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Abstract—In this paper, we deal with the problem of Robust
schedUling for wireLess charger nEtworks (RULE), i.e., given
a number of rechargeable devices, each of which may drift
within a certain range, and a number of directional chargers
with fixed positions and adjustable orientations distributed on a
2D plane, determining the orientations of the wireless chargers
to maximize the overall expected charging utility while taking
the charging power jittering into consideration. To address
the problem, we first model the charging power as a random
variable, and apply area discretization technique to divide the
charging area into several subareas to approximate the charging
power as the same random variable in each subarea and bound
the approximation error. Then, we discretize the orientations
of chargers to deal with the unlimited searching space of
orientations with performance bound. Finally, by proving the
submodularity of the problem after the above transformations,
we propose an algorithm that achieves (% — ¢)-approximation
ratio. We conduct both simulation and field experiments, and
the results show that our algorithm can perform better than
other comparison algorithms by 103.25% on average.

I. INTRODUCTION

Wireless Power Transfer (WPT) technology demonstrates
its importance in our daily life due to its convenience such as
no wiring, no contact, reliable and continuous power supply,
and ease of maintenance, and attracts attentions from not only
academic research but also industrial field. Wireless Power
Consortium [1], which aims to promote the standardization
of WPT, has grown to include 606 companies in 2018, and
this number is more than twice of that of last year. In a WPT
system, chargers transfer power to rechargeable devices via
wireless with reasonable efficiency. Almost all existing works
regarding WPT systems focus on performance optimization
issues in determined environments, such as deploying speci-
fied number of chargers to maximize charging utility/flow rate
for pre-deployed sensor networks [2]-[5].

In practice, however, the charging environments are always
highly dynamic with uncertainties. A WPT system should be
sufficiently robust to deal with such dynamics. Such dynamics
are mainly due to the following reasons. First, instead of the
traditional static WSNs [6], [7], the wireless devices may drift
since they are not absolutely fixed; example cases include
but not limited to: (1) devices can drift in their task areas
to expand the scope of monitoring [8]; (2) sensors in pipe
networks may drift when flow passes [9]; (3) non-fixed sensors
[10] like underwater sensors [11] and sensors on unmanned
aerial vehicles [12] may drift without control; (4) the sensors

on bridges to monitor structural health are required to detect
acceleration, ambient vibration and so on [13] so they may
slightly drift with vibration. These drift cases may cause these
devices out of charging area and decrease the network lifetime
if cases are in wireless rechargeable sensor networks. Second,
the charging power jitters [14], which means the charging
power is not a certain value for a certain pair of charger
and device. Unfortunately, recent works about wireless charger
scheduling always do not consider these uncertainties.

In this paper, we deal with the problem of Robust
schedUling for wireLess charger nEtworks (RULE), i.e., given
a number of rechargeable devices, each of which may drift
within a certain range, and a number of directional chargers
with fixed positions and adjustable orientations distributed
on a 2D plane, determining the orientations of the wireless
chargers to maximize the overall charging utility while taking
the charging power jittering into consideration.

Related works about our problem mainly involve ro-
bust wireless charging problem and wireless charger place-
ment/scheduling problem. The former work only considers
the jittering of electromagnetic radiation (EMR) rather than
charging power while the latter works just apply deterministic
models, which are not fit to our problem.

There are four main challenges in our problem. First, the
charging power jitters rather than be a static value for a
point on the plane, which raises the challenge to evaluate
the charging power and even the charging utility. Second, the
charging power is nonlinear with distance and it is additive
from different chargers for one device, thus, the problem
cannot be regarded as a simple geometric coverage problem.
Third, it is a continuous problem that we should take the whole
area into consideration where these devices can drift rather
than only consider limited number of positions of devices as
in static topologies. Fourth, infinite orientations for chargers
to choose leads to the unlimited solution space.

To address the problem, for the first challenge, we model
the charging power as a random variable and these random
variables of the charging power from different chargers are
independent. We take the expectation of charging utility, a
monotone increasing concave function of charging power,
as the measurement. For the second one, we apply area
discretization to divide the charging area of chargers into
several subareas to approximate the charging power as the
same random variable in each subarea. For the third one,



TABLE 1
NOTATIONS

[ Symbol [ Meaning

s; | The ith wireless charger, or its position
0; | The jth wireless rechargeable device
O; | The DDA of wireless rechargeable device o;
O% | The kth subarea of O;
p; | The DDA center of wireless rechargeable device o
ro | The radius of DDA
N | Number of chargers
M | Number of devices
a | Charging angle of chargers
¢; | Orientation of charger o;

Py, (.) | Charging power function (a random variable)
9x(.)/gx(.) | Probability density function/approximated probability
density function of selected strategies in set X

P,p, | Threshold for charging utility function
ai,by,az, b Constants in the charging model
D | Farthest distance chargers can reach
U(.) | Utility function
A(.) | Area function

the drifting areas of devices can also be divided into several
subareas based on area discretization due to geometric sym-
metry, where expected charging power and charging utility
are constant. Thus, we only need to calculate the expected
charging utility in each subarea. For the fourth one, we
discretize the orientations of chargers into limited ones with
performance bound. By proving the submodularity, we use
greedy algorithm to achieve (% — €)-approximation ratio.

We conduct both simulation and field experiments to evalu-
ate our algorithm. Results show that our algorithm can outper-
form other comparison algorithms by 103.25% on average.

II. RELATED WORK

As far as we know, almost all the existing works regarding
static robust wireless charging schemes do not consider power
jittering or device position uncertainty in the objective func-
tion. Only work [14] applies probabilistic model to portray the
jittering property of electromagnetic radiation (EMR), which
aims to schedule the power of chargers to control EMR value.
However, the charging power is evaluated as a deterministic
value as its expectation so that the technology cannot be
applied to address our problem.

Others include wireless charger placement/scheduling prob-
lem. Generally, the existing related works can be divided into
two folds: ones adopting omnidirectional charging model and
those adopting directional charging model. The former models
the charging area of chargers and power receiving area of
devices as disks [15]-[21]. The latter models the charging
area/receiving area as sectors [2], [3], [22]-[25]. All these
works apply deterministic models which are not fit to ours.

III. PROBLEM FORMULATION
A. Network Model and Charging Model

Suppose there are M omnidirectional rechargeable de-
vices O = {o1,...,on} and N directional chargers S =
{s1,...,sn} placed on a 2D plane 2. Without confusion, we
also use s; (¢ = 1,...,N) to denote the position of the ith
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Fig. 1. Charging model
charger in ). The chargers are fixed at their positions s;
(# =1,...,N) but their orientations are freely adjustable. We
assume that the rechargeable devices can drift within a certain
range, denoted as the Drifting Disk Area (DDA), and p; is the
center of the DDA of o; (j = 1, ..., M). We further assume
that o; can be anywhere in the disk with a uniform distribution
because of the practical concerns.

We build our charging model based on empirical studies
[2], [3]. The charging area of a directional charger can be
modeled as a sector with radius D. As shown in Figure 1,
charger s; has its orientation angle ; and a charging angle o.
We consider the typical case that the charging angle o € (0, 7]
due to the strong directional property of directional chargers.
For example, the TX91501 power transmitter produced by
Powercast [26] provides a charging angle of about 60° [2].
If the position p = (x,y) of the device o; is in the charger’s
charging area, it can always receive non-zero charging power,
and none for otherwise. In Figure 1, o; can always harvest
non-zero charging power at position p; ; but cannot at position
p;,2- In addition, the charging power from a charger jitters due
to multipath effect, so that we model it as a random variable
[14]. By combining the widely used directional charging
model and the probabilistic power model in [14], we can
formalize our charging model as follows.

N a1 { az r
(d(si,p) +b1)2" [ (d(si,p) + b2)%] )’
PUJ(SHSDHp) d(sup) SD
and @(cos wi,sin ;) —

0, otherwise,

d(s:, p) cos % >0,

M
where a1, by, a9, bo are four parameters decided by the hard-
ware and the environment and d(s;,p) denotes the distance
between charger s; and the device position p. The model
shows that if the device is in the charging sector area of the
charger, the receiving power obeys a normal distribution of
which the parameters are related to the distance between the
charger and the device. Moreover, we assume that the charging
power from multiple chargers is additive, that is,

N
Pu(p) = Pu(si,¢i,p). @)
i=1

B. Charging Utility Model

We define a charging utility model considering that the
power harvesting process may gradually slow down for each
rechargeable device [3], [27], [28]. To generalize, the charging
utility function U(z), where x denotes charging power, is
a monotone increasing concave function when x > 0; it



equals 0, otherwise. To normalize, we suppose that U(x)
converges to 1 or finally reaches 1 without increasing any
more. Since charging power is a random variable, charging
utility of charging power is also a random variable. Here we
use a linear bounded function to define ¢(.).

0, <0,
Ux) =< z/Pm, 0<z< Py, 3)
1, T > Pth,

where Py, is the power threshold which denotes rechargeable
devices cannot harvest power any more when they have
already received P;;, power.

C. Problem Formulation

First, according to Equation (2), the expected charg-
ing utility for a rechargeable device o; at point p =
(z,y) € O, is ElU (Zz 1 Pu(siy ¢4, (w,y)))] since there
are N chargers in total. Then, the overall expected charg-
ing utility for device o; in its DDA O; is the nor-
malized sum of the expected charging utility of all the
points in O;. Since there are infinite number of points in
an area, it becomes a normalized double integral in area
Oj, ie, 2= [[io 0 co, BIUTIL, Pulsi, 0, (z,9))ldedy.
Finally, there are M devices in total, so we add their overall
expected charging utility in their own moving circles together
and get the average value. Thus, the problem is formalized as:

ZP si, @is (2, 9)))|dzdy,

(P1) max //
MTQZ (zyEO i1

s.t. 05 C Q7 wi €[0,2m), i=1,..,N, j=1,..., M.
)

The hardness of the problem is described in the theorem
below.

Theorem IIL.1. The problem PI is NP-hard.

We omit some proofs in this paper due to the space limit.

IV. SOLUTION

In this section, we introduce the detailed solution of the
problem P1 which achieves approximation ratio 35 —e We first
apply area discretization to approximate the charglng power in
the same subarea with performance guarantee to address the
nonlinearity of the problem. Then, to confine the unlimited
searching space, we also discretize the orientations and bound
the covering area gap. Finally, we reformulate the problem
as maximizing a monotone submodular function subject to a
partition matroid, propose our RULE algorithm, and give the
overall performance guarantee.

A. Area Discretization

1) Piecewise Constant Function Approximation: To deal
with the continuous and nonlinear charging power expectation,
we first approximate the charging power of a charger by a
piecewise constant function. Let P, (d) denote the charging

power from a charger to a device with distance d. The
piecewise constant function is defined as follows:

Py (I(1)),d =0,
Py (I(K)), Ik —
0,d > D,

Po(d) = ) <d<lik), (k=1,..,K), (5

where {(K) = D. As shown in Figure 2, the charging area
of charger s; is divided into two subareas and the charging
power is approximated as P, (I{(k)) at any point in subarea
k (k = 1,2), so that the expected charging power in each
subarea is a constant as the horizontal line shows. We use
P, (d) = 0 to denote the fact that the random variable P, (d)
can only equal to 0, ie., P[P,(d) = 0] = 1. It is obvious
that P, (d) = 0 if and only if P,(d) = 0. In the following
lemmas corresponding to approximation error, we only discuss
the case that the charger provides non-zero charging power.
2) Charging Utility Approximation for a DDA: The DDA
O; is divided into several subareas by the piecewise constant
function in which the approximated expectation and variance
of charging power are constant. We denote the kth subarea in

Oj as Oé?.

Lemma IV.1. Let /13;(31',901»,0;“) denote the approximated
charging power received at any point p = (x,y) € Of from
charger s; with orientation ;. By setting 1(0) = 0,

I(k) = min{vI T e ((k — 1)+ b1), vITer ((k — 1) + o)},
where k=1,...., K — 1 and I(K) = D such that
I(K—1)<D<min{y/T+e (I(K —1)4b1),VIt+e ((K—1)+b2)},

the approximation error of the expectation of charging utility
from all the chargers can be bounded as:

N . .
BUSY, Pulsnoet] _y (o
EA(325, Pulsi, @i, OF))]

3) Problem Reformulation: After charging utility approxi-
mation, the problem P1 is approximated as:

1<

(P2) max QZ > Elu( ZP (si, %6, O7))A(O7),
' o = 1okco,
st.0; CQ, ¢; €[0,27),i=1,...,N,
@)

where A(O}) denotes the area of OF and Zokco A(Of) =

772 P (s, P Ok) denotes the approximated charging power
at any point in subarea Ok provided by charger s; with
orientation ;.

B. Orientation Discretization

Since the orientation of a charger is a continuous value
and the relationship between all the covering subareas and the
orientation is difficult to describe, we discretize the orientation
into limited number of directions with Ay interval and bound
the approximation error. We assume A¢p can be divided by
27 with no remainder for simplicity.



(a) Two line bounds cross the circle

Fig. 3.

Lemma IV.2. The gap between the original area and the
area after orientation discretization covered by one charger
in a DDA is bounded as 2r,(D + 1,)A@ when o € (0, F].

Proof: We prove this lemma under polar coordinate
system. First, we give notations and equations of lines and the
DDA circle bound. Then, we discuss the three conditions: the
charger outside/on/inside the DDA circle bound, respectively.
At last, we derive the result.

Since we only consider a pair of charger and device, we do
not care the indices of the charger and the device, and write
A(si, pi,0;) as A(p) for simplicity. Suppose the charger is
at the pole (0,0) and the device position center is (p,,0). It
should be noticed that any other cases that the device center
position is not on the polar axis can be transformed into this
situation by rotating the polar axis. The two beams of the
charging area are 0 = ¢ — 5 and ¢ = ¢+ 5. The DDA circle
bound can be described as follows due to cosine theorem.

pe+ p* —2ppocost =73 ®)

We need to get the function p(f) to further calculate the
covering area. Since the circle is a quadratic equation about
p, the equation may have two, one, or none root(s), which
corresponds to different calculating cases.

We need to explore the maximum change rate of charging
area while rotating the charger, that is, the maximum value of
|A’(p)]. It is obvious that the absolute value of the minimum
and maximum A’(y) are the same due to the symmetry of the
circle. In most cases, we can calculate the maximum value of
|A’ ()] with the ¢ which satisfies A”(¢) = 0.

We only consider the two line bounds of the charging area
and neglect the farthest arc bound while rotating, since the
farthest arc bound of charging area will contribute nothing to
the area changing rate so that the area changing rate is smaller.

Charger outside the DDA: In this case, three situations
may occur:

1) Both § = ¢ — 5 and 6 = ¢ + 5 cross the circle;

2) Only one beam 6 = ¢ — 5 or § = ¢ + 5 cross the

circle;

3) None of the two beams cross the circle.

These situations can be seen in Figure 3(a)-(c), respectively.
In situation 3), the covering area is either the area of the
whole circle or 0, and both the changing rates are 0. We only
consider the first and the second situations.

Define the two functions of the circle as

p1(0) = pocosf + /12 — p2sin? 6, 9)

(b) One line bound cross the circle

Charger outside the DDA

(c) None line bound cross the circle

p2(0) = pocosf — /72 — p2sin? 0, (10)
which are derived from Equation (8). In situation 1), the
covering area can be calculated as:

LP+% 1
A= [ 160) - o)) ds
- (1)

-4/72 — pZsin® 6 d6,

<p—-5<ep+t5< arcsin(;—z).
Let A”(p) = 0 and we get the only case sin( 2) =
sin(¢ + ), but the value of ¢ exceeds its range. Thus, A’(¢)
must be monotone in its domain. Due to the symmetry, the
values of |A’(¢)| at the end points of the domain, i.e., ¢ =
—arcsin(72) + § and ¢ = arcsin(72) — §, are the same and
this value is the upper bound in this situation. That is,

where — arcsin (;—0)

|A" ()| < 2p0|cos(a—arcsin(:—°))|\/r§ — p2 sin? (a—arcsin(r—o))

o o

<2poTo, 12

since | cos(a—arcsin(7=))| < 1and sin2(a—arcsin(;—z)) > 0.
In situation 2), it is similar to get the upper bound 2p,7,.
To conclude, when the charger is outside the DDA, the area

changing rate |A’(¢)| < 2p,70.

Charger on the DDA circle bound: In this case, the
function of DDA circle bound reduces to:

™ T

p(0) = 2r,cosb, 0 ¢ [—5, 5],

13)
and it is easy to get the bound |A'(¢)| < 2p,7,. We omit the
proof of this case here.

Charger inside the DDA: The covering case can be seen
in Figure 5. In this case, we see that there must be one root
for p in Equation (8) since r, > p, and we can write p(0) as:

p(0) = pocosB + /p2cos? 0 + (r2 — p2). (14)

The covering area A(y) can be calculated as:

—a
2

1 /¢+
2/,

<P+%1 5
A= [ 7 o0
©
%

2
(po cos 0 + \/pg cos? 6+ (rz — Pg)) dg.
(15)

[Nle)



(a) Two line bounds cross the circle

(b) One line bound cross the circle

Fig. 4. Charger on the DDA circle bound

Algorithm 1: Robust Scheduling
Input: Candidate orientation set of the ¢th charger X;
(i=1,...,N), charger set S = {s1,...,5n},
device set O = {01, ..., 0ps }, density function
of charging power provided by one charger,
utility function U/(x), objective function f(X).
Output: Selected orientation set I'.
1T =0.
2 X =UY, X,
3 while [T'| < N do
¢ | e = argmaxeexir (X U{e}) -
s | '=Tu{e}.
6 X = X\X; where e* € X;.

f(X).

Define
Ag(x) = pox (poiv +/pdx? + (rd — P%)) ) (16)
€[-1,1],0 < po < To.
Then,
A'() = Aglcos(p+ 5))— As(cos(p — 2))
w) = Asleosly T 5 P8P =3 (17)
< Ap(1) = Ap(=1) = 2poro,

since A’;(z) = 0 requires (p2 — 72)? = 0 which cannot be
satisfied, and A’ (1) > 0, A%(z) > 0 when z € [~1, 1]. Thus,
As(x) (z € [-1,1]) is a monotone increasing function, so we
have the upper bound 2p,7,.

Therefore, in all the three cases, the area changing rate is no
larger than 2p,r,. Considering that a charger covering a DDA
with non-zero area requires p, < D 4 r,, the area changing
rate is less than 2r,(D + r,). Thus, the maximum changing
area is less than 2r,(D + r,)A¢p by rotating Ap. ]

After orientation discretization, the problem P2 in Equation
(7) is reformulated as:

N
(P3) max M 2 Z ST EU Pulsi, &1, 05))A0O)),
Jj= 1okco =1
s.t. 05 CQ, @ =n; Ay,
n; € {o,...,z—” —1},i=1,..,N, j=1,.., M.
(18)

C. Algorithm and Theoretical Analysis

In this subsection, we will give a (% — €)-approximation
algorithm and its further analysis. The details of the algorithm

(c) None line bound cross the circle

Fig. 5. Charger inside the DDA

is shown in Algorithm 1, which is essentially a greedy
algorithm. In the following, we will prove the validity of this
algorithm by giving the approximation ratio.

Definition IV.1. [29] Let S be a finite ground set. A real-
valued set function f : 2° — R is normalized, monotonic and
submodular if and only if it satisfies the following conditions,
respectively: (1) f(0) = 0; (2) f(S1U{e}) — f(S1) > 0
forany S; C S and e € S\Sy; (3) f(S1U{e}) — f(S1) >
f(S2U{e}) — f(S2) for any S; C Sz C S and e € S\Sa.

Definition IV.2. [29] Partition matroid: Given S = JI_, S/
is the disjoint union of k sets, li,lo,...,l; are positive
integers, a partition matroid M = (S,Z) is a matroid where
I={XCS:|XnSl| <l forie [k]}.

The direction set I' generated by orientation discretization
can be defined as the disjoint unlon of the N direction sets
of different chargers, ie., I' = U q=11q- Thus, define the
partition matroid M = (I',7) with Z = {X cT: | XnTy| <
1 for ¢ € [N]}. Based on the definitions above, problem P3
can be rewritten as:

(P4)

U Pulsi, @, 05)]A0)),

pieX

XN, <1}, j= 1,...E

max f(X MWTDZ Z
Jj= 1okco
st.0; CQXeL, L={XCTI: M.

19)
Lemma IV.3. The objective function f(X) in problem P4

is a monotone submodular function, and the constraint is a
partition matroid constraint.

Proof: To verify the submodularity of function f(X), we
only need to check whether f(X) satisfies the three conditions
in Definition IV.1. Define

F1(X,5,k) = EU( Y Pulsi, @i, 05))]. (20)
PiEX
Thus, we have
MW Z > AX G RAO. @D
° j= 1okco,

Note that the area discretization is different for different
charger set X, i.e., Ofs are different. To unify the subareas,
we discretize the subareas more finely to ensure the different
charger sets in the same condition give common subareas.
Further, we define the probability density function for
random variable ° v Py (si, pi, OF) as gx(z). Since



charging power provided by different chargers is inde-
pendent, the random variables » . o Pw(si,géi,O;“) and
Y siess P, (si, i, 0}) are independent if S; NSy = 0.
That is, the joint probability density function gs,us,(z,Yy)
of the random variable 3 ESlUSQ Py(si, ¢i,0%) =
Z@esl Pw(si,()bz, ) +Z<p €So
gs: (x)g52 (y)

It is obvious that f(X) satisfies the first and the second
conditions with f(§)) = 0 and monotonically increasing
property. For the third condition, we give a lemma first.

Py (si; Pi, O’-“) is equal to

Lemma IV.4. The monotonically increasing concave function
U(x) has the property that
Fu(z,y,z) = Uz +2)-U(z)) -

Uz +y+2)-U(z+y)) >0,

(22)
where x,y,z > 0.

By referring to the result in Lemma IV.4, we define

Af1(5175'2, {6}7j, k)
= (fl(sl U{e}1j7 k) _fl(S17j7k))
- (fl(SQ U {6},j, k:) - f1(527j7 k))

—(JE[U( > ﬁ(si,@,of))]E[u<§jz’°:<si,@,0?>>])

P €51U{e} Pi€S1

#;€51U(S2\S1)U{e}

—Efu(

>

$i€S1U(S2\S1)

+oo o+
- ([ _ U(z+y)ds, (2)Ggey (y)dzdy —

ﬁ(si,@,oﬁ))})

“+ oo

U(z)gs, (x)dm)
400 ptoo p+oo -
- (/ / U(z+y+2)Gs: (2)Fs\s1 (1) e} (2)dedydz
74’00 +oo -
N /_ - U(z+y)gs, (2)Fs;\s (y)dmdy)

+oo p+oo p4oo
= / / Fu(m7y7 Z)gsl (m)gSQ\Sl (y)g{e}(z)dxdydzzo
0

(23)
Thus,
(f(S1u{e}) — f(S1)) — (f(S2U{e}) — f(S2))
- iz Z ST AA(S, Sa e g kA = 0. @Y
} S ofc,
That is,
F(510{e})—f(51) = f(SaU{e})—f(S52), S1 €52 €S, e € S\Ss.

(25)

To sum up, f(X) in Equation (19) is a monotone submod-
ular function and clearly the constraint is a partition matroid
constraint. ]

€

Theorem IV.1. Settlng AQD = WMG and €1 =

1—¢’
where
1 o
iaD y D S To,
1 >+ D —di
EaD2 — d1Dsin % + arccos(%)ri,
2
A= D>roandsin%<% 1*%,

D sin

[e]

2.2 .« . e

2Vrs — Dsin —4 /72 — D2sin? — |,
To 2 2

r2

Ac—2 (arccos(

D>roand% 2D2<s1n§<5
A., otherwise,
(26)
dy = Dcos § — /72 — D2 sin? S and A, = DQarccos(l -
2
523 ) + 12 arccos(43) — roD sm(arccos(l — 3537)), the algo-

rithm achteves an approximation ratio of + 5 — 6 and the time

complexity is O(M?*N*e=3).

Proof: Let I'f, I'5, and I'; denote the optimal solutions
to the problem P1, P2 and P3 (or P4), respectively, and I's
denote the obtained solution to problem P4. First, according to
Lemma IV.1, the fact that the greedy algorithm of maximizing
a monotone submodular function subject to a partition matroid
constraint achieves a %-approximation ratio [29], and Lemma
IV.2, we have:

MW%Z STOEU( D Po(si, i, 0

Jj= 1okco pi €l

M
1 1 //
> . E[Z/{( Pw(Si,SOi’ (m,y)))]dxd:%
1+ea Mmr2 ng (z,9)€0; Z

@i €Y

07))A(05)

27

MWTQZ Z Eu( Z P 31,90270 ))]A (Ok)

j=1okco; p;€l'3
1
25 rzZ S BUCY Pulsi @i, O)IAO)),
? i=lokco;, B;€r}
(28)
and

MWZ ST EUCY Pulsi, e 05))A©O))

o j= 1okco; ;€T

ngz > EU( Y Pulsii,0)))A(0))
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Fig. 6. Different cases of A, and critical conditions: (a) D < r,, (b)
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First, if the orientations in I'j are far from those in I';, there
is certainly a solution I';" which is no better than T’} and
the orientations in which are nearest to those in I';. Since
U(.) finally reaches 1, E[M(Zwerg Py (84, 01, Of))] < L
According to Lemma IV.2, we know that the maximum sum
of changing area of all the subareas covered by one charger is
2r,(D 4 1,)Ap in one DDA. Thus, the maximum changing
area in total for all N chargers is 2N7,(D + r,) Ay, ie.,
> (AO)) — AO)) < 2NTo(D +10)Ap  (30)

k k/ .
05,07 C0;

in every DDA. So, the result in Equation (29) stands.

We consider a real scenario that there are enough chargers
to give the common charging area full charging utility, and
the charger should be placed at the position where at least
one center of a DDA is within distance D. The worst case
is that all the chargers are placed at one point and with the
same orientation, thus, makes the covering area harvest full
charging utility. In this case, the average charging utility is
Af 7, where A, is the covering area as shown in Figure 6(a)-
(d) of Cases 1-4, and it is calculated by Equation (26). The
critical conditions to differentiate Case 2, Case 3, and Case 4
are shown in Figure 6(e). In Case 3, there are two intersections
on each line bound of the charging sector and the minimum &
D24D2_y2 2

2><D><Do =1-

is 1 as shown in 6(¢e), where cos 81 = 2D

] — 2 — To o
§o sm.ﬂl—\/l—cos 61.—5.\/1 2D2 The max1mum§
is obviously 2 as shown in Figure 6(e) where sin 5 = 50,

that two line bounds of the charging sector are tangent to
the DDA. Thus, in Case 3, sin8; < sin § < sin 32, that is,

50\/1_2D2 <sing <3
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From Equation (27), (28) and (32), we have
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Thus, we can bound the gap between the solutions to problem
P4 and P1 as

(33)
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(34)
Let €; = = and Ap = We, then the approxima-
tion ratio of the algorithm is % — €.
We omit the time complexity analysis to save space. [ ]

V. SIMULATION RESULTS
A. Evaluation Setup

In the simulations, we deploy both devices and chargers
randomly in a 15m X 15m square area such that the devices
can only move in this area, i.e., the moving centers of DDAs
are randomly deployed in the center square with side length
(15—2r,) m, and there must be at least one DDA center within
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distance D with respect to a charger. The default settings of
the parameters are: D = 6m, r, = 2m, M =8, N = 10,
a1 =100, by =5, ag =4, be =3, e =0.1, and P, = 1.5W.

As there is no existing algorithm can address our problem,
we propose three algorithms for comparison. Randomized
Orientations (RO) generates the orientations of the chargers
randomly. No Moving or Jittering (NMJ) generates the ori-
entations of the chargers by DCS extraction for point case
algorithm as proposed in [3] with the assumption that r, = 0,
i.e., the devices are fixed at their DDA centers, and there is
no power jittering. Nearest Facing Device (NFD) selects the
charger’s nearest DDA center and makes the charger face it.

All results in the figures are the average utility expectations
of 100 random deployments. We use Utility Expectation or
E[U{] in the figures to denote the expectation of charging
utility.

B. Performance Comparison

1) Impact of Number of Chargers N: Our simulation
results show that on average RULE outperforms NFD, NMJ,
and RO by 12.53%, 19.77%, and 68.91%, respectively, in
terms of N. As shown in Figure 7, we test the expected
charging utility with N from 6 to 13. All of these four
algorithms achieve higher charging utility expectation with
larger number of chargers. The increasing trend slows down
when N becomes larger, since the expected charging utility is
approximating the maximum expected charging utility of the
specific topology gradually.

2) Impact of Number of Devices M : Our simulation results
show that on average RULE outperforms NFD, NMJ, and RO
by 12.85%, 16.42%, and 59.32%, respectively, in terms of M.
We evaluate the expectation of charging utility when M varies
from 8 to 15. The charging utility expectation of RULE, NFD,
and NMJ decreases slowly with M becomes larger, while the
results of RO fluctuate, as shown in Figure 8. Since the region
is relatively small, the overall area of DDAs for chargers to
cover will not become much larger as M increases and there
will be more overlapped area of DDAs. The charging utility
expectation of NFD decreases faster and finally reaches that
of NMJ, while that of RO remains low.

3) Impact of Charging Angle «: Our simulation results
show that on average RULE outperforms NFD, NMJ, and RO
by 19.56%, 24.10%, and 103.25%, respectively, in terms of
o. Charging angle « varies from 34° to 90° and the charging
utility expectation of all the four algorithms increases fast
when « increases as shown in Figure 9. Still, the increasing
trend becomes slow when o becomes larger.

1 1
éo.sW éo%
T S A
Bo6r S o6 e =
Do —k-RULE W 0.4 | 3~ RULE
Z NFD 2 |-A-NFD
502 NMJ 502 NMJ
. RO RO
34 42 50 58 66 74 82 90 15 2 25 3 35 4 45 5
Charging Angle « () DDA Radius r (m)
Fig. 9. a vs. E[U] Fig. 10. 7, vs. E[U/]
TABLE II
POSITIONS AND ORIENTATIONS OF CHARGERS
Index Position RULE NFD NMJ
1 (51.31,20.09) 51.6° 48.5° 78.5°
2 (140.29, 22.94) 80.2° 101.1° 76.1°
3 (182.53,62.25) 40.1° 145.0° | 121.7°
4 (50.13,287.46) 326.6° | 327.5° | 357.5°
5 (148.82,290.67) 51.6° 266.8° | 296.8°
6 (273.39,292.30) 80.2° 245.4° 76.1°

4) Impact of DDA Radius r,: Our simulation results show
that on average RULE outperforms NFD, NMJ, and RO by
15.98%, 20.88%, and 54.36%, respectively, in terms of r,.
As shown in Figure 10, r, increases from 1.5 to 5 and the
charging utility expectation decreases when r, increases and
RULE, NFD, and NMJ decrease faster than RO.

VI. FIELD EXPERIMENTS

A. Testbed

As shown in Figure 11, our testbed consists of six
TX91501 power transmitters produced by Powercast [26],
[30]-[34], six rechargeable sensor nodes, and an AP con-
necting to a laptop to report the collected data. All the
chargers and the devices are deployed in a 300cm X
300 cm square area, and the positions of the DDA cen-
ters are (124.61,102.84), (235.97,122.47), (179.47,167.46),
(239.54,218.44), (198.95,221.39), and (145.26, 226.89), and
the positions of chargers are shown in Table II. The DDA
radius r, is 50 cm and P;;, = 30 mW. To evaluate the charging
utility expectation of a device in its DDA, we measured 17
points in each DDA, every 25cm one point from the DDA
center then add four points on the circle bound. We waited for
at least 20s at each point to collect enough data to calculate
the expectation of charging utility.

B. Experimental Results

The scheduling strategies for RULE, NFD, and NMJ are
shown in Table II and the visual ones are shown in Fig-
ure 12-14. From Figure 15, we can see that our algorithm
RULE allows the charging utility expectation of each device
roughly equal and relatively large, while that of the other two
algorithms varies much for these devices. The CDF plot of
all the data collection points is shown in Figure 16, and it
shows that the line of RULE approaches 1 at the lowest speed,
which indicates that the expectation charging utility of RULE
is generally more than the other two.
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VII. CONCLUSION

In this paper, we deal with the robust scheduling for
wireless charger networks problem. The key novelty of this
paper is on proposing the first scheme for robust wireless
charger scheduling considering power jittering and device
drifting. We establish the probabilistic model for charging
power, apply area and orientation discretization, and conduct
both simulation and field experiments. The key technical
depth is to reformulate the objective function to a submod-
ular function and bound the overall performance gap. Our
experimental results show that our proposed method achieves
good performance and can outperform comparison algorithms
by 103.25% on average.
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