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ARTICLE INFO ABSTRACT
Keywords: Campus wireless networks are the most important last-mile networks, which are widely deployed for orga-
campus wireless networks nizations like universities, large companies and factories. Emerging applications, such as video conferencing
Cong_emo“ control or immersive teaching, require the network to provide large bandwidth, low latency and reliable services.
Modify AP only However, current campus wireless networks fall short of these requirements. Frequent fluctuations in wireless
bandwidth cause a rate mismatch between the wireless and wired segments, resulting in long buffer queues
that ultimately lead to packet loss and high latency. Therefore, a scheme for efficiently controlling the queue
length in campus wireless networks is in need. However, this is challenging as it is infeasible to modify the
protocol stacks of the end devices. In this paper, we propose APCC (Active Precise Congestion Control for
Campus Wireless Networks), which performs congestion control at the access point (AP) APCC calculates the
target rate for each flow and performs congestion control through modifying the receive window field in the
TCP header of the ACK packet. In this way, the AP can actively and precisely control the flow rate before
congestion occurs. Evaluation illustrates that APCC maintains a short queue length while making full use of
the network bandwidth. When wireless link capacity fluctuates, APCC achieves an 6x shorter queue length
and 4x lower packet latency than CUBIC for the 95th percentile. Compared to Zhuge (Meng et al., 2022)
and P-Scheduler (Hoiland-Jorgensen et al., 2017), APCC reduces the 95th percentile of network latency by
52% and 22%, respectively, and decreases queue length by 71% and 51%, respectively. We believe that APCC
presents a new paradigm for congestion control in campus wireless networks.
1. Introduction loss, and high latency. It tends to exhaust the buffer space, which

results in packet loss and large latency, which are detrimental for

Campus wireless networks are the most important last-mile net- many applications in campus wireless networks, such as production line
work, providing Internet access to organizations such as universities,

hospitals, and factories. According to a recent report [1], the market
size of global campus wireless networks is increasing at a compound an-
nual growth rate of 20%-30%. Emerging applications, such as immersive
teaching, remote surgery, flexible manufacturing, require the campus

automation and remote operations of machines.

Our goal is to achieve low packet loss rate and low latency while
maintaining high throughput. It should satisfy two requirements. The
first requirement is to enable congestion control without any modifica-

wireless networks to provide large bandwidth, low latency and reliable tion to client devices and in-network switches. The second requirement
services. However, most of today’s widely deployed TCP congestion is to optimize end-to-end latency without sacrificing bandwidth uti-
control algorithms, such as NewReno [2] and CUBIC [3], fall short lization. Explicit feedback schemes (e.g., [4-7]) require full upgrade of
of these requirements in campus wireless networks. In order to take in-network switches, which is costly and not practical. Some methods
full advantage of link capacity, these protocols gradually increase the (e.g., [8]) require modification on end-hosts, which is unpractical as
congestion window. Although it can improve the network throughput, the end-hosts (e.g., smartphones, laptop) are usually controlled by end

frequent fluctuations in wireless bandwidth cause a rate mismatch
between the wireless and wired segments, leading to the formation
of long buffer queues. This problem is further exacerbated by greedy
TCP flows, as both factors contribute to packet accumulation, packet

users, which violate the first requirement in Table 1. Besides, AQM (Ac-
tive Queue Management) schemes (e.g., [9-11]) avoid congestion by
proactively drop packets before buffer overflow occurs. This decreases
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Table 1
Performance comparison of existing works and APCC.
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Modified position Modify AP only
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Queue v -
RTT 4 -
Throughput 4 -
R1° 4 X
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Modify client devices only

Modify AP only
Scheduling the packet directly

Modify AP only
Delay ack

XNXNN
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2 R1 (Requirement 1): Enable congestion control without any modification to client devices and in-network switches.
b R2 (Requirement 2): Optimize end-to-end latency without sacrificing bandwidth utilization.

network service reliability and often result in sub-optimal bandwidth
utilization. These methods do not fulfill the second requirement in
Table 1.

We find that frequent and large fluctuations in wireless bandwidth
lead to rate mismatch between wireless and wired networks, and thus
AP often become bottlenecks in campus wireless networks. By perform-
ing congestion control at the AP, the AP can control the data rate of
each flow and thus the network can strike a balance between high
throughput and short queue length. Compared with user devices, the
network administrator has full control of the AP in the campus wireless
networks and thus we can easily upgrade the APs to incorporate this
idea.

Although the idea sounds straightforward, there are several chal-
lenges to be tackled. The first challenge is how to ensure that conges-
tion control signals can bypass the wireless bottleneck. In traditional
end-to-end congestion control, signals generated at the wireless seg-
ment may be significantly delayed due to queuing and retransmissions,
causing the sender to react slowly to bandwidth changes. Zhuge [12]
proposes to delay ACKs at the access point to signal congestion. How-
ever, this approach essentially increases the end-to-end latency inten-
tionally, which is undesirable for latency-sensitive applications. The
second challenge is how to determine an appropriate receive window
size when using the AP to perform congestion control. Since delaying
ACKs introduces additional latency and is not ideal, a preliminary
alternative is for the AP to directly modify the receive window field in
the TCP header of ACK packets. This method allows the AP to control
the sender’s rate without increasing end-to-end delay. However, the
key issue lies in selecting a suitable window size: simply reducing the
window size does slow down the sender, but it also hurts throughput
and degrades bandwidth utilization. Therefore, it remains challenging
to determine a window size that strikes a balance between maintaining
good throughput and achieving effective congestion control. The third
challenge is how to guarantee fairness among multiple flows while
considering the dynamics of the traffic flows. If we evenly distribute the
bandwidth among the flows, when a connection is newly established,
the connection is in the slow start phase and thus it cannot fully utilize
the allocated bandwidth. Uniform distribution may lead to throughput
degradation.

In this paper, we propose APCC (Active Precise Congestion Control
for Campus Wireless Network), which refers to Access Point Based
Congestion Control. APCC regulates each data flow by modifying the
receive window field in the ACK packet. In TCP, the sender uses the
minimum of the cwnd (congestion window) and the rwnd (receive
window) as its send window. To determine an appropriate window
size, APCC calculates the target rate according to the link capacity and
the current buffer size. Then, the AP determines how to allocate the
target rate to each flow. APCC proposes a way to convert the traffic
rate into the receive window size. Recognizing the diverse bandwidth
requirements of different flows, APCC introduces a paradigm that
empowers campus wireless networks administrators to allocate target
rates based on their management strategy. APCC suggests utilizing
flow-related indicators to guide bandwidth allocation (e.g., RSSI or data
rate of the wireless link). In this way, APCC can actively and precisely

control the traffic rate before congestion occurs. Table 1 summarizes
the differences between APCC and existing works. We can see that
APCC is the one that satisfies all the design requirements with any
performance degradation.

We use NS-3 simulations to evaluate the performance of APCC.
Evaluation results show that APCC maintains a shorter queue length
while making full use of bandwidth. When facing significant fluctu-
ations in wireless link capacity, APCC achieves an 6x shorter queue
length and 4x lower packet latency than CUBIC for the 95th percentile.
Moreover, APCC still has a large amount of buffer space available and
thus can avoid packet loss in bursty scenarios. Compared to Zhuge,
APCC reduces the 95th percentile of network latency by 18% and
decreases queue length by 70%. Compared to P-Scheduler [13], APCC
has no bandwidth under utilization phenomenon and faster throughput
recovery when the wireless link capacity experiences fluctuations. We
also consider the mobility of client devices. We emulate the random
movement of mobile devices in a 10 x 10 m? rectangular area, center-
ing around the AP. Compared to Zhuge [12], APCC reduces the 95th
percentile of network latency by 52% and decreases queue length by
71%. Compared to P-Scheduler [13], APCC reduces the 95th percentile
of network latency by 22% and decreases queue length by 51%.

The contributions of this paper can be summarized as follows:

1. We propose APCC, an AP-based TCP congestion control scheme
that enables congestion control signals to bypass the wireless
bottleneck. Compared to Zhuge [12], APCC achieves timely
congestion feedback at a much lower cost.

2. APCC is an AP-based TCP congestion control scheme that only
requires modifications at access points in campus wireless net-
works, avoiding changes to end devices or in-network switches/
routers. This makes it practical for deployment in campus wire-
less networks.

3. APCC can perform per-flow rate control by modifying the receive
window in ACK packets, helping to achieve a better balance
among throughput, latency, and fairness.

2. Background and motivation
2.1. Packet loss in campus wireless networks

A typical campus network topology is illustrated in Fig. 1. The
network includes the access layer, the convergence layer, and the core
layer. It has become a trend for the last hop of campus networks to
adopt wireless technologies (e.g., Wi-Fi).

In such a campus network architecture, the wireless hop between
the AP and the client is usually the bottleneck. Due to multi-user access
and mutual interference, wireless networks often experience significant
fluctuations in available bandwidth. When the wireless link capacity
decreases, if the network’s traffic remains at a high level, it may lead
to buffer overflow at the AP, resulting in packet loss. We simulate this
phenomenon using NS-3 [14], configuring the TCP congestion control
algorithm to NewReno. Further details on the simulation configuration
can be found in Section 4.1. The results are presented in Fig. 2.
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Fig. 1. A typical campus wireless network topology.

At the 5th second, there was a sudden drop in bandwidth. In
such situations, queues rapidly form at the AP, resulting in significant
end-to-end latency. Moreover, TCP is greedy in nature, leading to a
gradual increase in traffic, and the packets will continue to queue in
the AP buffer until they are eventually dropped. This process may
repeat continuously, resulting in two negative consequences. Firstly,
packet loss not only affects the reliability of network services but
also wastes network bandwidth. Secondly, a significant number of
packets are waiting in the buffer, causing queuing delays of tens or
hundreds of milliseconds, leading to high average delays. Therefore,
this is unacceptable for delay-sensitive applications such as remote
surgery, necessitating a suitable solution to reduce average latency and
control the queue length in the campus wireless networks.

2.2. Limitations of state-of-the-art transport protocols

2.2.1. End-to-end congestion control

Traditional end-to-end congestion control schemes, such as
NewReno [2] and CUBIC [3], rely on packet loss events to determine
whether the network is congested and reduce the sending rate accord-
ingly. When the available bandwidth fluctuates on the wireless link,
or when there is a mismatch between the wired and wireless segment
rates, queues can quickly build up at the AP’s relatively small buffer,
resulting in bufferbloat. This can significantly increase the round-trip
delay of data packets [13,15]. Among them, the BBR [16] congestion
control algorithm proposed by Google is the most representative, which
has been gradually deployed on Linux machines. In order to detect the
available bandwidth of bottleneck links in the network, BBR makes
the source send packets at a rate exceeding the bottleneck capacity,
which will cause the packets to accumulate in the buffer. It makes BBR
greatly improved compared to the algorithm based on packet loss, but
still causes a certain queue accumulation. Although we configured a
lower level of wireless bandwidth fluctuation in Fig. 3 compared to
Fig. 2, BBR continues to exhibit persistent queue accumulation. The
simulation results shown in Fig. 3(a) confirm this phenomenon.

It is important to clarify that the version of BBR evaluated in our
experiments is BBRv1, which is not only widely deployed in practice
but also the only version currently available in NS-3. Although BBR
is designed to control queue length and minimize queuing delay—as
discussed in Gomez et al. [17]—our simulation results clearly show
that, in scenarios with wireless bandwidth fluctuations or mismatches
between wired and wireless segment rates, BBRv1 still leads to notice-
able queue buildup at the AP buffer. This observation is consistent with
previous findings in the literature [18,19].

While BBRv1 offers significant improvements over traditional loss-
based algorithms such as Cubic and NewReno by reducing queue
buildup, our experiments show that it can only alleviate, but not fully

Computer Networks 270 (2025) 111565

eliminate, bufferbloat under dynamic wireless conditions. The queue
length at the AP with BBRv1 is generally smaller than with Cubic and
NewReno, but still remains non-negligible, leading to increased latency.
BBRv2 introduces packet loss and ECN signals to improve coexistence
and fairness; however, recent studies indicate that it still faces con-
vergence and fairness issues, particularly in scenarios with multiple
competing flows or in environments with bandwidth fluctuations and
packet loss [17,18]. BBRv3 was developed to address these limitations
and further optimize performance. Nevertheless, the literature shows
that even BBRv3 can suffer from performance degradation or slow
recovery under extreme network conditions, such as high loss rates
or severe bandwidth fluctuations. Systematic evaluations of BBRv3
in complex scenarios are still ongoing, and some experiments have
identified room for improvement in its bandwidth estimation accuracy
and RTT fairness.

Although many studies have proposed improvements for BBR in
variable environments, challenges remain due to its reliance on stable
bottleneck assumptions. As a result, BBR may still experience queue
accumulation during sudden bandwidth changes or rate mismatches.
This is consistent with the broader literature, which shows that even
the latest versions of BBR, while more robust, are not immune to the
challenges posed by dynamic environments.

In summary, both our results and prior work indicate that while
BBR reduces queue buildup compared to loss-based algorithms, it does
not completely solve the problem, especially under variable wireless
conditions.

2.2.2. AQM (Active Queue Management) schemes and ECN

AQM schemes such as RED [9], CoDel [10] and some other schemes
[11] can drop some packets before the buffer is overflowed to notify the
source of potential network congestion, so as to control the congestion
in advance. However, packet loss will hurt the reliability of the net-
work services. To overcome this drawback, these AQM solutions can
enable ECN (Explicit Congestion Notification), using markers instead
of packet loss events to notify the source of congestion. ECN has been
widely used in many congestion control protocols, especially in data
center networks, such as DCTCP [20], D2TCP [21], DCQCN [22], and
some other strategies [23-25]. However, how to set the appropriate
threshold of ECN is a widely discussed issue [26,27]. As an ECN-
based end-to-end congestion control scheme, DCTCP is widely deployed
in data centers. However, in the congestion avoidance phase, DCTCP
increases the window blindly. This makes it difficult for DCTCP to
quickly converge to an appropriate rate when the network condition
fluctuates. Moreover, it can be found that DCTCP still accumulates
a certain number of packets in the buffer. Ciean [28], based on the
ECN-proxy, employs the DCTCP algorithm to calculate the window size
during congestion, and leverages the CUBIC algorithm for fast recovery.
While Crean can promptly maintain a short queue on the AP, it exhibits
suboptimal convergence and suffers from high tail delay. More notably,
the ECN mechanism requires the joint support of end devices and
intermediate equipments. It means that we cannot directly utilize the
ECN mechanism in campus wireless networks, as end devices are not
under the control of the network administrator.

2.2.3. Explicit congestion control

Among the existing research work on congestion control, the ex-
plicit control schemes, such as XCP [4] and RCP [29], have drawn
more attention. In these work, the switch uses each packet to provide
multi-bit feedback to the sender based on direct knowledge of the link
capacity. By telling the senders explicitly how to increase or decrease
their rate, explicit congestion control schemes can lead to quick con-
vergence of link capacity. However, XCP and RCP require significant
modifications to packet formats, switches, and end devices. While
these modifications are technically feasible, they introduce significant
deployment challenges.
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2.2.4. Representative feedback and queue management schemes for wireless
links

Zhuge [12] enables the AP to rapidly provide feedback on the
dynamics of wireless links, so Zhuge has excellent performance for RTC
(Real-Time Communication) applications. However, Zhuge does not
perform satisfactorily in terms of average delay since Zhuge focuses on
reducing tail delay and shortens the control loop by actively increasing
the RTT (delay ack). Jiang [30] modifies terminals instead of APs and
requires tcp timestamp to be enabled to estimate RTT, which is not
accurate even when the DRS [31] algorithm is reused to estimate RTT.
This causes some trouble for large scale deployments. Toke Hgiland-
Jorgensen’s work [13] is the most advanced work on Bufferbloat. Most
Wi-Fi access points based on the linux kernel already use this packet
scheduler by default. Toke Hpiland-Jorgensen et al. [13] integrated
fq-codel into the linux kernel, which solves the bufferbloat very well.
However, our simulations show that when the capacity of the wireless
link experiences large fluctuations, flows may experience suboptimal
throughput and the speed of throughput recovery is not satisfactory.

3. APCC design
3.1. APCC overview

Unlike other protocols that perform congestion control after the
queue has been established, APCC actively controls the flow rate to
match the link capacity, and thus avoiding queue accumulation.

Frequent and large fluctuations in wireless bandwidth often lead to
rate mismatches between wireless and wired networks, so access points
often become bottlenecks in campus wireless networks and a large
portion of the congestion in the network occurs on the wireless links.
It is worth noting that the AP can obtain the link throughput of the
wireless links and observe the queue length at its buffer. Therefore, the
AP can take advantage of this information to perform accurate target
rate calculations. Furthermore, the AP can explicitly tell the senders
how to control the send rate. Inspired by VCC [32,33] and DRWA [30],
in APCC, the AP regulates the congestion control by modifying the

rwnd (receive window) field in the header of ACK packets, and APCC
designs a more efficient algorithm for modifying the window. After
receiving the ACK packet, the source will set the send window size to
be min(rwnd, cwnd). As long as rwnd is smaller than cwnd (congestion
window), the send window size will be rwnd. In TCP, when the receiv-
ing buffer at the destination is insufficient, the destination will notify
the sender via the receive window size. In APCC, if the original receive
window size is smaller, the AP will not modify the rwnd field.

Specifically, the workflow of APCC is as follows (See Algorithm
3.1): First, APCC calculates a target rate of the AP according to the
link capacity and the current buffer queue length. This enqueue rate
can avoid queue accumulation when the AP forwards packets at full
capacity. Then, the rate is distributed among multiple flows passing
through the AP. The AP’s strategy for distributing the rate can be
designed with any indicators of the flow, since the APCC has already
calculated the optimal target rate. This rate value is converted into a
window size and filled in the receive window field of the ACK packet
sent to the source. APCC maintains a flow table on the AP, recording the
status of each flow, such as throughput, window size, RTT, etc. After
receiving the returned ACK, the source sets its send window size to
be the minimum one of the receive window size and the congestion
window size.

3.2. Precise rate calculation

AP will calculate the target rate by the following formula:

Q(I)—K’O]’

5 €8]

target Rate(t) = nB — max [

where B is the link capacity, Q(7) is the queue length at time 7, K is the
queue length threshold, # is a constant close to 1 (such as 0.95), and &
is a time unit constant. In IEEE 802.11 wireless networks, the AP can
obtain information such as the Channel State Information (CSI) of the
physical layer, thus being able to roughly estimate the link capacity.
[34] also provides a method for estimating the wireless link capacity
on the AP.

The first term in the right hand side of Eq. (1) refers to the dequeue
rate when the AP forwards packets at full capacity. If the current queue
length is low, that is, when Q(r) < K, APCC will set the target rate
to nB, where » is slightly less than 1. This is the experience from
previous work [35-37] that by setting the target rate slightly lower
than the link capacity, we can trade a small amount of bandwidth for a
large reduction in latency. The second term is the capacity retained
for draining the existing queues in the buffer, reducing the queue
length from Q(r) to K after § time unit. When Q(¢) > K, the second
term becomes non-zero. Their difference is the available capacity for
incoming flows, i.e, the target rate.
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Algorithm 3.1: APCC Workflow

Input: Link capacity B, current buffer queue length Q(7), set of active flows F

1 Step 1: Calculate Target Rate

w N

targetRate(t) < TargetRate(B, O(1));

FN

Step 2: Distribute Rate Among Flows
s foreach flow f € F do

=)

~N

Step 3: Convert Rate to Window Size
8 foreach flow f € F do
Estimate RTT for flow f: RTTy;

o

Compute the target enqueue rate target Rate(t) for the AP based on link capacity B and current buffer queue length QO(?);

L Assign a portion r, of targetRate(t) to flow f according to the AP’s scheduling strategy;

10 Wy < max (2, Vf;RSTSTfJ);
11 Minimum window = 2, see Section 3.4. Fill w ; into the receive window field of the ACK packet sent to the source of flow f;

12 Step 4: Maintain Flow Table
13 Update the flow table on the AP to record the status of each flow;
14 foreach flow f € F do

15 L Record throughput, window size, RTT, expiration time, and other relevant metrics for f;

16 Step 5: Source Adjusts Send Window
foreach flow f € F do

-
o N

19 L Wiend < min(wy, cwnd );

Upon receiving the ACK, source sets its send window size W4 as:;

The reason to set the queue length threshold K in APCC is that
we need to ensure that the target rate does not overreact to small
increases in queue length. The wireless link often schedules packets
in batches [38]. The AP needs to aggregate data packets for batch
scheduling, and thus it will cause the queues to accumulate to a certain
extent before forwarding them. However, this increase in queue length
does not mean network congestion. In addition, the phenomenon of
micro-bursts in the network also occurs from time to time [39]. Micro-
bursts will cause the queue length to increase instantaneously, and then
be drained quickly, which also does not mean network congestion.
Therefore, in order to prevent such phenomena from decreasing the
target rate, it is necessary to set a queue length threshold. We propose
to configure K to be larger than the queue growth caused by the AP’s
average batch scheduling time.

3.3. Per-flow rate control

After the AP determines the target rate, it needs to allocate this rate
to each active flow. By modifying their receive window values, the AP
can perform congestion control. This process is called active congestion
control in this paper.

3.3.1. RTT estimation

Accurately estimating the delay for each data packet which have
not yet been transmitted in a wireless network poses challenges. The
shared nature of wireless networks leads to competition for wireless
channel resources and frequent bandwidth fluctuations. Once the queue
becomes long, the sender may not promptly receive congestion signals,
preventing timely rate adjustments and exacerbating queue congestion.
To consider the dynamic nature of the wireless link, we can refer to
Zhuge’s [12] scheme and decouples the latency into three parts, as
shown in the following equation:

delay = qLong + qShort + tx.

qLong [12] is defined as the delay from the time of packet arrival
to the time when the packet goes to the head of the queue. ¢Short [12]
refers to the waiting delay when the packet is at the front of the queue,
due to factors including MAC layer aggregation, “listening before talk”
period, and random backoff when collision happens. ¢x represents the

transmission delay, which is related to the wireless physical layer data
rate. With the scheme Zhuge [12], we can accurately estimate the RTT
even for dynamic wireless links.

3.3.2. Rate-to-window conversion

After calculating the target rate, APCC can assign rates to N ac-
tive flows according to any indicators of flows. pHost [40], Express-
Pass [41] suggests simply averaging the target rate for N active flows,
or we can utilize flow-related indicators to guide bandwidth allocation
(e.g., according to the estimated RTT as a metric).

RTT; @
RTTy

where RTT, is the RTT value for flow i, targetRate; is the target rate
that each flow should achieve, RTTy, is the total estimated RTT. Note
that we set the minimum value of rwnd to be 2 packets and we will
explain it later.

The above allocation scheme is presented as one possible approach;
alternative metrics related to flows can also be used for rate allocation.
In this work, we use pHost [40] as an example for evaluation. We
evaluate the effects of their distribution scheme in the next section and
discuss fairness.

targetRate; = targetRate(t) X

3.4. Active flow statistics

Fairness among flows is a crucial consideration for every congestion
control algorithm. Before APCC allocates bandwidth, the AP first checks
the status of each flow to determine whether the send window of the
flow can be taken over by APCC . In other words, it is necessary to
judge whether the traffic rate of the flow can reach the share allocated
to it. Since the AP regulates congestion control in APCC, a flow table
needs to be maintained to store information about each flow, such as
window size, RTT, etc. In order to identify whether the flow is in the
idle period, APCC adds an entry, expiration time, to the flow table. If a
flow has no data arriving at the AP within a certain time threshold, it
is considered that the flow no longer exists or is in an idle state. Then
the entry is deleted. The expiration time is set to be the RTT value of
the flow. During the rate-to-window conversion process of APCC, the
window size of the flow is guaranteed to be at least 2, that is, at least
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2 packets can be sent in one RTT. Therefore, if a flow has no data to
send within a RTT time, it is considered that the flow has been in an
inactive state. After getting the number of active flows, APCC executes
the algorithm set by the network administrator to allocate the target
rate among the active flows.

4. Evaluation

4.1. Setup

In NS-3, we build a typical campus network topology according
to Fig. 1. The topology is setup according to our experience in real-
world campus network deployment and is supposed to emulate the
real campus network architecture to the greatest extent. A large server
is used to simulate the cloud server outside the campus and sends
traffic into the campus network. The link bandwidth between the server
and the campus network core switch is 100 Gbps; the link bandwidth
between the core switch and the aggregation switch is 40 Gbps, and the
link bandwidth between the aggregation switch and the access switch
is 10 Gbps. There is an AP connected to the access switch with a 1
Gbps link. In the experiment, the wireless protocol standard is set to
802.11ax. All switches and APs have a 12 MB buffer. As we mentioned
in 3.2, we propose to configure K to be larger than the queue growth
caused by the AP’s average batch scheduling time. We set the queue
threshold K of APCC to 20 packets and the time parameter § to 80 ms.

4.2. Performance

4.2.1. Queue length, throughput, and latency

The term “queue length” specifically refers to the length of the
queue in the buffer of the access point. This metric is a critical indicator
of the congestion level in the network, as it reflects the number of
packets waiting to be transmitted through the access point. Monitoring
and controlling the queue length is therefore essential for effective
congestion control in the network. We compare APCC with a number
of existing congestion control algorithms:

(a) NewReno [2], CUBIC [3], and BBR [16].

(b) NewReno+ECN, CUBIC+ECN: enabling the ECN mechanism on

NewReno and CUBIC. We replace packet loss with packet mark-

ing, so that the sender can be notified of network congestion

before packet loss occurs.

DCTCP [20]: the most popular congestion control algorithm in

data center, capable of maintaining short queues while achieving

high throughput.

(d) Crean: Crean [28] is similar to APCC. Both perform congestion
control by modifying the receive window of ACK packets. CLEAN
enables ECN for the switch, and determines the window value
by estimating the congestion level of the network according to
the ECN flag.

(e) Zhuge: Zhuge [12], a state-of-the-art solution, introduces signif-
icant improvements in reducing tail delay in RTC. It achieves
this by leveraging predictive techniques to estimate RTT and
strategically delaying ACK messages.

(f) Packet-Scheduler [13]: Toke Hgiland-Jgrgensen’s work is de-
ployed on the ath9k driver for the linux kernel. Their work on
bufferbloat is excellent. Most linux-based wifi APs already use
this packet scheduler by default.

(c

—

APCC does not need to be compared to DRWA [30], which modifies
endpoints and requires TCP timestamp to be enabled, which creates
challenges for large-scale deployments.
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4.2.2. Simulation of bandwidth degradation

For NewReno and CUBIC with ECN support, the simulation results
are shown in Fig. 2. Ecn-enabled algorithms have smaller average delay
and queue length. When ECN support is added to them, although the
delay is close to base RTT, it brings the problem of insufficient band-
width utilization. The reason is that, to deal with network congestion,
ECN-based solutions rely on ECN feedback to gradually and iteratively
change the traffic rate, and finally converge to a stable state. How
to set the ECN marking threshold has been recognized as a complex
issue [27]. Crean maintains a low queue state while ensuring high
throughput. However, the ECN mechanism requires the joint support
of end devices and intermediate equipments. Although it is prone to
packet loss, CUBIC achieves nearly full bandwidth utilization. Accord-
ing to [42], the algorithm based on packet loss has such a consequence:
if the size of the buffer exceeds the BDP of the connection, periodic
packet loss caused by the buffer overflow will not lead to a decrease
in TCP throughput. Moreover, the queue length of Ciean has a large
variation, incurring spikes from time to time.

To demonstrate the performance of APCC, we designed a scenario
with a drastic bandwidth drop. At the 4th second, the bandwidth
decreased from 600 Mbps to 180 Mbps, and after a period of time, it
increased from 180 Mbps to 600 Mbps again. The simulation results
are shown in Fig. 4. Under such extreme packet loss and interference
conditions, the Cubic algorithm exhibits a significantly increased RTT
of 400 ms. Compared to CUBIC, APCC achieves a 73% reduction in
the peak delay, and compared to NewReno, the peak delay is reduced
by 58%. Moreover, APCC only requires upgrading the APs in campus
wireless networks, thereby avoiding modifications to client devices or
the need for whole-network device upgrades.

In comparison to CUBIC and NewReno, BBRv1 typically results in
a shorter queue length at the access point; however, the queueing
delay remains non-negligible, ultimately leading to increased latency.
Overall, APCC achieves more favorable performance in these chal-
lenging scenarios. This is because BBR can only mitigate, but not
completely eliminate, bufferbloat under dynamic wireless conditions.
Recent studies [17-19] have shown that BBR still faces several lim-
itations, particularly under extreme network conditions such as high
packet loss rates or severe bandwidth fluctuations. Additionally, its
convergence and fairness issues also remain significant concerns.

In Fig. 4, we further incorporate several representative state-of-the-
art algorithms into our simulation. Specifically, we focus on Zhuge [12]
and P-Scheduler [13], both of which do not require modifications to
the end devices protocol stack or ECN support. For comparison, we
also include traditional algorithms that demonstrate relatively strong
performance, such as NewReno+ECN. The simulation results are pre-
sented in Figs. 4 and 5. Both Zhuge and P-Scheduler represent the
state-of-the-art research in this area, and our analysis primarily focuses
on their performance. When facing significant fluctuations in wireless
link capacity, APCC exhibits a 18% reduction in the 95th percentile
of network latency and a 70% reduction in queue length compared
to Zhuge. Additionally, APCC shows an 12% reduction in the 95th
percentile network latency and a 49% reduction in queue length com-
pared to P-Scheduler [13]. The simulation results indicate that Zhuge
has significantly higher average delay and maintains the queue length
at a relatively higher level compared to APCC and P-Scheduler [13].
Although APCC and P-Scheduler have similar performance in reducing
queue growth, APCC has no bandwidth under utilization phenomenon.

This is because Zhuge [12] delays sending ACKs to the source,
resulting in an increase in RTT and preventing the direct reduction
of the window size. Therefore, this is equivalent to sacrificing a small
portion of the RTT to shorten the control loop. Even after the band-
width reduction at 4 s, Zhuge continues to result in elevated RTT,
and the RTT does not decrease even after the bandwidth recovers.
Zhuge adopts window control based on the variations in RTT and
maintains the window size unchanged when the RTT does not rise
relative to its previous value. P-Scheduler [13] integrates Fq-Codel into
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linux kernel, which is an excellent work to solve bufferbloat in WiFi.
Our simulation results show that P-Scheduler schedules packets directly
when the queue is piled up to a large size, and the stacked packets
in the queue are emptied quickly. However, we can observe in Fig. 4
that when P-Scheduler starts working, it causes the traffic to appear
under utilization and it will take some time to recover the throughput.
In contrast to P-Scheduler, APCC does not suffer from under utilization
and the queue length is maintained in a tolerable range.

4.2.3. Simulation of client device mobility

To comprehensively analyze APCC’s performance on dynamic wire-
less links, we conduct simulations with mobile clients using NS3. We
set up two mobile clients in a 10 x 10 m? area centering around the AP.
The clients are configured to move randomly in this area and the wire-
less channel model is configured to be RandomPropagationLossModel.
Under this setup, we compare the queue length, RTT, and throughput of
APCC, Zhuge and P-Scheduler. They have similar bottleneck bandwidth
in simulation experiments, as shown in Fig. 6(c), and they achieve
nearly 100% bandwidth utilization.

However, as shown in Figs. 6 and 7, APCC shows a shorter queue
length and delay. This is because APCC performs per-flow rate con-
trol by directly assigning a target rate for each flow. Compared to
Zhuge [12], APCC reduces the 95th percentile of network latency by
52% and decreases queue length by 71%. As Zhuge delays ACK after de-
tecting congestion events, it naturally increases the total delay. Rather
than modifying the generic queueing layer, P-Scheduler [13] bypass
it completely, and instead incorporate the smart queue management
directly into the 802.11 protocol-specific subsystem. Compared to P-
Scheduler [13], APCC reduces the 95th percentile of network latency
by 22% and decreases queue length by 51%. The results are shown
in Fig. 7. As Toke Hgiland-Jgrgensen discussed, the main drawback of
doing this is a loss of flexibility. With this design, there is no longer a
way to turn off the smart queue management completely; and it does
add some overhead to the packet processing. This overhead may have

some impact on the performance of P-Scheduler [13] when the wireless
link capacity experiences fluctuations.

In the case that the client moves outside the serving range of the
current AP and connects to another AP, APCC will be treated it as a
newly joined flow at the new AP.

4.2.4. Parameter setting analysis

In Eq. (1), there are two parameters, the queue length threshold K
and time constant 6. In this part, we test the throughput and latency
performance of APCC with different values of K and §. The results
are shown in Fig. 8. The labels in the figure represent parameter pairs
(K, 68). For Fig. 8, the closer the parameter pair is to the upper left
corner, or it shows a trend towards the upper left corner, the better the
performance of the algorithm.

We connect the results with same K with dotted lines. It shows
that as 6 increases, the delay first decreases and then increases rapidly,
while the bandwidth utilization increases with § to a certain extent
and then decreases slightly. According to Eq. (1), when é increases,
the target rate increases, so is the bandwidth utilization. 6 represents
the time required to reduce the current queue length to the queue
length threshold. If it is set too small, it means that APCC will greatly
reduce the rate in order to drain the queue quickly, which may result in
bandwidth under utilization. Moreover, this will destabilize the system,
causing an increase in latency. If the setting is too large, it means
that APCC reduces the flow rate by a small amount in order to drain
the queue slowly. It is possible that the packet sending rate of the
source end still exceeds the link capacity at this time, resulting in the
continuous accumulation of queues and bringing about consequences of
increased delay. As for the queue length threshold K, it can be observed
that as K increases, the curve tends to move towards the right part of
the figure. This is straightforward, as the increase of K means that the
length of the queue in the stable state increases, and thus the average
delay and the tail delay increase.

It can be inferred from the figure that when the parameter K is set
to 20 packets and the parameter § is set to 80 ms, the performance
of APCC is optimal and resides in the upper left corner of the figure.
In terms of parameter setting for APCC, it is suggested that a larger
value for 6 results in better stability of congestion control and higher
bandwidth utilization, while a smaller value for § results in faster
response to congestion and lower delay. For a typical campus network
environment, it is recommended to set § to be 2~4 times of the RTT.
As for the parameter K, it is recommended to set it as small as possible,
provided that the queuing delay exceeds the time required for the AP
to perform packet aggregation and batch forwarding.

4.2.5. Fairness and convergence

To test whether APCC can quickly converge to the fair share, the
experiment starts a single flow at the beginning and then adds a new
flow every 5s. The result is shown in Fig. 9. It indicates that even
when there are frequent AP switching events due to user movement, by
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treating each new connection as a new stream, APCC ensures that the
congestion control algorithm is fair and efficient among all connections.
This helps to maintain optimal network performance in scenarios with
frequent AP switching.

5. Discussion
5.1. APCC overhead

In APCC, the AP needs to perform per-flow rate control. We may be
concerned about the memory overhead and computational overhead at
the AP. As for the memory overhead, for each flow, it takes 20 bytes
to store per-flow information, including the flow ID, window size, RTT,
and expiration time. According to our observation, there could be about
tens of thousands concurrent flows. It requires 0.2—2 MB to store the
per-flow state table. Given that the AP in the campus wireless networks

usually has hundreds of MB memory, it has sufficient memory to store
the state table. As for the computational overhead, the AP only needs
to perform some simple calculations, the computational overhead is
negligible. Therefore, the memory and computational overhead at the
AP is affordable.

5.2. Does APCC violate the end-to-end principle?

While the end-to-end principle has long been a fundamental guide-
line in Internet architecture, it is not strictly followed in real-world
network environments. Middleboxes such as NAT, QoS, and traffic
shaping devices have been widely deployed to enhance network per-
formance, security, and manageability. The use of such in-network
mechanisms for traffic scheduling and optimization has become com-
monplace, and these practices can be seen as valuable supplements to
the end-to-end principle rather than violations.

APCC is a pragmatic optimization scheme designed specifically for
scenarios where end hosts are not easily controlled and protocol up-
grades are difficult—such as in campus wireless networks. Its primary
goal is to improve bandwidth utilization and fairness for the majority of
users. In typical campus environments, the main challenges stem from
wireless segment congestion and the lack of coordination between end
hosts. APCC effectively addresses these issues, significantly enhancing
the experience for most users. For special network zones like Science
DMZs [43], which are dedicated to high-performance scientific data
transfers, APCC can be flexibly bypassed or not deployed, thereby en-
suring that extremely high bandwidth demands remain unaffected. As
demonstrated by recent research published in SIGCOMM by Meng [12]
et al. the academic community is actively exploring the feasibility and
rationality of using in-network nodes to optimize end-to-end perfor-
mance for emerging applications such as real-time communications
(RTC). These developments indicate that the end-to-end principle is
continuously evolving and being refined in response to modern network
requirements.

In summary, the design philosophy of APCC aligns with the current
academic trend of exploring in-network optimizations for end-to-end
performance. As an optional network optimization mechanism, APCC
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is compatible with existing bandwidth management approaches and
provides network administrators with greater flexibility in optimizing
network performance.

6. Related work

The congestion control protocol of the WAN is developing very
rapidly, from the earlier Reno [44] to NewReno [2], HighSpeed TCP
[45], BIC [46] and CUBIC [3]. These protocols work hard to improve
TCP performance on paths with high BDP. However, since these con-
gestion control protocols are based on packet loss, they do not care
about the length of queues in the buffer. In campus wireless networks,
the buffer size at the access point (AP) is limited. Therefore, packet
loss-based congestion control mechanisms are not well suited for such
environments. Some schemes based on explicit feedback are proposed,
including ECN [8], XCP [4], VCP [5], and RCP [7]. These schemes
require extensive changes to packet headers, switches, and client-side
protocol stacks, which pose significant deployment challenges. This is
more challenging for campus wireless networks, where client devices
are not under the control of the network administrator.

In addition to traditional loss-based and explicit feedback-based
congestion control protocols, BBR [16] and its subsequent versions
(BBRv2 and BBRv3) have been proposed as modern congestion control
algorithm. These protocols control the sending rate by estimating the
bottleneck bandwidth and round-trip time, aiming to minimize queue-
ing delay and bufferbloat. Although BBRv1 can significantly reduce
queue buildup compared to loss-based algorithms such as Cubic and
NewReno, it cannot fully eliminate bufferbloat, especially under dy-
namic wireless conditions or when there is a rate mismatch between
wired and wireless segments. This observation is consistent with pre-
vious studies [17-19]. BBRv2 and BBRv3 incorporate packet loss and
ECN signals to further improve fairness and performance. However,
recent studies have shown that BBRv2 and BBRv3 still face challenges
in convergence, fairness, and bandwidth estimation accuracy, partic-
ularly in complex or highly dynamic network environments [17-19].
Systematic evaluations of these newer versions are still ongoing.

To solve this problem, in this paper, we use the receive window
modification mechanism to control the traffic rate. The earlier literature
related to this area includes [47,48]. They modify the receive window
in the header of TCP ACK returning to the sender. The calculation of
the window size is crude and cannot maintain the switch queue at a
stable length. They have also been found to be vulnerable to packet
loss and has poor compatibility with some TCP transport protocols.
The recent literature related to the use of the receive window is
VCC [32,33], which decreases the receive window to force the guest to
send fewer packets in the hypervisor. However, VCC is used in multi-
tenant data centers, and it is not suitable for campus wireless networks.
More importantly, how to determine the receive window size is not
considered in VCC. DRWA [30] is to modify the window on the mobile
ends, but it requires both the end and the access point to have the
tcp timestamp option enabled in order to estimate the RTT. And its
algorithm for calculating the window is not accurate enough to quickly
keep up with changes in the capacity of the wireless link.

Pilosof [49] first presented a similar solution. However, Pilosof’s
scheme was not specifically tailored to the campus wireless networks.
The crucial difference between APCC and Pilosof’s solution lies in the
control algorithm, where APCC uses AP’s link information to accurately
calculate the rate. As a result, APCC’s window size calculation is more
precise, and the design of APCC does not require any modifications to
the end-devices in this process. P-Scheduler [13] is the most advanced
work on Bufferbloat. Most Wi-Fi access points based on the linux kernel
already use this packet scheduler by default. Toke Hgiland-Jgrgensen
et al. [13] integrated fq-codel into the linux kernel, which solves
the bufferbloat very well. However, our simulations show that when
the capacity of the wireless link experiences large fluctuations, flows
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may experience suboptimal throughput and the speed of throughput
recovery is not satisfactory.

Zhuge [12] is the state-of-the-art congestion control scheme that is
designed for wireless networks. Zhuge enables the AP to rapidly provide
feedback on the dynamics of wireless links, and thus Zhuge has ex-
cellent performance for RTC (Real-Time Communication) applications.
However, Zhuge requires empirical experience to decide the congestion
indicator (RTT threshold). When deployed in campus wireless net-
works, it requires the network administrator to manually configure the
RTT threshold. Besides, Zhuge performs congestion control by delaying
the acknowledgments, it naturally increases the end-to-end latency and
thus has unsatisfactory performance on average latency. Compared to
Zhuge, APCC uses the queue length as a threshold (it could simply be
proportional to AP’s buffer size), and thus APCC can effectively control
the queue length and average latency.

7. Conclusion

In this paper, we propose APCC, a scheme for active and precise
congestion control in campus wireless networks. Unlike other protocols
that perform congestion control after the queue has been established,
APCC actively calculates the target rate in the AP and converts it into
the window size of each flow, fills it in the receive window field of
the returned ACK. Evaluation results show that APCC maintains a short
queue length while fully utilizing bandwidth, resulting in ultra-low
latency. When facing significant fluctuations in wireless link capacity,
APCC achieves an 6x shorter queue length and 4x lower packet la-
tency than CUBIC for the 95th percentile. Compared to Zhuge [12],
APCC reduces the 95th percentile of network latency by 18% and
decreases queue length by 70%. Compared to P-Scheduler [13], APCC
has no bandwidth underutilization phenomenon and faster throughput
recovery when the radio link capacity experiences fluctuations. APCC
also has fast convergence and almost complete fairness. We believe
that APCC presents a new paradigm for congestion control in campus
wireless networks.
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