, respectively. And SRAM is the most utilized
storage resource, occupying 44.5% of the availale capacity.

In addition, we investigated the largest scale of topology
that Pyrrha can support theoretically. Table [5 illustrates the
resource usage of Pyrrha on a switch supporting HIQ within
a 524k hosts network (i.e., fat-tree with k=128) with regular
addressing. The Stateful ALU and Logical TableID are the
most utilized computational resources, accounting for 55%
and 32.5% of the capacity, respectively. The storage usage
is merely 18.38%. Table [6] and [7] shows Pyrrha ’s resource
usage on a switch supporting HIQ and the topology has 221k
and 524k irregular addressed hosts (i.e., fat-tree with k=96
and 128), respectively. In the case of irregular addressing,
the computational overhead remains nearly identical, while
the SRAM usage increases. In a network with 221k hosts,
the SRAM overhead is 28.13%, and in a network with 524k
hosts, the SRAM overhead rises to 52.81%, demonstrating
that the storage overhead is linear.
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