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 A B S T R A C T

Campus wireless networks are the most important last-mile networks, which are widely deployed for orga-
nizations like universities, large companies and factories. Emerging applications, such as video conferencing 
or immersive teaching, require the network to provide large bandwidth, low latency and reliable services. 
However, current campus wireless networks fall short of these requirements. Frequent fluctuations in wireless 
bandwidth cause a rate mismatch between the wireless and wired segments, resulting in long buffer queues 
that ultimately lead to packet loss and high latency. Therefore, a scheme for efficiently controlling the queue 
length in campus wireless networks is in need. However, this is challenging as it is infeasible to modify the 
protocol stacks of the end devices. In this paper, we propose APCC (Active Precise Congestion Control for 
Campus Wireless Networks), which performs congestion control at the access point (AP) APCC calculates the 
target rate for each flow and performs congestion control through modifying the receive window field in the 
TCP header of the ACK packet. In this way, the AP can actively and precisely control the flow rate before 
congestion occurs. Evaluation illustrates that APCC maintains a short queue length while making full use of 
the network bandwidth. When wireless link capacity fluctuates, APCC achieves an 6× shorter queue length 
and 4× lower packet latency than CUBIC for the 95th percentile. Compared to Zhuge (Meng et al., 2022) 
and P-Scheduler (Hoiland-Jorgensen et al., 2017), APCC reduces the 95th percentile of network latency by 
52% and 22%, respectively, and decreases queue length by 71% and 51%, respectively. We believe that APCC 
presents a new paradigm for congestion control in campus wireless networks.
1. Introduction

Campus wireless networks are the most important last-mile net-
work, providing Internet access to organizations such as universities, 
hospitals, and factories. According to a recent report [1], the market 
size of global campus wireless networks is increasing at a compound an-
nual growth rate of 20%–30%. Emerging applications, such as immersive 
teaching, remote surgery, flexible manufacturing, require the campus 
wireless networks to provide large bandwidth, low latency and reliable 
services. However, most of today’s widely deployed TCP congestion 
control algorithms, such as NewReno [2] and CUBIC [3], fall short 
of these requirements in campus wireless networks. In order to take 
full advantage of link capacity, these protocols gradually increase the 
congestion window. Although it can improve the network throughput, 
frequent fluctuations in wireless bandwidth cause a rate mismatch 
between the wireless and wired segments, leading to the formation 
of long buffer queues. This problem is further exacerbated by greedy 
TCP flows, as both factors contribute to packet accumulation, packet 
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loss, and high latency. It tends to exhaust the buffer space, which 
results in packet loss and large latency, which are detrimental for 
many applications in campus wireless networks, such as production line 
automation and remote operations of machines.

Our goal is to achieve low packet loss rate and low latency while 
maintaining high throughput. It should satisfy two requirements. The 
first requirement is to enable congestion control without any modifica-
tion to client devices and in-network switches. The second requirement 
is to optimize end-to-end latency without sacrificing bandwidth uti-
lization. Explicit feedback schemes (e.g., [4–7]) require full upgrade of 
in-network switches, which is costly and not practical. Some methods 
(e.g., [8]) require modification on end-hosts, which is unpractical as 
the end-hosts (e.g., smartphones, laptop) are usually controlled by end 
users, which violate the first requirement in Table  1. Besides, AQM (Ac-
tive Queue Management) schemes (e.g., [9–11]) avoid congestion by 
proactively drop packets before buffer overflow occurs. This decreases 
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Table 1
Performance comparison of existing works and APCC.

Property
Scheme APCC DRWA P-Scheduler Zhuge

Modified position Modify AP only Modify client devices only Modify AP only Modify AP only
Modified signal rwnd rwnd Scheduling the packet directly Delay ack

Queue ! – ! !

RTT ! – ! #

Throughput ! – # !

R1a ! # ! !

R2b ! ! # #

a R1 (Requirement 1): Enable congestion control without any modification to client devices and in-network switches.
b R2 (Requirement 2): Optimize end-to-end latency without sacrificing bandwidth utilization.
network service reliability and often result in sub-optimal bandwidth 
utilization. These methods do not fulfill the second requirement in 
Table  1.

We find that frequent and large fluctuations in wireless bandwidth 
lead to rate mismatch between wireless and wired networks, and thus 
AP often become bottlenecks in campus wireless networks. By perform-
ing congestion control at the AP, the AP can control the data rate of 
each flow and thus the network can strike a balance between high 
throughput and short queue length. Compared with user devices, the 
network administrator has full control of the AP in the campus wireless 
networks and thus we can easily upgrade the APs to incorporate this 
idea.

Although the idea sounds straightforward, there are several chal-
lenges to be tackled. The first challenge is how to ensure that conges-
tion control signals can bypass the wireless bottleneck. In traditional 
end-to-end congestion control, signals generated at the wireless seg-
ment may be significantly delayed due to queuing and retransmissions, 
causing the sender to react slowly to bandwidth changes. Zhuge [12] 
proposes to delay ACKs at the access point to signal congestion. How-
ever, this approach essentially increases the end-to-end latency inten-
tionally, which is undesirable for latency-sensitive applications. The 
second challenge is how to determine an appropriate receive window 
size when using the AP to perform congestion control. Since delaying 
ACKs introduces additional latency and is not ideal, a preliminary 
alternative is for the AP to directly modify the receive window field in 
the TCP header of ACK packets. This method allows the AP to control 
the sender’s rate without increasing end-to-end delay. However, the 
key issue lies in selecting a suitable window size: simply reducing the 
window size does slow down the sender, but it also hurts throughput 
and degrades bandwidth utilization. Therefore, it remains challenging 
to determine a window size that strikes a balance between maintaining 
good throughput and achieving effective congestion control. The third 
challenge is how to guarantee fairness among multiple flows while 
considering the dynamics of the traffic flows. If we evenly distribute the 
bandwidth among the flows, when a connection is newly established, 
the connection is in the slow start phase and thus it cannot fully utilize 
the allocated bandwidth. Uniform distribution may lead to throughput 
degradation.

In this paper, we propose APCC (Active Precise Congestion Control 
for Campus Wireless Network), which refers to Access Point Based 
Congestion Control. APCC regulates each data flow by modifying the 
receive window field in the ACK packet. In TCP, the sender uses the 
minimum of the cwnd (congestion window) and the rwnd (receive 
window) as its send window. To determine an appropriate window 
size, APCC calculates the target rate according to the link capacity and 
the current buffer size. Then, the AP determines how to allocate the 
target rate to each flow. APCC proposes a way to convert the traffic 
rate into the receive window size. Recognizing the diverse bandwidth 
requirements of different flows, APCC  introduces a paradigm that 
empowers campus wireless networks administrators to allocate target 
rates based on their management strategy. APCC suggests utilizing 
flow-related indicators to guide bandwidth allocation (e.g., RSSI or data 
rate of the wireless link). In this way, APCC can actively and precisely 
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control the traffic rate before congestion occurs. Table  1 summarizes 
the differences between APCC and existing works. We can see that 
APCC is the one that satisfies all the design requirements with any 
performance degradation.

We use NS-3 simulations to evaluate the performance of APCC. 
Evaluation results show that APCC maintains a shorter queue length 
while making full use of bandwidth. When facing significant fluctu-
ations in wireless link capacity, APCC achieves an 6× shorter queue 
length and 4× lower packet latency than CUBIC for the 95th percentile. 
Moreover, APCC still has a large amount of buffer space available and 
thus can avoid packet loss in bursty scenarios. Compared to Zhuge, 
APCC reduces the 95th percentile of network latency by 18% and 
decreases queue length by 70%. Compared to P-Scheduler [13], APCC 
has no bandwidth under utilization phenomenon and faster throughput 
recovery when the wireless link capacity experiences fluctuations. We 
also consider the mobility of client devices. We emulate the random 
movement of mobile devices in a 10 × 10 m2 rectangular area, center-
ing around the AP. Compared to Zhuge [12], APCC reduces the 95th 
percentile of network latency by 52% and decreases queue length by 
71%. Compared to P-Scheduler [13], APCC reduces the 95th percentile 
of network latency by 22% and decreases queue length by 51%.

The contributions of this paper can be summarized as follows:

1. We propose APCC, an AP-based TCP congestion control scheme 
that enables congestion control signals to bypass the wireless 
bottleneck. Compared to Zhuge [12], APCC achieves timely 
congestion feedback at a much lower cost.

2. APCC is an AP-based TCP congestion control scheme that only 
requires modifications at access points in campus wireless net-
works, avoiding changes to end devices or in-network switches/
routers. This makes it practical for deployment in campus wire-
less networks.

3. APCC can perform per-flow rate control by modifying the receive 
window in ACK packets, helping to achieve a better balance 
among throughput, latency, and fairness.

2. Background and motivation

2.1. Packet loss in campus wireless networks

A typical campus network topology is illustrated in Fig.  1. The 
network includes the access layer, the convergence layer, and the core 
layer. It has become a trend for the last hop of campus networks to 
adopt wireless technologies (e.g., Wi-Fi).

In such a campus network architecture, the wireless hop between 
the AP and the client is usually the bottleneck. Due to multi-user access 
and mutual interference, wireless networks often experience significant 
fluctuations in available bandwidth. When the wireless link capacity 
decreases, if the network’s traffic remains at a high level, it may lead 
to buffer overflow at the AP, resulting in packet loss. We simulate this 
phenomenon using NS-3 [14], configuring the TCP congestion control 
algorithm to NewReno. Further details on the simulation configuration 
can be found in Section 4.1. The results are presented in Fig.  2.
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Fig. 1. A typical campus wireless network topology.

At the 5th second, there was a sudden drop in bandwidth. In 
such situations, queues rapidly form at the AP, resulting in significant 
end-to-end latency. Moreover, TCP is greedy in nature, leading to a 
gradual increase in traffic, and the packets will continue to queue in 
the AP buffer until they are eventually dropped. This process may 
repeat continuously, resulting in two negative consequences. Firstly, 
packet loss not only affects the reliability of network services but 
also wastes network bandwidth. Secondly, a significant number of 
packets are waiting in the buffer, causing queuing delays of tens or 
hundreds of milliseconds, leading to high average delays. Therefore, 
this is unacceptable for delay-sensitive applications such as remote 
surgery, necessitating a suitable solution to reduce average latency and 
control the queue length in the campus wireless networks.

2.2. Limitations of state-of-the-art transport protocols

2.2.1. End-to-end congestion control
Traditional end-to-end congestion control schemes, such as

NewReno [2] and CUBIC [3], rely on packet loss events to determine 
whether the network is congested and reduce the sending rate accord-
ingly. When the available bandwidth fluctuates on the wireless link, 
or when there is a mismatch between the wired and wireless segment 
rates, queues can quickly build up at the AP’s relatively small buffer, 
resulting in bufferbloat. This can significantly increase the round-trip 
delay of data packets [13,15]. Among them, the BBR [16] congestion 
control algorithm proposed by Google is the most representative, which 
has been gradually deployed on Linux machines. In order to detect the 
available bandwidth of bottleneck links in the network, BBR makes 
the source send packets at a rate exceeding the bottleneck capacity, 
which will cause the packets to accumulate in the buffer. It makes BBR 
greatly improved compared to the algorithm based on packet loss, but 
still causes a certain queue accumulation. Although we configured a 
lower level of wireless bandwidth fluctuation in Fig.  3 compared to 
Fig.  2, BBR continues to exhibit persistent queue accumulation. The 
simulation results shown in Fig.  3(a) confirm this phenomenon.

It is important to clarify that the version of BBR evaluated in our 
experiments is BBRv1, which is not only widely deployed in practice 
but also the only version currently available in NS-3. Although BBR 
is designed to control queue length and minimize queuing delay—as 
discussed in Gomez et al. [17]—our simulation results clearly show 
that, in scenarios with wireless bandwidth fluctuations or mismatches 
between wired and wireless segment rates, BBRv1 still leads to notice-
able queue buildup at the AP buffer. This observation is consistent with 
previous findings in the literature [18,19].

While BBRv1 offers significant improvements over traditional loss-
based algorithms such as Cubic and NewReno by reducing queue 
buildup, our experiments show that it can only alleviate, but not fully 
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eliminate, bufferbloat under dynamic wireless conditions. The queue 
length at the AP with BBRv1 is generally smaller than with Cubic and 
NewReno, but still remains non-negligible, leading to increased latency. 
BBRv2 introduces packet loss and ECN signals to improve coexistence 
and fairness; however, recent studies indicate that it still faces con-
vergence and fairness issues, particularly in scenarios with multiple 
competing flows or in environments with bandwidth fluctuations and 
packet loss [17,18]. BBRv3 was developed to address these limitations 
and further optimize performance. Nevertheless, the literature shows 
that even BBRv3 can suffer from performance degradation or slow 
recovery under extreme network conditions, such as high loss rates 
or severe bandwidth fluctuations. Systematic evaluations of BBRv3 
in complex scenarios are still ongoing, and some experiments have 
identified room for improvement in its bandwidth estimation accuracy 
and RTT fairness.

Although many studies have proposed improvements for BBR in 
variable environments, challenges remain due to its reliance on stable 
bottleneck assumptions. As a result, BBR may still experience queue 
accumulation during sudden bandwidth changes or rate mismatches. 
This is consistent with the broader literature, which shows that even 
the latest versions of BBR, while more robust, are not immune to the 
challenges posed by dynamic environments.

In summary, both our results and prior work indicate that while 
BBR reduces queue buildup compared to loss-based algorithms, it does 
not completely solve the problem, especially under variable wireless 
conditions.

2.2.2. AQM (Active Queue Management) schemes and ECN
AQM schemes such as RED [9], CoDel [10] and some other schemes

[11] can drop some packets before the buffer is overflowed to notify the 
source of potential network congestion, so as to control the congestion 
in advance. However, packet loss will hurt the reliability of the net-
work services. To overcome this drawback, these AQM solutions can 
enable ECN (Explicit Congestion Notification), using markers instead 
of packet loss events to notify the source of congestion. ECN has been 
widely used in many congestion control protocols, especially in data 
center networks, such as DCTCP [20], D2TCP [21], DCQCN [22], and 
some other strategies [23–25]. However, how to set the appropriate 
threshold of ECN is a widely discussed issue [26,27]. As an ECN-
based end-to-end congestion control scheme, DCTCP is widely deployed 
in data centers. However, in the congestion avoidance phase, DCTCP 
increases the window blindly. This makes it difficult for DCTCP to 
quickly converge to an appropriate rate when the network condition 
fluctuates. Moreover, it can be found that DCTCP still accumulates 
a certain number of packets in the buffer. Clean [28], based on the 
ECN-proxy, employs the DCTCP algorithm to calculate the window size 
during congestion, and leverages the CUBIC algorithm for fast recovery. 
While Clean can promptly maintain a short queue on the AP, it exhibits 
suboptimal convergence and suffers from high tail delay. More notably, 
the ECN mechanism requires the joint support of end devices and 
intermediate equipments. It means that we cannot directly utilize the 
ECN mechanism in campus wireless networks, as end devices are not 
under the control of the network administrator.

2.2.3. Explicit congestion control
Among the existing research work on congestion control, the ex-

plicit control schemes, such as XCP [4] and RCP [29], have drawn 
more attention. In these work, the switch uses each packet to provide 
multi-bit feedback to the sender based on direct knowledge of the link 
capacity. By telling the senders explicitly how to increase or decrease 
their rate, explicit congestion control schemes can lead to quick con-
vergence of link capacity. However, XCP and RCP require significant 
modifications to packet formats, switches, and end devices. While 
these modifications are technically feasible, they introduce significant 
deployment challenges.
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Fig. 2. Performance variation for NewReno with ECN, CUBIC with ECN, Clean and DCTCP.
Fig. 3. Queue Length and RTT Variation under Different Congestion Control Algorithms 
(CUBIC, NewReno, BBRv1).

2.2.4. Representative feedback and queue management schemes for wireless 
links

Zhuge [12] enables the AP to rapidly provide feedback on the 
dynamics of wireless links, so Zhuge has excellent performance for RTC 
(Real-Time Communication) applications. However, Zhuge does not 
perform satisfactorily in terms of average delay since Zhuge focuses on 
reducing tail delay and shortens the control loop by actively increasing 
the RTT (delay ack). Jiang [30] modifies terminals instead of APs and 
requires tcp timestamp to be enabled to estimate RTT, which is not 
accurate even when the DRS [31] algorithm is reused to estimate RTT. 
This causes some trouble for large scale deployments. Toke Høiland-
Jørgensen’s work [13] is the most advanced work on Bufferbloat. Most 
Wi-Fi access points based on the linux kernel already use this packet 
scheduler by default. Toke Høiland-Jørgensen et al. [13] integrated 
fq-codel into the linux kernel, which solves the bufferbloat very well. 
However, our simulations show that when the capacity of the wireless 
link experiences large fluctuations, flows may experience suboptimal 
throughput and the speed of throughput recovery is not satisfactory.

3. APCC design

3.1. APCC overview

Unlike other protocols that perform congestion control after the 
queue has been established, APCC actively controls the flow rate to 
match the link capacity, and thus avoiding queue accumulation.

Frequent and large fluctuations in wireless bandwidth often lead to 
rate mismatches between wireless and wired networks, so access points 
often become bottlenecks in campus wireless networks and a large 
portion of the congestion in the network occurs on the wireless links. 
It is worth noting that the AP can obtain the link throughput of the 
wireless links and observe the queue length at its buffer. Therefore, the 
AP can take advantage of this information to perform accurate target 
rate calculations. Furthermore, the AP can explicitly tell the senders 
how to control the send rate. Inspired by VCC [32,33] and DRWA [30], 
in APCC, the AP regulates the congestion control by modifying the 
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rwnd (receive window) field in the header of ACK packets, and APCC 
designs a more efficient algorithm for modifying the window. After 
receiving the ACK packet, the source will set the send window size to 
be min(rwnd, cwnd). As long as rwnd is smaller than cwnd (congestion 
window), the send window size will be rwnd. In TCP, when the receiv-
ing buffer at the destination is insufficient, the destination will notify 
the sender via the receive window size. In APCC, if the original receive 
window size is smaller, the AP will not modify the rwnd field.

Specifically, the workflow of APCC is as follows (See Algorithm 
3.1): First, APCC calculates a target rate of the AP according to the 
link capacity and the current buffer queue length. This enqueue rate 
can avoid queue accumulation when the AP forwards packets at full 
capacity. Then, the rate is distributed among multiple flows passing 
through the AP. The AP’s strategy for distributing the rate can be 
designed with any indicators of the flow, since the APCC has already 
calculated the optimal target rate. This rate value is converted into a 
window size and filled in the receive window field of the ACK packet 
sent to the source. APCC maintains a flow table on the AP, recording the 
status of each flow, such as throughput, window size, RTT, etc. After 
receiving the returned ACK, the source sets its send window size to 
be the minimum one of the receive window size and the congestion 
window size.

3.2. Precise rate calculation

AP will calculate the target rate by the following formula: 

𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑎𝑡𝑒(𝑡) = 𝜂𝐵 − max
[

𝑄(𝑡) −𝐾
𝛿

, 0
]

, (1)

where 𝐵 is the link capacity, 𝑄(𝑡) is the queue length at time 𝑡, 𝐾 is the 
queue length threshold, 𝜂 is a constant close to 1 (such as 0.95), and 𝛿
is a time unit constant. In IEEE 802.11 wireless networks, the AP can 
obtain information such as the Channel State Information (CSI) of the 
physical layer, thus being able to roughly estimate the link capacity. 
[34] also provides a method for estimating the wireless link capacity 
on the AP.

The first term in the right hand side of Eq. (1) refers to the dequeue 
rate when the AP forwards packets at full capacity. If the current queue 
length is low, that is, when 𝑄(𝑡) < 𝐾, APCC will set the target rate 
to 𝜂𝐵, where 𝜂 is slightly less than 1. This is the experience from 
previous work [35–37] that by setting the target rate slightly lower 
than the link capacity, we can trade a small amount of bandwidth for a 
large reduction in latency. The second term is the capacity retained 
for draining the existing queues in the buffer, reducing the queue 
length from 𝑄(𝑡) to 𝐾 after 𝛿 time unit. When 𝑄(𝑡) > 𝐾, the second 
term becomes non-zero. Their difference is the available capacity for 
incoming flows, i.e, the target rate.
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Algorithm 3.1: APCC Workflow
Input: Link capacity 𝐵, current buffer queue length 𝑄(𝑡), set of active flows 

1 Step 1: Calculate Target Rate
2 Compute the target enqueue rate 𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑎𝑡𝑒(𝑡) for the AP based on link capacity 𝐵 and current buffer queue length 𝑄(𝑡);
3 𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑎𝑡𝑒(𝑡) ← TargetRate(𝐵,𝑄(𝑡));

4 Step 2: Distribute Rate Among Flows
5 foreach flow 𝑓 ∈  do
6 Assign a portion 𝑟𝑓  of 𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑎𝑡𝑒(𝑡) to flow 𝑓 according to the AP’s scheduling strategy;

7 Step 3: Convert Rate to Window Size
8 foreach flow 𝑓 ∈  do
9 Estimate RTT for flow 𝑓 : 𝑅𝑇𝑇𝑓 ;
10 𝑤𝑓 ← max

(

2,
⌊ 𝑟𝑓×𝑅𝑇𝑇𝑓

𝑀𝑆𝑆

⌋)

;
11 Minimum window = 2, see Section 3.4. Fill 𝑤𝑓  into the receive window field of the ACK packet sent to the source of flow 𝑓 ;

12 Step 4: Maintain Flow Table
13 Update the flow table on the AP to record the status of each flow;
14 foreach flow 𝑓 ∈  do
15 Record throughput, window size, RTT, expiration time, and other relevant metrics for 𝑓 ;

16 Step 5: Source Adjusts Send Window
17 foreach flow 𝑓 ∈  do
18 Upon receiving the ACK, source sets its send window size 𝑊send as:;
19 𝑊send ← min(𝑤𝑓 , 𝑐𝑤𝑛𝑑𝑓 );
The reason to set the queue length threshold 𝐾 in APCC is that 
we need to ensure that the target rate does not overreact to small 
increases in queue length. The wireless link often schedules packets 
in batches [38]. The AP needs to aggregate data packets for batch 
scheduling, and thus it will cause the queues to accumulate to a certain 
extent before forwarding them. However, this increase in queue length 
does not mean network congestion. In addition, the phenomenon of 
micro-bursts in the network also occurs from time to time [39]. Micro-
bursts will cause the queue length to increase instantaneously, and then 
be drained quickly, which also does not mean network congestion. 
Therefore, in order to prevent such phenomena from decreasing the 
target rate, it is necessary to set a queue length threshold. We propose 
to configure 𝐾 to be larger than the queue growth caused by the AP’s 
average batch scheduling time.

3.3. Per-flow rate control

After the AP determines the target rate, it needs to allocate this rate 
to each active flow. By modifying their receive window values, the AP 
can perform congestion control. This process is called active congestion 
control in this paper.

3.3.1. RTT estimation
Accurately estimating the delay for each data packet which have 

not yet been transmitted in a wireless network poses challenges. The 
shared nature of wireless networks leads to competition for wireless 
channel resources and frequent bandwidth fluctuations. Once the queue 
becomes long, the sender may not promptly receive congestion signals, 
preventing timely rate adjustments and exacerbating queue congestion. 
To consider the dynamic nature of the wireless link, we can refer to 
Zhuge’s [12] scheme and decouples the latency into three parts, as 
shown in the following equation:
𝑑𝑒𝑙𝑎𝑦 = 𝑞𝐿𝑜𝑛𝑔 + 𝑞𝑆ℎ𝑜𝑟𝑡 + 𝑡𝑥.

𝑞𝐿𝑜𝑛𝑔 [12] is defined as the delay from the time of packet arrival 
to the time when the packet goes to the head of the queue. 𝑞𝑆ℎ𝑜𝑟𝑡 [12] 
refers to the waiting delay when the packet is at the front of the queue, 
due to factors including MAC layer aggregation, ‘‘listening before talk’’ 
period, and random backoff when collision happens. 𝑡𝑥 represents the 
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transmission delay, which is related to the wireless physical layer data 
rate. With the scheme Zhuge [12], we can accurately estimate the RTT 
even for dynamic wireless links.

3.3.2. Rate-to-window conversion
After calculating the target rate, APCC can assign rates to 𝑁 ac-

tive flows according to any indicators of flows. pHost [40], Express-
Pass [41] suggests simply averaging the target rate for 𝑁 active flows, 
or we can utilize flow-related indicators to guide bandwidth allocation 
(e.g., according to the estimated RTT as a metric). 

𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑎𝑡𝑒𝑖 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑎𝑡𝑒(𝑡) ×
𝑅𝑇𝑇𝑖
𝑅𝑇𝑇𝑁

. (2)

where 𝑅𝑇𝑇𝑖 is the RTT value for flow 𝑖, 𝑡𝑎𝑟𝑔𝑒𝑡𝑅𝑎𝑡𝑒𝑖 is the target rate 
that each flow should achieve, 𝑅𝑇𝑇𝑁  is the total estimated RTT. Note 
that we set the minimum value of rwnd to be 2 packets and we will 
explain it later.

The above allocation scheme is presented as one possible approach; 
alternative metrics related to flows can also be used for rate allocation. 
In this work, we use pHost [40] as an example for evaluation. We 
evaluate the effects of their distribution scheme in the next section and 
discuss fairness.

3.4. Active flow statistics

Fairness among flows is a crucial consideration for every congestion 
control algorithm. Before APCC allocates bandwidth, the AP first checks 
the status of each flow to determine whether the send window of the 
flow can be taken over by APCC . In other words, it is necessary to 
judge whether the traffic rate of the flow can reach the share allocated 
to it. Since the AP regulates congestion control in APCC, a flow table 
needs to be maintained to store information about each flow, such as 
window size, RTT, etc. In order to identify whether the flow is in the 
idle period, APCC adds an entry, expiration time, to the flow table. If a 
flow has no data arriving at the AP within a certain time threshold, it 
is considered that the flow no longer exists or is in an idle state. Then 
the entry is deleted. The expiration time is set to be the RTT value of 
the flow. During the rate-to-window conversion process of APCC, the 
window size of the flow is guaranteed to be at least 2, that is, at least 
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2 packets can be sent in one RTT. Therefore, if a flow has no data to 
send within a RTT time, it is considered that the flow has been in an 
inactive state. After getting the number of active flows, APCC executes 
the algorithm set by the network administrator to allocate the target 
rate among the active flows.

4. Evaluation

4.1. Setup

In NS-3, we build a typical campus network topology according 
to Fig.  1. The topology is setup according to our experience in real-
world campus network deployment and is supposed to emulate the 
real campus network architecture to the greatest extent. A large server 
is used to simulate the cloud server outside the campus and sends 
traffic into the campus network. The link bandwidth between the server 
and the campus network core switch is 100 Gbps; the link bandwidth 
between the core switch and the aggregation switch is 40 Gbps, and the 
link bandwidth between the aggregation switch and the access switch 
is 10 Gbps. There is an AP connected to the access switch with a 1
Gbps link. In the experiment, the wireless protocol standard is set to 
802.11ax. All switches and APs have a 12 MB buffer. As we mentioned 
in 3.2, we propose to configure 𝐾 to be larger than the queue growth 
caused by the AP’s average batch scheduling time. We set the queue 
threshold 𝐾 of APCC to 20 packets and the time parameter 𝛿 to 80 ms.

4.2. Performance

4.2.1. Queue length, throughput, and latency
The term ‘‘queue length’’ specifically refers to the length of the 

queue in the buffer of the access point. This metric is a critical indicator 
of the congestion level in the network, as it reflects the number of 
packets waiting to be transmitted through the access point. Monitoring 
and controlling the queue length is therefore essential for effective 
congestion control in the network. We compare APCC with a number 
of existing congestion control algorithms:

(a) NewReno [2], CUBIC [3], and BBR [16].
(b) NewReno+ECN, CUBIC+ECN: enabling the ECN mechanism on 

NewReno and CUBIC. We replace packet loss with packet mark-
ing, so that the sender can be notified of network congestion 
before packet loss occurs.

(c) DCTCP [20]: the most popular congestion control algorithm in 
data center, capable of maintaining short queues while achieving 
high throughput.

(d) Clean: Clean [28] is similar to APCC. Both perform congestion 
control by modifying the receive window of ACK packets. Clean
enables ECN for the switch, and determines the window value 
by estimating the congestion level of the network according to 
the ECN flag.

(e) Zhuge: Zhuge [12], a state-of-the-art solution, introduces signif-
icant improvements in reducing tail delay in RTC. It achieves 
this by leveraging predictive techniques to estimate RTT and 
strategically delaying ACK messages.

(f) Packet-Scheduler [13]: Toke Høiland-Jørgensen’s work is de-
ployed on the ath9k driver for the linux kernel. Their work on 
bufferbloat is excellent. Most linux-based wifi APs already use 
this packet scheduler by default.

APCC does not need to be compared to DRWA [30], which modifies 
endpoints and requires TCP timestamp to be enabled, which creates 
challenges for large-scale deployments.
6 
4.2.2. Simulation of bandwidth degradation
For NewReno and CUBIC with ECN support, the simulation results 

are shown in Fig.  2. Ecn-enabled algorithms have smaller average delay 
and queue length. When ECN support is added to them, although the 
delay is close to base RTT, it brings the problem of insufficient band-
width utilization. The reason is that, to deal with network congestion, 
ECN-based solutions rely on ECN feedback to gradually and iteratively 
change the traffic rate, and finally converge to a stable state. How 
to set the ECN marking threshold has been recognized as a complex 
issue [27]. Clean maintains a low queue state while ensuring high 
throughput. However, the ECN mechanism requires the joint support 
of end devices and intermediate equipments. Although it is prone to 
packet loss, CUBIC achieves nearly full bandwidth utilization. Accord-
ing to [42], the algorithm based on packet loss has such a consequence: 
if the size of the buffer exceeds the BDP of the connection, periodic 
packet loss caused by the buffer overflow will not lead to a decrease 
in TCP throughput. Moreover, the queue length of Clean has a large 
variation, incurring spikes from time to time.

To demonstrate the performance of APCC, we designed a scenario 
with a drastic bandwidth drop. At the 4th second, the bandwidth 
decreased from 600 Mbps to 180 Mbps, and after a period of time, it 
increased from 180 Mbps to 600 Mbps again. The simulation results 
are shown in Fig.  4. Under such extreme packet loss and interference 
conditions, the Cubic algorithm exhibits a significantly increased RTT 
of 400 ms. Compared to CUBIC, APCC achieves a 73% reduction in 
the peak delay, and compared to NewReno, the peak delay is reduced 
by 58%. Moreover, APCC only requires upgrading the APs in campus 
wireless networks, thereby avoiding modifications to client devices or 
the need for whole-network device upgrades.

In comparison to CUBIC and NewReno, BBRv1 typically results in 
a shorter queue length at the access point; however, the queueing 
delay remains non-negligible, ultimately leading to increased latency. 
Overall, APCC achieves more favorable performance in these chal-
lenging scenarios. This is because BBR can only mitigate, but not 
completely eliminate, bufferbloat under dynamic wireless conditions. 
Recent studies [17–19] have shown that BBR still faces several lim-
itations, particularly under extreme network conditions such as high 
packet loss rates or severe bandwidth fluctuations. Additionally, its 
convergence and fairness issues also remain significant concerns.

In Fig.  4, we further incorporate several representative state-of-the-
art algorithms into our simulation. Specifically, we focus on Zhuge [12] 
and P-Scheduler [13], both of which do not require modifications to 
the end devices protocol stack or ECN support. For comparison, we 
also include traditional algorithms that demonstrate relatively strong 
performance, such as NewReno+ECN. The simulation results are pre-
sented in Figs.  4 and 5. Both Zhuge and P-Scheduler represent the 
state-of-the-art research in this area, and our analysis primarily focuses 
on their performance. When facing significant fluctuations in wireless 
link capacity, APCC exhibits a 18% reduction in the 95th percentile 
of network latency and a 70% reduction in queue length compared 
to Zhuge. Additionally, APCC shows an 12% reduction in the 95th 
percentile network latency and a 49% reduction in queue length com-
pared to P-Scheduler [13]. The simulation results indicate that Zhuge 
has significantly higher average delay and maintains the queue length 
at a relatively higher level compared to APCC and P-Scheduler [13]. 
Although APCC and P-Scheduler have similar performance in reducing 
queue growth, APCC has no bandwidth under utilization phenomenon.

This is because Zhuge [12] delays sending ACKs to the source, 
resulting in an increase in RTT and preventing the direct reduction 
of the window size. Therefore, this is equivalent to sacrificing a small 
portion of the RTT to shorten the control loop. Even after the band-
width reduction at 4 s, Zhuge continues to result in elevated RTT, 
and the RTT does not decrease even after the bandwidth recovers. 
Zhuge adopts window control based on the variations in RTT and 
maintains the window size unchanged when the RTT does not rise 
relative to its previous value. P-Scheduler [13] integrates Fq-Codel into 
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Fig. 4. Performance comparison of APCC and other congestion control protocols when the bandwidth drops.
Fig. 5. CDF analysis of RTT and Queue when wireless link capacity fluctuates 
significantly.

linux kernel, which is an excellent work to solve bufferbloat in WiFi. 
Our simulation results show that P-Scheduler schedules packets directly 
when the queue is piled up to a large size, and the stacked packets 
in the queue are emptied quickly. However, we can observe in Fig.  4 
that when P-Scheduler starts working, it causes the traffic to appear 
under utilization and it will take some time to recover the throughput. 
In contrast to P-Scheduler, APCC does not suffer from under utilization 
and the queue length is maintained in a tolerable range.

4.2.3. Simulation of client device mobility
To comprehensively analyze APCC’s performance on dynamic wire-

less links, we conduct simulations with mobile clients using NS3. We 
set up two mobile clients in a 10 × 10 m2 area centering around the AP. 
The clients are configured to move randomly in this area and the wire-
less channel model is configured to be RandomPropagationLossModel. 
Under this setup, we compare the queue length, RTT, and throughput of 
APCC, Zhuge and P-Scheduler. They have similar bottleneck bandwidth 
in simulation experiments, as shown in Fig.  6(c), and they achieve 
nearly 100% bandwidth utilization.

However, as shown in Figs.  6 and 7, APCC shows a shorter queue 
length and delay. This is because APCC performs per-flow rate con-
trol by directly assigning a target rate for each flow. Compared to 
Zhuge [12], APCC reduces the 95th percentile of network latency by 
52% and decreases queue length by 71%. As Zhuge delays ACK after de-
tecting congestion events, it naturally increases the total delay. Rather 
than modifying the generic queueing layer, P-Scheduler [13] bypass 
it completely, and instead incorporate the smart queue management 
directly into the 802.11 protocol-specific subsystem. Compared to P-
Scheduler [13], APCC reduces the 95th percentile of network latency 
by 22% and decreases queue length by 51%. The results are shown 
in Fig.  7. As Toke Høiland-Jørgensen discussed, the main drawback of 
doing this is a loss of flexibility. With this design, there is no longer a 
way to turn off the smart queue management completely; and it does 
add some overhead to the packet processing. This overhead may have 
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some impact on the performance of P-Scheduler [13] when the wireless 
link capacity experiences fluctuations.

In the case that the client moves outside the serving range of the 
current AP and connects to another AP, APCC will be treated it as a 
newly joined flow at the new AP.

4.2.4. Parameter setting analysis
In Eq.  (1), there are two parameters, the queue length threshold 𝐾

and time constant 𝛿. In this part, we test the throughput and latency 
performance of APCC with different values of 𝐾 and 𝛿. The results 
are shown in Fig.  8. The labels in the figure represent parameter pairs 
(𝐾, 𝛿). For Fig.  8, the closer the parameter pair is to the upper left 
corner, or it shows a trend towards the upper left corner, the better the 
performance of the algorithm.

We connect the results with same 𝐾 with dotted lines. It shows 
that as 𝛿 increases, the delay first decreases and then increases rapidly, 
while the bandwidth utilization increases with 𝛿 to a certain extent 
and then decreases slightly. According to Eq.  (1), when 𝛿 increases, 
the target rate increases, so is the bandwidth utilization. 𝛿 represents 
the time required to reduce the current queue length to the queue 
length threshold. If it is set too small, it means that APCC will greatly 
reduce the rate in order to drain the queue quickly, which may result in 
bandwidth under utilization. Moreover, this will destabilize the system, 
causing an increase in latency. If the setting is too large, it means 
that APCC reduces the flow rate by a small amount in order to drain 
the queue slowly. It is possible that the packet sending rate of the 
source end still exceeds the link capacity at this time, resulting in the 
continuous accumulation of queues and bringing about consequences of 
increased delay. As for the queue length threshold 𝐾, it can be observed 
that as 𝐾 increases, the curve tends to move towards the right part of 
the figure. This is straightforward, as the increase of 𝐾 means that the 
length of the queue in the stable state increases, and thus the average 
delay and the tail delay increase.

It can be inferred from the figure that when the parameter 𝐾 is set 
to 20 packets and the parameter 𝛿 is set to 80 ms, the performance 
of APCC is optimal and resides in the upper left corner of the figure. 
In terms of parameter setting for APCC, it is suggested that a larger 
value for 𝛿 results in better stability of congestion control and higher 
bandwidth utilization, while a smaller value for 𝛿 results in faster 
response to congestion and lower delay. For a typical campus network 
environment, it is recommended to set 𝛿 to be 2∼4 times of the RTT. 
As for the parameter 𝐾, it is recommended to set it as small as possible, 
provided that the queuing delay exceeds the time required for the AP 
to perform packet aggregation and batch forwarding.

4.2.5. Fairness and convergence
To test whether APCC can quickly converge to the fair share, the 

experiment starts a single flow at the beginning and then adds a new 
flow every 5s. The result is shown in Fig.  9. It indicates that even 
when there are frequent AP switching events due to user movement, by 
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Fig. 6. Performance comparison of APCC, P-Scheduler and Zhuge.
Fig. 7. CDF analysis of RTT and Queue for APCC, Zhuge [12] and P-Scheduler [13].

Fig. 8. The throughput and delay performance of APCC under different parameter pairs 
(𝐾, 𝛿).

treating each new connection as a new stream, APCC ensures that the 
congestion control algorithm is fair and efficient among all connections. 
This helps to maintain optimal network performance in scenarios with 
frequent AP switching.

5. Discussion

5.1. APCC overhead

In APCC, the AP needs to perform per-flow rate control. We may be 
concerned about the memory overhead and computational overhead at 
the AP. As for the memory overhead, for each flow, it takes 20 bytes 
to store per-flow information, including the flow ID, window size, RTT, 
and expiration time. According to our observation, there could be about 
tens of thousands concurrent flows. It requires 0.2−2 MB to store the 
per-flow state table. Given that the AP in the campus wireless networks 
8 
Fig. 9. Throughput for each flow over time.

usually has hundreds of MB memory, it has sufficient memory to store 
the state table. As for the computational overhead, the AP only needs 
to perform some simple calculations, the computational overhead is 
negligible. Therefore, the memory and computational overhead at the 
AP is affordable.

5.2. Does APCC violate the end-to-end principle?

While the end-to-end principle has long been a fundamental guide-
line in Internet architecture, it is not strictly followed in real-world 
network environments. Middleboxes such as NAT, QoS, and traffic 
shaping devices have been widely deployed to enhance network per-
formance, security, and manageability. The use of such in-network 
mechanisms for traffic scheduling and optimization has become com-
monplace, and these practices can be seen as valuable supplements to 
the end-to-end principle rather than violations.

APCC is a pragmatic optimization scheme designed specifically for 
scenarios where end hosts are not easily controlled and protocol up-
grades are difficult—such as in campus wireless networks. Its primary 
goal is to improve bandwidth utilization and fairness for the majority of 
users. In typical campus environments, the main challenges stem from 
wireless segment congestion and the lack of coordination between end 
hosts. APCC effectively addresses these issues, significantly enhancing 
the experience for most users. For special network zones like Science 
DMZs [43], which are dedicated to high-performance scientific data 
transfers, APCC can be flexibly bypassed or not deployed, thereby en-
suring that extremely high bandwidth demands remain unaffected. As 
demonstrated by recent research published in SIGCOMM by Meng [12] 
et al. the academic community is actively exploring the feasibility and 
rationality of using in-network nodes to optimize end-to-end perfor-
mance for emerging applications such as real-time communications 
(RTC). These developments indicate that the end-to-end principle is 
continuously evolving and being refined in response to modern network 
requirements.

In summary, the design philosophy of APCC aligns with the current 
academic trend of exploring in-network optimizations for end-to-end 
performance. As an optional network optimization mechanism, APCC 
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is compatible with existing bandwidth management approaches and 
provides network administrators with greater flexibility in optimizing 
network performance.

6. Related work

The congestion control protocol of the WAN is developing very 
rapidly, from the earlier Reno [44] to NewReno [2], HighSpeed TCP
[45], BIC [46] and CUBIC [3]. These protocols work hard to improve 
TCP performance on paths with high BDP. However, since these con-
gestion control protocols are based on packet loss, they do not care 
about the length of queues in the buffer. In campus wireless networks, 
the buffer size at the access point (AP) is limited. Therefore, packet 
loss-based congestion control mechanisms are not well suited for such 
environments. Some schemes based on explicit feedback are proposed, 
including ECN [8], XCP [4], VCP [5], and RCP [7]. These schemes 
require extensive changes to packet headers, switches, and client-side 
protocol stacks, which pose significant deployment challenges. This is 
more challenging for campus wireless networks, where client devices 
are not under the control of the network administrator.

In addition to traditional loss-based and explicit feedback-based 
congestion control protocols, BBR [16] and its subsequent versions 
(BBRv2 and BBRv3) have been proposed as modern congestion control 
algorithm. These protocols control the sending rate by estimating the 
bottleneck bandwidth and round-trip time, aiming to minimize queue-
ing delay and bufferbloat. Although BBRv1 can significantly reduce 
queue buildup compared to loss-based algorithms such as Cubic and 
NewReno, it cannot fully eliminate bufferbloat, especially under dy-
namic wireless conditions or when there is a rate mismatch between 
wired and wireless segments. This observation is consistent with pre-
vious studies [17–19]. BBRv2 and BBRv3 incorporate packet loss and 
ECN signals to further improve fairness and performance. However, 
recent studies have shown that BBRv2 and BBRv3 still face challenges 
in convergence, fairness, and bandwidth estimation accuracy, partic-
ularly in complex or highly dynamic network environments [17–19]. 
Systematic evaluations of these newer versions are still ongoing.

To solve this problem, in this paper, we use the receive window 
modification mechanism to control the traffic rate. The earlier literature 
related to this area includes [47,48]. They modify the receive window 
in the header of TCP ACK returning to the sender. The calculation of 
the window size is crude and cannot maintain the switch queue at a 
stable length. They have also been found to be vulnerable to packet 
loss and has poor compatibility with some TCP transport protocols. 
The recent literature related to the use of the receive window is 
VCC [32,33], which decreases the receive window to force the guest to 
send fewer packets in the hypervisor. However, VCC is used in multi-
tenant data centers, and it is not suitable for campus wireless networks. 
More importantly, how to determine the receive window size is not 
considered in VCC. DRWA [30] is to modify the window on the mobile 
ends, but it requires both the end and the access point to have the 
tcp timestamp option enabled in order to estimate the RTT. And its 
algorithm for calculating the window is not accurate enough to quickly 
keep up with changes in the capacity of the wireless link.

Pilosof [49] first presented a similar solution. However, Pilosof’s 
scheme was not specifically tailored to the campus wireless networks. 
The crucial difference between APCC and Pilosof’s solution lies in the 
control algorithm, where APCC uses AP’s link information to accurately 
calculate the rate. As a result, APCC’s window size calculation is more 
precise, and the design of APCC does not require any modifications to 
the end-devices in this process. P-Scheduler [13] is the most advanced 
work on Bufferbloat. Most Wi-Fi access points based on the linux kernel 
already use this packet scheduler by default. Toke Høiland-Jørgensen 
et al. [13] integrated fq-codel into the linux kernel, which solves 
the bufferbloat very well. However, our simulations show that when 
the capacity of the wireless link experiences large fluctuations, flows 
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may experience suboptimal throughput and the speed of throughput 
recovery is not satisfactory.

Zhuge [12] is the state-of-the-art congestion control scheme that is 
designed for wireless networks. Zhuge enables the AP to rapidly provide 
feedback on the dynamics of wireless links, and thus Zhuge has ex-
cellent performance for RTC (Real-Time Communication) applications. 
However, Zhuge requires empirical experience to decide the congestion 
indicator (RTT threshold). When deployed in campus wireless net-
works, it requires the network administrator to manually configure the 
RTT threshold. Besides, Zhuge performs congestion control by delaying 
the acknowledgments, it naturally increases the end-to-end latency and 
thus has unsatisfactory performance on average latency. Compared to 
Zhuge, APCC uses the queue length as a threshold (it could simply be 
proportional to AP’s buffer size), and thus APCC can effectively control 
the queue length and average latency.

7. Conclusion

In this paper, we propose APCC, a scheme for active and precise 
congestion control in campus wireless networks. Unlike other protocols 
that perform congestion control after the queue has been established, 
APCC actively calculates the target rate in the AP and converts it into 
the window size of each flow, fills it in the receive window field of 
the returned ACK. Evaluation results show that APCC maintains a short 
queue length while fully utilizing bandwidth, resulting in ultra-low 
latency. When facing significant fluctuations in wireless link capacity, 
APCC achieves an 6× shorter queue length and 4× lower packet la-
tency than CUBIC for the 95th percentile. Compared to Zhuge [12], 
APCC reduces the 95th percentile of network latency by 18% and 
decreases queue length by 70%. Compared to P-Scheduler [13], APCC 
has no bandwidth underutilization phenomenon and faster throughput 
recovery when the radio link capacity experiences fluctuations. APCC 
also has fast convergence and almost complete fairness. We believe 
that APCC presents a new paradigm for congestion control in campus 
wireless networks.
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