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ABSTRACT

This paper studies the problem of Radiation cOnstrained
scheduling of wireless Charging tasKs (ROCK), that is, given
wireless charging tasks with required charging energy and
charging deadline for rechargeable devices, scheduling the
power of wireless chargers to maximize the overall effective
charging energy for all rechargeable devices, and further to
minimize the total charging time, while guaranteeing elec-
tromagnetic radiation (EMR) safety, i.e., no point on the
considered 2D area has EMR intensity exceeding a given
threshold. To address ROCK, we first present a centralized
algorithm. We transform ROCK from nonlinear problem to
linear problem by applying two approaches of area discretiza-
tion and solution regularization, and then propose a linear
programming based greedy test algorithm to solve it. We
also propose a distributed algorithm by presenting an area
partition scheme and two approaches called area-scaling and
EMR-scaling, and prove that it achieves effective charging
energy no less than (1 − ε) of that of the optimal solution,
and charging time no more than that of the optimal solution.
We conduct both simulation and field experiments to validate
our theoretical findings. The results show that our algorithm
achieves 94.9% of the optimal effective charging energy and
requires 47.1% smaller charging time compared with the opti-
mal one when ε ≥ 0.2, and outperforms the other algorithms
by at least 350.1% in terms of charging time with even more
effective charging energy.

CCS CONCEPTS

�Networks → Network control algorithms; �Theory
of computation → Scheduling algorithms;
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1 INTRODUCTION
1.1 Motivation and Problem Statement
Recently, Wireless Power Transfer (WPT) technology is un-
dergoing rapid development due to its advantages such as
no contact, no wiring, reliable power supply, and ease of
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maintenance. So far, there are 215 companies, including IT
leaders Qualcomm, Samsung, Philips, LG, and Huawei, have
joined Wireless Power Consortium, an organization dedicated
to promote standardization of WPT, and they have up to 848
registered WPT products [1]. By a recent report, wireless
power transmission market is estimated to surge to 17.04
billions to 2020 [2].

In this paper, we study the problem of Radiation
cOnstrained scheduling of wireless Charging tasKs (ROCK)
with the optimization goal of maximizing the effective charg-
ing energy and further minimizing the charging time under
the EMR safety constraint. A wireless charging task initi-
ated by a rechargeable device consists of a required amount
of charging energy (called required charging energy) and a
time deadline for harvesting charging power (called charging
deadline) for the device. As extra charging energy beyond
the required charging energy for a device is useless, we de-
fine effective charging energy as the minimum value of the
total charged energy before the charging deadline and the
required charging energy. Suppose the emitting power of
wireless chargers can be continuously adjusted from zero to
a maximum value, and we can schedule the power of wireless
chargers to handle the wireless charging tasks proposed by
their covered rechargeable devices. We want to maximize
the (overall) effective charging energy for all the devices, and
further taking achieving maximum effective charging ener-
gy as a condition, we want to minimize the total charging
time. Besides, as WPT technology commonly incurs high
electromagnetic radiation (EMR), which causes risks of men-
tal diseases, tissue impairment, brain tumor, miscarriage,
and detrimental effect for children that can be even ten times
greater than adults [3], we should guarantee EMR safety for
our scheduling scheme. This indeed serves as the constraint
for our optimization. To sum up, we state our problem ROCK
as follows. Given a set of wireless chargers and rechargeable
devices distributed in a 2D area and wireless charging tasks
for the devices, schedule the power for all the chargers to
maximize the effective charging energy and further to mini-
mize the charging time while guaranteeing EMR safety, i.e.,
no point on the area has EMR intensity exceeding a given
threshold during the whole charging process.

1.2 Limitations of Prior Art
On one hand, there exist some works that study wireless
charging but all of them overlook the EMR safety. Some
of them [4–6] study charging efficiency issues in wireless
charger networks where all chargers are static, but do not
consider charging task scheduling. Others focus on mobile
charging problems where one single or multiple chargers
wander in a field to charge rechargeable devices deployed
there to guarantee their normal working. However, their
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optimization performed for mobile chargers is typically from
the perspectives such as path planning and charging time
assignment for devices, which are fundamentally different
from ours. On the other hand, other works [3, 7–10] consider
the EMR safety in wireless charger networks, but none of
them consider charging task scheduling.

1.3 Key Technical Challenges
The first challenge is that ROCK is nonlinear. The EMR
safety requirement is imposed on every point on the plane
which indicates an infinite number of constraints; the effective
charging energy evaluation function is nonlinear; the chargers’
adjusting factors can continuously and arbitrarily change
over time which typically requires solving Hamilton–Jacobi–
Bellman partial differential equations [11].

The second challenge is that even if we approximately con-
vert the problem of maximizing the effective charging energy
to a simple linear program, ROCK falls into the realm of clas-
sical Quadratically Constrained Linear Programming with
non-positive semidefinite constraint matrix, which invalidates
traditional convex optimization approaches.

The third challenge is to design a distributed algorithm
scalable with network size for ROCK. As neighboring chargers
may cover the same devices and their EMR coverage area
may overlap, their charging energy and incurred EMR couple
with others, which inherently requires global optimization
for the network as a whole and therefore inhibits designing
distributed scalable algorithms.

The fourth challenge is to simultaneously bound the effec-
tive charging energy and charging time for the distributed
algorithm. First, the relationship between maximum effective
charging energy and minimum charging time is complicated,
e.g., the minimum charging time may be prolonged or short-
ened when the maximum effective charging energy is increased
if the constraints for ROCK are relaxed. Second, when we
convert ROCK from nonlinear problem to linear problem
and when we decompose ROCK to make it distributed, both
the optimization goal and constraints for ROCK inevitably
change, so do the maximum effective charging energy and
the minimum charging time, which is quite complicated.

1.4 Proposed Approaches
We propose a centralized algorithm and a distributed algo-
rithm for ROCK. For the centralized version, we first drop
the optimization goal of charging time and study the relaxed
version of ROCK, i.e., scheduling charging tasks to maximize
the effective charging energy. We apply an area discretization
technique to approximate the continuous and nonlinear EM-
R safety constraint as a finite number of linear constraints.
Then, we propose an approach called solution regularization
to map any arbitrary solution to a piecewise constant solu-
tion without performance loss, which dramatically reduces
the solution space. Finally, we transform the problem to a
linear programming problem that can be easily addressed.
We thereby address the first challenge. Further, to deal with
ROCK, we leverage the monotonicity of the effective charg-
ing energy with respect to the charging time, and propose
a linear programming based greedy test algorithm, which not

only yields the optimal result but also has fast convergence
speed. We thus address the second challenge.

For the distributed version, we first propose an area parti-
tion scheme to partition the whole area into many subareas,
and switch off the chargers lying on the boundaries of the
subareas to eliminate the impact of charging power and EMR
from the surrounding subareas. Then, we can safely consider
each subarea independently. Further, to bound the perfor-
mance loss of effective charging energy, we enumerate a fixed
number of partition schemes rather than apply one specific
area partition scheme. We then forge a solution for each
charger by reasonably synthesizing the obtained solutions
for the partition schemes so that the resulted global solution
must be also feasible and, more importantly, each charger
only needs information from other chargers within a constant
distance. Therefore, we address the third challenge. Further,
to bound the overall effective charging energy and charging
time, we first propose an approach called area-scaling to find
a suitable target effective charging energy, rather than the
maximum effective charging energy, to decouple the complex
relationship between the achieved effective charging energy
and charging time to some extent. Then, we propose an
approach called EMR-scaling to artificially adjust the EMR
constraints and the solution. By constructing a series of
transient problems with suitable optimization targets and
constraints and guaranteeing that the performance gap for
the solutions to any pair of adjacent problems in the series
can be evaluated and bounded, we prove that the ultimate
solution is feasible, and achieves overall effective charging
energy no less than (1 − ε) of that of the optimal solution
and charging time no more than that of the optimal solution.
Then, we address the fourth challenge.

1.5 Evaluation Results
The simulation results show that our proposed distributed
algorithm to ROCK achieves at least 94.9% of the optimal
effective charging energy and 47.1% smaller charging time
compared with the optimal when ε ≥ 0.2, outperforms the
other algorithms by at least 2.0% in terms of effective charging
energy and 350.1% in terms of charging time, and its network
delay approaches a constant as network size scales up. The
field experimental results show that our algorithm requires
only 27.2% ∼ 85.5% of the charging time for compared
algorithms given the same target effective charging energy.

1.6 Overview
The remainder of the paper is organized as follows. Section 2
briefly reviews the related work, and Section 3 formally states
the ROCK problem. Before addressing ROCK in Section 5,
Section 4 considers a relaxed version of ROCK, i.e., charging
task scheduling with maximum charging energy. Next, Sec-
tion 6 proposes a distributed algorithm for ROCK. Section
7 and Section 8 present simulation results and experimental
results, respectively, and Section 9 concludes the paper.

2 RELATED WORK
First, there exist some works that study wireless charging
but overlook the EMR safety. On one hand, some of them
[4–6] focus on charging efficiency issues in wireless charger
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networks where all chargers are static, with no regard for
charging task scheduling. For example, we presented the
directional charging problem where both the charging area
for chargers and receiving area for devices can be modeled
as sectors, and studied ominidirectional charging using direc-
tional chargers in [5]. On the other hand, others concentrate
on mobile charging scenarios where one single or multiple
chargers wander in a field of interest to charge rechargeable
devices deployed there to ensure their normal working; nev-
ertheless, their optimization performed for mobile chargers
is typically from the perspectives such as path planning and
charging time assignment for devices, which are fundamental-
ly different from that in this paper. Particularly, [12–18] are
concerned with charging efficiency of chargers. [19–21] target
on optimizing the service delay of mobile chargers. [22–29]
focus on network performance issues such as data collection,
data routing, event monitoring, and task assignment.

Second, some other works [3, 7–10] consider the EMR
safety in wireless charger networks by guaranteeing that the
EMR intensity at any point in the considered area should
not exceed a predefined EMR threshold, but none of them
consider charging task scheduling. For example, we presented
the safe charging problem that considers EMR safety dur-
ing charging, and studied how to schedule non-adjustable
chargers [3] and adjustable chargers [7] to maximize overall
charging utility.

3 PROBLEM STATEMENT
Suppose we have n static wireless chargers S =
{s1, s2, . . . , sn} together with m static rechargeable devices
O = {o1, o2, . . . , om} located on a 2D plane Ω. All wireless
chargers are identical and equipped with omnidirectional
antennas to charge devices via wireless.

We adopt the charging model with adjustable power pro-
posed in [7]. Suppose the distance between a charger and
a device is d, and chargers can continuously adjust their
emitting power from zero to a maximum value, i.e.

P (d) =

⎧⎨⎩
α

(d+β)2
, d ≤ D

0, d > D
(1)

where α and β are known constants determined by hardware
parameters of chargers and devices and surrounding envi-
ronment, and D is the farthest distance the charging power
can reach. We define adjusting factor x as the ratio of the
adjusted power to the maximum power (0 ≤ x ≤ 1), the
received power by the device from the charger is then P (d)x.
Moreover, we assume the wireless power received by a device
from multiple chargers is additive [3, 4, 7]. Let d(si, p) denote
the distance between si and a point p on the plane Ω and xi

denote the adjusting factor of charger si, then the charging
power there can be expressed as

∑
si∈S P (d(si, p))xi. Table

1 lists the notations and symbols used in this paper.
We adopt the widely accepted EMR model proposed in

[3, 7]. The EMR value e(p) at a position p is proportional to
the charging power there, and it is also additive, i.e.

e(p) =
∑
si∈S

e(d(si, p)) = C1

∑
si∈S

P (d(si, p))xi. (2)

where C1 is a predetermined constant.

Table 1: Notations and symbols used in this paper

Symbol Description

si i-th wireless charger

oj j-th rechargeable device

n Number of wireless chargers

m Number of rechargeable devices

α, β Constants in the charging model

D Farthest charging distance for chargers

Ej Required charging energy of device oj
Tj Charging deadline of device oj
Rt EMR threshold

xi,k Adjusting factor of the i-th charger at the k-th sched-

uling round

ẽiz Approximated EMR in subarea Az from charger si

Suppose device oj has a required charging energy of Ej ,
and a charging deadline of Tj . Without loss of generality, we
assume that Tj (j = 1, . . . ,m) is sorted in ascending order.
It desires that upon the charging deadline, it could receive an
amount of charging energy no less than Ej ; if it is impossible,
then the larger the better. We define effective charging energy
to capture the usefulness of the received energy of device oj ,
which can be formally expressed as min{E′

j , Ej} where E′
j is

the amount of actual received energy of oj till time point Tj

which can be greater or less than Ej . Note that device oj may
be still be charged after its deadline Tj , but such additional
amount of energy is useless for oj . Whenever a device oj
needs to be charged, it sends a charging request including
the required charging energy as well as the charging deadline
to its surrounding chargers covering it. The charging task
information in the request is then used by the centralized
algorithm or the distributed algorithm for ROCK.

Formally, we state our problem as follows. Given a set
of wireless chargers S and rechargeable devices O, and each
device oj has a wireless charging task with required charging
energy of Ej and charging deadline of Tj , scheduling the power
of all chargers so that the overall effective charging energy is
maximized and further the charging time is minimized, and
no point on the 2D plane Ω has EMR intensity exceeding a
given threshold Rt during the charging process.

4 CHARGING TASK SCHEDULING
WITH MAXIMUM EFFECTIVE
CHARGING ENERGY

In this section, we consider a relaxed version of ROCK
(ROCK-R for short), i.e., charging task scheduling with maxi-
mum charging energy, to pave the way to address ROCK. We
first formulate ROCK-R, and then apply an area discretiza-
tion technique to approximate the continuous and nonlinear
EMR safety constraint as a set of linear constraints. Next, we
propose a regularization method to confine the solution space.
Last, we equivalently transform the formulated problem to a
linear program that can be easily addressed.

4.1 Problem Formulation for ROCK-R
As any charger can adjust its power continuously over time
and independently of each other, we denote by xi(t) the
function of adjusting factor xi with time t (t ∈ [0, Tm] is
the time duration of the whole scheduling algorithm) for
charger si. To satisfy the EMR safety constraint, we require
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Figure 2: Area dis-
cretization

that the EMR intensity at any point p on the plane Ω, i.e.∑n
i=1 C1[P (d(si, p))xi(t)], should not exceed a given EMR

threshold Rt at any time point t (t ∈ [0, Tm]), which indi-
cates C1

∑n
i=1[P (d(si, p))xi(t)] ≤ Rt. Then, the effective

charging energy is min{∫ Tj

0

∑n
i=1[P (d(si, oj))xi(t)]dt, Ej}.

Our goal is to maximize the overall effective charg-
ing energy for all devices, which can be written as

max
∑m

j=1 min{∫ Tj

0

∑n
i=1[P (d(si, oj))xi(t)]dt, Ej}. Then,

we can formulate the ROCK-R problem as follows.

(P1) max
xi(t)

∑m

j=1
min{

∫ Tj

0

∑n

i=1
[P (d(si, oj))xi(t)]dt, Ej}

s.t. C1

∑n

i=1
[P (d(si, p))xi(t)] ≤ Rt, (∀p ∈ Ω; t ∈ [0, Tm])

0 ≤ xi(t) ≤ 1. (i = 1, . . . , n) (3)

Note that we need to compute xi(t) (i = 1, . . . , n) in the
optimization problem P1.
4.2 Area Discretization
First, we use a piecewise constant function to approximate
the EMR function e(d) as shown in Figure 1. Suppose
the endpoints of the piecewise constant line segments are
�(1), ..., �(Q) (�(0) = 0, �(Q) = D) in order. Accordingly, we
draw concentric circles for a charger with radius �(1), ..., �(Q),
respectively. The whole plane is then partitioned into multi-
ple subareas which are shaped by these concentric circles. As
the approximated EMR from each charger is constant within
the same subarea, the aggregated approximated EMR, which
is the sum of all approximated EMR from all chargers, is
also constant within the same subarea. Figure 2 shows an
instance where the endpoints for piecewise constant segments
are �(1) and �(2), and therefore 2 concentric circles are drawn
for 3 chargers, which results in 12 subareas. We have the
following theorem to describe the EMR approximation error.

Theorem 4.1. [7] Setting �(0) = 0, �(Q) = D, and �(q) =

β((1 + ε)q/2 − 1), (q = 1, ..., Q− 1), and using the following
piecewise constant function ẽ(d)

ẽ(d) =

⎧⎪⎪⎨⎪⎪⎩
e(�(0)), d = �(0)

e(�(q − 1)), �(q − 1) < d ≤ �(q) (q = 1, ...Q)

0, d > D.

(4)

where ε is a given error threshold, the EMR approximation
error for any position p in a certain subarea satisfies

1 ≤ ẽ(p)

e(p)
≤ 1 + ε. (5)

After all, the problem (P1) can be rewritten as:

(P2) max
xi(t)

∑m

j=1
min{

∫ Tj

0

∑n

i=1
Pijxi(t)dt, Ej}

s.t.
∑n

i=1
ẽizxi(t) ≤ Rt, (z = 1, . . . , Z; t ∈ [0, Tm])

0 ≤ xi(t) ≤ 1. (i = 1, . . . , n) (6)

where Pij is the abbreviated form of P (d(si, oj)), ẽiz is the
approximated EMR in subarea Az from charger si, and Z is
the number of all subareas. Our goal is to determine xi(t)
(i = 1, . . . , n) for all chargers.

4.3 Solution Regularization
One key technical challenge of P2 is due to the arbitrariness
of chargers’ adjusting factors, which can continuously change
over time. Generally, we need to solve Hamilton–Jacobi–
Bellman partial differential equations [11] when dealing with
continuous time control problems, which is typically very
challenging. To address this challenge, we present an ap-
proach called solution regularization. We first give its formal
definition.

Definition 4.1. (Solution Regularization) For any fea-
sible solution xi(t) (i = 1, . . . , n) to problem P2, its regu-

larized form is defined as xi,k =

∫ Tk
Tk−1

xi(t)

Tk−Tk−1
(k = 1, . . . ,m)

during the time period [Tk−1 Tk) for k = 1, . . . ,m − 1 and
[Tm−1 Tm] where T0 = 0.

Lemma 4.2. For any feasible solution for ROCK-R, its
regularized form is still feasible and achieves the same effective
charging energy.

Proof. We refer readers to [30] for more details. �
As any feasible solution is equivalent to its regularized

form by Lemma 4.2, we only need to consider solutions in
regularized forms. Then, ROCK-R can be rewritten as

(P3) max
xi,k

∑m

j=1
min{

∑n

i=1
Pij

j∑
k=1

xi,k(Tk − Tk−1), Ej}

s.t.
∑n

i=1
ẽizxi,k ≤ Rt, (z = 1, . . . , Z; k = 1, . . . ,m)

0 ≤ xi,k ≤ 1. (i = 1, . . . , n; k = 1, . . . ,m) (7)

where Pij is the abbreviated form of P (d(si, oj)), and ẽiz
is the approximated power in subarea Az from charger si.
Note that xi,ks (i = 1, . . . , n; k = 1, . . . ,m) are the decision
variables.

4.4 Problem Transformation
Problem P3 cannot be straightforwardly addressed, there-
fore we transform it to a linear programming problem. We
introduce assistant variables yj , and rewrite P3 as follows:

(P4) max
xi,k,yj

∑m

j=1
yj

s.t.
∑n

i=1
ẽizxi,k ≤ Rt, (z = 1, . . . , Z; k = 1, . . . ,m)

yj ≤
∑n

i=1
Pij

j∑
k=1

(Tk − Tk−1)xi,k,

yj ≤ Ej , (j = 1, . . . ,m)

0 ≤ xi,k ≤ 1. (i = 1, . . . , n; k = 1, . . . ,m). (8)

Note that xi,ks (i = 1, . . . , n; k = 1, . . . ,m) and yj (j =
1, . . . ,m) are the decision variables.

Lemma 4.3. The optimal solution of xi,k for problem P4
is also optimal to problem P3, and they achieve the same
optimal objective value.
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Proof. We refer readers to [30] for more details. �
Apparently, problem P4 is a linear program, thus we

use LINGO to address problem P4. The following theorem
indicates the performance of our algorithm to ROCK-R.

Theorem 4.4. Our algorithm to ROCK-R achieves 1
1+ε

approximation ratio for any ε > 0, and its time complexity
is O(m4.5n6.5ε−2) where m and n are the numbers of the
rechargeable devices and the wireless chargers, respectively.

Proof. We refer readers to [30] for more details. �

5 CENTRALIZED ALGORITHM FOR
ROCK

Suppose the achieved optimal overall effective charging energy
for problem P4 is Emax. ROCK requires that the overall
effective charging energy

∑m
j=1 yj must achieve Emax, and

meanwhile the charging time t is minimized. In addition, as
the charging time t becomes a variable, it can be of any size
and fall between two adjacent deadlines, say Tm′−1 and Tm′ .
Then, we have Tm′−1 < t ≤ Tm′ . For device oj , if t is greater
than its deadline Tj , then its overall charging energy until

Tj is
∑n

i=1 Pij

∑j
k=1(Tk − Tk−1)xi,k; otherwise, oj will be

charged until time t, and its overall charging energy becomes∑n
i=1 Pij [

∑m′−1
k=1 (Tk − Tk−1)xi,k + (t− Tm′−1)x

m′
i ].

Therefore, ROCK can be formulated as follows.

(P5) min t

s.t. Tm′−1 < t ≤ Tm′ ,∑n

i=1
ẽizxi,k ≤ Rt, (z = 1, . . . , Z; k = 1, . . . ,m′)

yj ≤
∑n

i=1
Pij [

m′−1∑
k=1

(Tk − Tk−1)xi,k + (t− Tm′−1)x
m′
i ],

yj ≤
∑n

i=1
Pij

j∑
k=1

(Tk − Tk−1)xi,k,

yj ≤ Ej , (j = 1, . . . ,m),∑m

j=1
yj = Emax,

0 ≤ xi,k ≤ 1. (i = 1, . . . , n; k = 1, . . . ,m). (9)

Unfortunately, the third constraint is quadratic as it con-

tains quadratic terms txm′
i , and thus ROCK falls in the realm

of Quadratically Constrained Linear Programming (QCLP),
which is generally NP-hard [31]. Further, the constraint ma-
trix for ROCK is not positive semidefinite, and therefore no
traditional convex optimization techniques can be employed
for an optimal solution [32]. One way is to use semidefi-
nite relaxation to obtain a non-optimal solution with loose
performance bound [33], and another is to use solvers to
numerically solve this problem, e.g., we have tested several
nonlinear solvers such as Gurobi, Cplex, Nlopt, and Snopt,
Knitro, Conopt, Stoaminlp, Minlpsolve, Strustr included in
Tomlab, and found that even the best one, Conopt [34], in
terms of failure rate, accuracy, and time efficiency, have fail-
ure rate of at least 66.7% and running time being hundreds
of times that of ours.

We propose a linear programming based greedy test al-
gorithm (LP-GTA) as shown in Algorithm 1 to optimally
address ROCK. The key idea of LP-GTA is to exploit the

Algorithm 1: Linear Programming based Greedy Test
Algorithm

Input: Required charging energy Ej , charging deadline Tj , EMR
threshold Rt, approximated power ẽiz in subarea Az

from charger si, terminating threshold εT , and optimal
effective charging energy Emax

Output: Adjusting factor xi,k and charging time t
1 tl = 0, tr = Tm;

2 while 2(tr − tl)/(tr + tl) > εT do
3 Set t′ = �(tl + tr)/2� for problem P4;

4 for All deadlines Tjs for devices in problem P4 do
5 if Tj > t′ then
6 Tj = t′;

7 Solve P4 to get an optimal solution E′
max;

8 if E′
max = Emax then

9 tr = t′;
10 else
11 tl = t′;

12 Set t = (tr + tl)/2 and reset all deadlines Tjs that are greater
than t as t; solve P4 and output the obtained adjusting factor
xi,k and charging time t.

monotonicity of the effective charging energy with respect
to the charging time t. It sets the whole charging time as t,
which means it adjusts the deadlines of devices in problem P4
so that all deadlines of devices are no more than t, and then,
by trying different value of t using a binary search method
and solving the linear program P4, finds the minimum t
while the effective charging energy is maximized.

6 DISTRIBUTED ALGORITHM FOR
ROCK

In this section, we develop a fully distributed algorithm for
ROCK. We first give the key intuitions of the algorithm, and
then describe details and analyse its performance.

6.1 Key Intuitions
First, to degrade global computation to local ones, we propose
an area partition scheme to partition the whole area into many
subareas, and switch off the chargers lying on the boundaries
of the subareas to eliminate the impact of charging power and
EMR from the surrounding subareas. Thus, we can safely
consider each subarea independently in a distributed manner.
Further, to help bound the performance of effective charging
energy, we enumerate a fixed number of partition schemes
rather than apply one specific area partition scheme. As each
charger is located in different subareas for different partition
schemes which lead to different solutions, we forge a solution
for each charger by reasonably synthesizing the obtained
solutions so that the resulted global solution must be also
feasible. This framework for distributed computing only
needs information from chargers within a constant distance.

Second, we need to bound the overall effective charging
energy and charging time for our distributed algorithm. By
the above area partition scheme, the chargers in a subarea
can charge the devices inside the subarea to a maximum
effective charging energy that is even higher than that of the
optimal solution to P3 because the EMR from chargers out-
side the subarea is eliminated and thus the EMR constraint
is relaxed. However, this may lead to a charging time that
may be longer (as the maximum effective charging energy is
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Figure 3: Area-scaling illustration
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Figure 4: M-Clusters, (M − 1)-Clusters for < 3, 2 > and < 2, 3 >

higher) or shorter (as the EMR constraint is relaxed) than
the optimal solution to P3. Consequently, rather than pur-
suing the maximum effective charging energy, we propose an
approach called area-scaling to find a suitable target effective
charging energy to decouple the complicated relationship be-
tween effective charging energy and charging time. Besides,
we also need to bound the charging time gap between our so-
lution under the setting of P3 with finite approximated EMR
constraints and the optimal solution to the original problem
P1 with infinite continuous EMR constraints, as well as that
between the distributed algorithm and centralized algorithm.
We propose an approach called EMR-scaling to artificially
adjust the EMR constraints as well as the computed solution.
Thereby, we can bound the effective charging energy and
charging time by constructing a series of transient problems
with suitable optimization targets and constraints and guar-
anteeing that the charging time gap for the solutions to any
pair of adjacent problems in the series can be evaluated and
bounded in theoretical analysis.

6.2 Algorithm Description
Algorithm 2 describes the details of the algorithm. First, it
partitions the considered area into 2D × 2D geographical
cells where D is the farthest charging distance for chargers,
and further groups M×M such cells in to larger M -Clusters
(M = � 3

1−
√

1−ε/3
	). Without loss of generality, we assume

that we have an integral number of M -Clusters since oth-
erwise we can introduce phantom cells with no chargers to
achieve this goal. Each charger identifies itself as a member
of a certain cell as well as the corresponding M -Cluster in a
distributed manner with its geographical location informa-
tion (Step 3). Further, chargers in the same cell elect a cell
head using algorithms such as voting to handle information
collection and dissemination, and computation tasks (Step
4). Figure 4(a) shows an instance of the process of Algorithm
2. The whole area is divided into 64 cells which further form
4 M -Clusters. Each black dot denotes a charger, and each
black dot surrounded by a dashed circle denotes a cell head.

Second, the algorithm adopts a so-called turn-off policy
to further partition the area. We define turn-off policy of
M -Clusters as a tuple of < p, q > by adopting which a M -
Cluster turns off all the chargers located at the cells lying in
the p-th row and q-th column of the M -Cluster. By letting
all M -Clusters employ the same turn-off policy, the whole
area would be partitioned into a number of new clusters
having size no more than (M − 1) · 2D × (M − 1) · 2D and

Algorithm 2: Distributed Algorithm for ROCK at
Charger si
Input: Required charging energy Ej , charging deadline of Tj ,

EMR threshold Rt, and error threshold ε
Output: Adjusting factor xi,k

1 Set the error threshold for EMR approximation as ε/3, and
obtain the approximated power ẽiz in each subarea Az from
each charger si;

2 Set M = � 3

1−
√

1−ε/3
�;

3 Classify itself into a cell based on its geographical information;

4 Elect a cell head in its cell;

5 if It is a cell head then
6 Elect cluster heads for all (M − 1)-Clusters for different

turn-off policies that cover it;

7 for All (M − 1)-Clusters for different turn-off policies that

cover it do
8 if It is a cluster head then
9 Receive related information from all cell heads in the

(M − 1)-Cluster;

10 Use linear programming approaches to address the
formed linear programming problem with the
information from the chargers and devices in the
rectangle located at the center of the considered
(M − 1)-Cluster with both length and width being
2D smaller, and obtain the optimal overall effective

charging energy EI
max; � Area-scaling

11 Use the linear programming based greedy test
algorithm presented in Algorithm 1 and set the
input optimal overall effective charging energy as

EI
max and the EMR threshold as 1

1−ε/3
Rt, and

compute a solution; � EMR-scaling

12 Reduce the adjusting factors for all chargers in the

solution to its (1 − ε/3); � EMR-scaling

13 Send the solution to all the cell heads;

14 else
15 Send related parameters to the corresponding cluster

head, and receive the adjusting factors for the
chargers in its cell from the cluster head;

16 Send the related adjusting factor to all chargers in its cell;

17 else
18 Send related parameters to the cell head, and receive M ×M

adjusting factor results from the cell head in its cell;

19 Output the average value of the obtained M × M adjusting
factors.

we call them (M − 1)-Clusters. Cell heads located in the
same (M − 1)-Cluster elect one among them as cluster head
to take charge of the computation task of the chargers in the
(M − 1)-Cluster (Step 6). For different turn-off policies, the
formed (M − 1)-Clusters are also different and the elected
cluster heads can be also different to balance computation
overhead across cell heads. Figure 4(b) shows the obtained
9 (M − 1)-Clusters when all M -Clusters adopt the turn-
off policy < 3, 2 >. Each black dot surrounded by two
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dashed circles denotes an elected cluster head. The thin
and thick dashed arrows respectively indicate the reporting
from chargers to their cell head and from cell heads to their
cluster head. Figure 4(c) shows the case for the turn-off
policy < 2, 3 >.

Third, the algorithm applies the area-scaling approach
in each (M − 1)-Cluster (Step 10). First, the cluster head
in the considered (M − 1)-Cluster computes the maximum
effective charging energy for chargers inside the rectangle
located at the center of the considered (M − 1)-Cluster with
both length and width being 2D smaller than that of the
(M − 1)-Cluster, e.g., the square with width of (i− 2) · 2D
and height of (j − 2) · 2D as shown in green in Figure 3(b)
for the (M − 1)-Cluster with width of i · 2D and height of
j · 2D as shown in Figure 3(a). Then, it uses the obtained
result as the target effective charging energy, and applies
the EMR-scaling approach by relaxing the EMR threshold
to 1

1−ε/3
Rt (Step 11), employing the linear programming

based greedy test algorithm to compute the optimal solution,
and then reducing all the obtained adjusting factors to its
(1− ε/3) (Step 12). After that, it disseminates the solution
to all cell heads in the (M − 1)-Cluster (Step 13). Each
(M − 1)-Cluster can independently compute its solution
because the 2D distance between adjacent (M − 1)-Clusters
guarantees no overlap of charging power or EMR from other
(M − 1)-Clusters.

Fourth, the algorithm repeats the above process for all M×
M different turn-off policies, and accordingly each charger
will obtain M ×M adjusting factors (Step 18). Then, each
charger takes the average value of the M × M adjusting
factors as the output (Step 19).

6.3 Performance Analysis
We have the following theoretical result for Algorithm 2.

Theorem 6.1. The output of Algorithm 2 for ROCK is a
feasible solution. Its achieved effective charging energy is no
less than (1− ε) of that of the optimal solution, and charging
time is no more than that of the optimal solution. Further,
the communication complexity of Algorithm 2 is O(ε−1).

Proof. For convenience, define the solution (vector) for

charger si as xi � (xi,1, . . . , xi,m), and the solution (vec-

tor) for all chargers as π � (x1, . . . ,xn). Suppose the ob-
tained solution for the turn-off policy < p, q > in Algo-
rithm 2 is π<p,q> = (x<p,q>

1 , . . . ,x<p,q>
n ) where x<p,q>

i =
(x<p,q>

i,1 , . . . , x<p,q>
i,m ), and the solution obtained at Step 11

in Algorithm 2 with a “relaxed” EMR threshold 1
1−ε/3

Rt

is π<p,q>
R . Obviously, we have

∑n
i=1 ẽizx

<p,q>R

i,k ≤ 1
1−ε/3

Rt.

As the final solution π<p,q> is equal to (1− ε/3)π<p,q>
R as

per Step 12 in Algorithm 2, we get∑n

i=1
ẽizx

<p,q>
i,k =

∑n

i=1
(1− ε/3)ẽizx

<p,q>R

i,k

≤(1− ε/3)
1

1− ε/3
Rt = Rt, (10)

which indicates π<p,q> is feasible for z ∈ [1, Z] and p, q ∈
[1, M ]. Moreover, the output solution of Algorithm 2 is

π =
∑M

p=1

∑M
q=1 π

<p,q>/M2, we get

∑n

i=1
ẽizxi,k =

∑n

i=1
ẽiz

∑M
p=1

∑M
q=1 x

<p,q>
i,k

M2
≤ Rt, (11)

which means the output solution is feasible for ROCK.
Next, define

E(π) �
∑m

j=1
min{

∑n

i=1
Pij

j∑
k=1

xi,k(Tk − Tk−1), Ej}

as the optimization objective value for solution π. Define
π1 
 π2 if xi,1 
 xi,2 for i = 1, . . . , n, which in turn means
xk
i,1 ≥ xk

i,2 for k = 1, . . . ,m. Apparently we always have
π 
 0. Further, to assist the following analysis, we define the
effective charging energy share to measure the contribution
of a portion of a solution π, say π′ where π 
 π′, as

Ê(π′,π) �
∑m

j=1

{∑n
i=1 Pij

∑j
k=1 x

′
i,k(Tk − Tk−1)∑n

i=1 Pij
∑j

k=1 xi,k(Tk − Tk−1)

×min{
∑n

i=1
Pij

j∑
k=1

xi,k(Tk − Tk−1), Ej}
⎫⎬⎭ . (12)

We name π full solution and π′ partial solution for conve-
nience. It is easy to verify that the above function has the
following properties:

(P1): Ê(π′,π) ≤ E(π′);
(P2): Ê(π,π) = E(π);

(P3): Ê(π1,π) + Ê(π2,π) = Ê(π1 +π2,π) if π 
 π1 +π2;

(P4):
∑n

i=1 Ê(πi,π) = kE(π) + Ê(
∑n

i=1 πi − kπ,π) if
π 
 ∑n

i=1 πi − kπ 
 0 where k is a positive integer.
Suppose the obtained solution combined from all optimal

solutions for inner rectangles of all (M − 1)-Clusters at
Step 10 in Algorithm 2 for the turn-off policy < p, q > is
π<p,q>

I . Recall that the solution obtained at Step 11 in
Algorithm 2 with a “relaxed” EMR threshold 1

1−ε/3
Rt is

π<p,q>
R . Clearly, we have E(π<p,q>

R ) = E(π<p,q>
I ). As the

final solution is π<p,q>, which is equal to (1− ε/3)π<p,q> as
shown at Step 12 in Algorithm 2, and it is easy to see that
E( 1

1+ε/3
π) ≥ 1

1+ε/3
E(π), we get

E(π<p,q>) = E((1− ε/3)π<p,q>
R ) ≥ (1− ε/3)E(π<p,q>

R )

≥ (1− ε/3)E(π<p,q>
I ). (13)

Suppose the optimal solution for problem P3 (or P4) is
π̃∗. Assume there are in total K number of M -Clusters
after the area partition. Define the partial solution π̃∗

ijk as
the solution for which each charger located in the i-th row
and j-th column in the k-th M -Cluster sets its adjusting
factor as that in the optimal solution π̃∗ while the other
chargers are switched off. Moreover, suppose the aggregate
effective charging energy share in the optimal solution π̃∗

for the chargers that are outside all the inner rectangles and
are switched off for the turn-off policy < p, q > π<p,q> is

π̃∗<p,q>−
. As π<p,q>

I is optimal for all inner rectangles of all
(M−1)-Clusters for the turn-off policy < p, q >, it should be
better than or equal to the solution obtained by subtracting

π̃∗<p,q>−
from the optimal solution π̃∗ as the latter is clearly

feasible to the same setting as that of π<p,q>
I . Thus we get

E(π<p,q>
I ) ≥ E(π̃∗ − π̃∗<p,q>−

)
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by (P1)

≥ Ê(π̃∗ − π̃∗<p,q>−
, π̃∗)

by (P3)
= Ê(π̃∗, π̃∗)− Ê(π̃∗<p,q>−

, π̃∗)
by (P2)

= E(π̃∗)− Ê(π̃∗<p,q>−
, π̃∗). (14)

Moreover, it is easy to check that

π̃∗<p,q>−

=
K∑

k=1

(
M∑
j=1

(p+1)modM∑
i=(p−1)modM

π̃∗
ijk +

(q+1)modM∑
j=(q−1)modM

M∑
i=1

π̃∗
ijk

−
(q+1)modM∑

j=(q−1)modM

(p+1)modM∑
i=(p−1)modM

π̃∗
pqk). (15)

Therefore, we get

M∑
p=1

M∑
q=1

π̃∗<p,q>−

=
M∑
p=1

M∑
q=1

K∑
k=1

(
M∑
j=1

(p+1)modM∑
i=(p−1)modM

π̃∗
ijk +

(q+1)modM∑
j=(q−1)modM

M∑
i=1

π̃∗
ijk

−
(q+1)modM∑

j=(q−1)modM

(p+1)modM∑
i=(p−1)modM

π̃∗
pqk)

=3
M∑
q=1

(
K∑

k=1

M∑
j=1

M∑
i=1

π̃∗
ijk) + 3

M∑
p=1

(
K∑

k=1

M∑
j=1

M∑
i=1

π̃∗
ijk)

− 9
M∑
p=1

M∑
q=1

K∑
k=1

π̃∗
pqk

=(6M − 9)π̃∗. (16)

Combining (14) and (16), we get

M∑
p=1

M∑
q=1

E(π<p,q>
I )

≥
M∑
p=1

M∑
q=1

[E(π̃∗)− Ê(π̃∗<p,q>−
, π̃∗)]

=
M∑
p=1

M∑
q=1

E(π̃∗)−
M∑
p=1

M∑
q=1

Ê(π̃∗<p,q>−
, π̃∗)

by (P4)
= M2E(π̃∗)− [(6M − 9)E(π̃∗)− Ê(0, π̃∗)]

=(M − 3)2E(π̃∗). (17)

Besides, it is easy to see that the function
min{∑n

i=1 Pij

∑j
k=1 xi,k(Tk − Tk−1), Ej} is concave in

terms of xi,k (i = 1, . . . , n; k = 1, . . . , j), and therefore

E(π) =
∑m

j=1 min{∑n
i=1 Pij

∑j
k=1 xi,k(Tk − Tk−1), Ej} is

also concave in terms of xi,k (i = 1, . . . , n; j = 1, . . . ,m).
Using Jensen’s inequality for the concave functions [35], for
the output solution of Algorithm 2, i.e. π, we get

E(π)

=E

(∑M
p=1

∑M
q=1 π

<p,q>

M2

)

=E

⎛⎜⎝ (M − 1)2

M2

∑
p,q∈[1,M ]

<p,q> �=<M,M>

π<p,q>

(M − 1)2
+

1

M2
π<M,M>

⎞⎟⎠

≥ (M − 1)2

M2
E

⎛⎜⎝
∑

p,q∈[1,M ]
<p,q> �=<M,M>

π<p,q>

(M − 1)2

⎞⎟⎠+
1

M2
E(π<M,M>)

≥ . . . . . .

≥ 1

M2

M∑
p=1

M∑
q=1

E(π<p,q>)

≥(1− ε/3)
1

M2

M∑
p=1

M∑
q=1

E(π<p,q>
I ) (∵ (13))

≥(1− ε/3)
(M − 3)2

M2
E(π̃∗) (∵ (17))

=(1− ε/3)2E(π̃∗). (∵ M = � 3

1−√
1− ε/3

�) (18)

Furthermore, we can prove that the solution regularization
technique also applies to the original problem P1. Here we
omit the details to save space. Consequently, suppose π∗ is
the optimal solution to P1. Then we get

C1

∑n

i=1
P (d(si, p))x

∗
i,k ≤ Rt (19)

where p ∈ Ω and k = 1, . . . ,m.
Given that Algorithm 2 sets the error threshold for EMR

approximation as ε/3 at Step 1, as per (5), the approximated
EMR at p ∈ Az after area discretization satisfies

n∑
i=1

ẽizx
∗
i,k ≤ (1 + ε/3)C1

n∑
i=1

P (d(si, p))x
∗
i,k. (20)

where z = 1, . . . , Z and k = 1, . . . ,m. Combining (19) and
(20) we get

n∑
i=1

ẽiz
x∗
i,k

(1 + ε/3)
≤ C1

n∑
i=1

P (d(si, p))x
∗
i,k ≤ Rt. (21)

This indicates that 1
1+ε/3

π∗ is a feasible solution for the

problem P3. As π̃∗ is the optimal solution to P3, we get
E(π̃∗) ≥ E( 1

1+ε/3
π∗). Moreover, it is easy to check that

E( 1
1+ε/3

π∗) ≥ 1
1+ε/3

E(π∗). By (18), we obtain

E(π) ≥ (1− ε/3)2E(π̃∗) ≥ (1− ε/3)2
1

1 + ε/3
E(π∗)

≥ (1− ε)E(π∗), (22)

which indicates Algorithm 2 achieves (1− ε) approximation
ratio in terms of overall effective charging energy.

Due to space limit, we omit further analysis and refer
readers to [30] for more details. �

7 SIMULATION RESULTS
In this section, we conduct simulations to verify the perfor-
mance of the proposed algorithms.

7.1 Evaluation Setup
If not stated otherwise, we use the following setup throughout
our simulations. The related parameters in the charging mod-
el are α = 105, β = 40, D = 20m, C1 = 0.01. We uniformly
scatter 1000 chargers and 2000 devices in a 2000m× 2000m
square area. The required charging energy and charging
deadline for devices are randomly generated in the ranges
of [0 J 100 J ] and [0 s 10 s], respectively. Moreover, each
obtained data point stands for the average result for 100
randomly generated topologies.
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Figure 5: Effective charg-
ing energy vs. ε
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Figure 7: Effective charg-
ing energy vs. Rt
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Figure 8: Charging time
vs. Rt

7.2 Baseline Setup
We compare the centralized algorithm to ROCK with
Greedy1, Greedy2, and Conopt, please see [30] for more
details of them. Moreover, we compare the distributed al-
gorithm to ROCK with three other algorithms, denoted by
“Optimal”, “1/4 Approximation”, and “Greedy2”, respective-
ly, in figures. Optimal (or Greedy2) let all chargers send their
information along with that of their covered devices to a sink
node, which then executes our proposed optimal centralized
algorithm to ROCK (or Greedy2), and then disseminates
the results to all chargers. In contrast, 1/4 Approximation
divides the whole area into multiple 2D × 2D subareas and
executes our centralized algorithm to ROCK in each subarea,
and then cuts down the obtained adjusting factors of all
chargers to 1/4.

7.3 Distributed Algorithm Evaluation
7.3.1 Impact of error threshold ε. Our simulation results

show that on average our algorithm to ROCK outperforms 1/4
Approximation and Greedy2 by 82.6% and 4.83%, respectively,
in terms of effective charging energy, and 597.8% and 577.5%,
respectively, in terms of charging time, and its achieved charg-
ing time is 47.1% smaller than that of Optimal. Figures 7
and 8 show that the effective charging energy and charging
time for Optimal, 1/4 Approximation, and Greedy2 remain
unchanged as ε increases because they use gridding method
with fixed granularity to partition area and approximate EM-
R, and that for our algorithm generally drops. Nevertheless,
our algorithm still achieves on average 97.5% and at least
94.9% of Optimal in terms of effective charging energy even
when ε is no less than 0.2, which supports Theorem 6.1.

7.3.2 Impact of EMR threshold Rt. Our simulation results
show that on average our algorithm to ROCK outperforms
1/4 Approximation and Greedy2 by 133.9% and 2.0%, re-
spectively, in terms of effective charging energy, and 432.3%
and 350.1%, respectively, in terms of charging time, and its
achieved effective charging energy is larger than (1 − ε) of
Optimal, and achieved charging time is 47.7% smaller than
that of Optimal. Figure 5 shows that the effective charging
energy for all but Optimal slightly rises when Rt increases,
because higher EMR threshold allows higher adjusting factors
of chargers. Optimal keeps constant because all devices have
already achieved their required charging energy. Especially,
ROCK achieves at least 96.4% effective charging energy of
Optimal given that ε = 0.8. Figure 6 shows that charging
time for all but Greedy2 remains unchanged.

7.3.3 Impact of network size on delay. Our simulation re-
sults show that the network delay of our algorithm to ROCK

approaches a constant value of 914 as the networks size in-
creases, and outperforms both Optimal and Greedy2 by 74.4%.
Figure 9 shows that the network delay for both Optimal
and Greedy2 increases proportionally to the network size
because the two algorithms require network-wide informa-
tion collection and dissemination. In contrast, the network
delay for either ROCK and 1/4 Approximation first increases
and then approaches to a constant value. Particularly, 1/4
Approximation has even shorter delay as it incurs rather low
communication cost inside 2D × 2D small subareas.

8 FIELD EXPERIMENTS
In this section, we conduct field experiments to evaluate the
performance of the ROCK algorithm. Figure 10 shows our
testbed which consists of eight TX91501 power transmitters
produced by Powercast [36] and marked by red numbers, and
four rechargeable sensor nodes marked by blue numbers, as
well as an AP connecting to a laptop for reporting the collect-
ed data from sensor nodes. The eight chargers are deployed
on the vertices and middle points of edges of a 2.4m× 2.4m
square area with orientation angles 296.56◦, 296.56◦, 243.44◦,
26.56◦, 153.44◦, 63.44◦, 116.56◦ and 116.56◦, respectively.
As the power of the chargers is not adjustable, we put a
piece of copper foil tape with proper length, width, position,
and bending angle in front of chargers so that the received
power and EMR at locations further than the tape are cut
down to desired levels. The four sensor nodes are placed at
points (0.7 1.5), (1.2 1.2), (1.6 1.2), and (1.8 0.5) by taking
the central point of the area as origin, and with orientation
angles 220◦, 180◦, 70◦, and 90◦, respectively.

We set the effective required charging energy as random
numbers in [0 50], i.e., 24.92 J , 32.75 J , 8.13 J , and 5.95 J ,
and the charging deadline for sensor nodes as 5000 s, 2000 s,
2000 s, and 5000 s. Our goal is to minimize the charging
time needed to achieve effective charging energy of 30J .
The error bound ε is set to 0.05. Figure 11 shows that the
required charging time for ROCK is only 70.6%, 27.2%, and
85.0% of that of Greedy1, Greedy2 and Conopt (see [30])
respectively when Rt = 105μW/cm2, and becomes 71.2%,
27.9%, and 75.7% when Rt = 125μW/cm2. Figure 12 shows
the EMR distribution on the considered field measured by
a RF field strength meter when Rt = 115 for our ROCK
solution which contains only one round. We can observe that
even the maximum EMR 113.2μW/cm2 does not exceed
115μW/cm2, which means the EMR safety is achieved.

9 CONCLUSION
The key novelty of this paper is on proposing the first scheme
for radiation constrained scheduling for wireless charging
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Figure 12: EMR distribu-
tion for Rt = 115μW/cm2

tasks. The key contribution of this paper is proposing an
optimal centralized algorithm and a distributed and scalable
algorithm that achieves at least (1− ε) of optimal effective
charging energy and shorter charging time than the optimal
solution, and conducting both simulations and field experi-
ments for evaluation. The key technical depth of this paper
is in making the nonlinear relaxed version of ROCK linear
by presenting the approaches of area discretization and solu-
tion regularization; developing a linear programming based
greedy test algorithm to optimally solve ROCK; and propos-
ing a distributed algorithm scalable with network size based
on an area partition scheme, and bounding its performance
by proposing the area-scaling and EMR-scaling approaches.
Our evaluation results show that our distributed algorithm
achieves at least 94.9% of the optimal effective charging en-
ergy and requires only 47.1% of the optimal charging time
when ε ≥ 0.2, outperforms the other algorithms by at least
2.0% and 350.1% in terms of effective charging energy and
charging time, respectively.
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