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Abstract—One fundamental question in Wireless Rechargeable
Sensor Networks (WRSNs) is the energy provisioning problem,
i.e., how to deploy energy sources in a network to ensure that
the nodes can harvest sufficient energy for continuous operation.
Though the potential mobility of nodes has been exploited to
reduce the number of sources necessary in energy provisioning
problem in existing literature, the non-negligible impacts of
the constraints of node speed and battery capacity on energy
provisioning are completely overlooked, in order to simplify the
analysis.

In this paper, we propose a new metric — Quality of Energy
Provisioning (QoEP) — to characterize the expected portion of
time that a mobile node can sustain normal operation in WRSNs,
which factors in the constraints of node speed and battery
capacity. To avoid confining the analysis to a specific mobility
model, we study spatial distribution instead. We investigate the
upper and lower bounds of QoEP in one-dimensional case with
one single source and multiple sources respectively. For single
source case, we prove the tight lower bound and upper bound of
QoEP. Extending the results to multiple sources, we obtain tight
lower bound and relaxed upper bound in normal cases, together
with tight upper bound for one special case. Moreover, we give
the tight lower bounds in both 2D and 3D cases. Finally, we
perform extensive simulations to verify our findings. Simulation
results show that our bounds perfectly hold, and outperform the
former works.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are mainly powered
by small batteries, and the limited energy supply constrains
the lifetime of WSNs. Recently, the emergence of wireless
power charging technology [1] has shed light on the power
supply problem in WSNs. By using the wireless charging
technology, we can create a controllable and perpetual energy
source to provide wireless power from a distance. Despite the
fact that many schemes [2] [3] [4] have been proposed to
make use of wireless charging, little literature focuses on the
issues with mobile nodes. The role of mobility in Wireless
Rechargeable Sensor Networks (WRSNs) has been largely
overlooked, whereas a number of studies have illustrated that
mobility enhances the capacity [5], increases the connectivity
[6], and brings coverage improvement [7] in WSNs.

Nevertheless, He et al. [8] investigated the energy provi-
sioning problem in a WRSN built from the industrial Wireless
Identification and Sensing Platform (WISP) [9]. Specifically,
one of their studied problems, which is called the path (energy)
provisioning problem, refers to how to deploy readers in

a network to ensure that mobile tags can harvest sufficient
energy for continuous operation. They proposed the necessary
requirement for path provisioning, that is, the average recharge
rate during the tag’s movement should be no smaller than the
power consumption of the tag in the long run. However, this
condition may not really guarantee sustainable operation for
tags due to constraints of node speed and battery capacity,
which are totally ignored in the literature. For example,
recharge energy loss will happen if a tag travels into a power-
rich area with fully charged battery, which would eventually
result in energy shortage and operation suspension in power-
deficient areas. This observation shows that battery capacity
limits the performance of energy provisioning.

To evaluate the performance of energy provisioning for
mobile nodes, we propose a new metric, namely Quality of
Energy Provisioning (QoEP), which is defined as the expected
portion of time that a node can sustain normal operation.
It captures the characteristics of energy provisioning perfor-
mance even when node works in an intermittent mode. In this
paper, our work is mainly focused on the upper and lower
bounds of QoEP based on node spatial distribution. Theoretical
results provide insights into how to effectively deploy energy
sources to meet requirements for energy provisioning perfor-
mance in applications, while factoring in constraints of node
speed and battery capacity.

II. PROBLEM STATEMENT

A. Network Model

In this paper, we use a wireless recharge infrastructure
which is much similar to [8]. That is, a WRSN consists of
a single or multiple static sources and a set of mobile nodes
(e.g., they are worn by human users for activity monitoring) in
a region of interest. Sources are responsible for recharging the
nodes via wireless. Nodes harvest wireless energy and store
it in their batteries for normal operations like sensing and
logging data. One objective proposed by [8] is to keep nodes’
sustainable operation to avoid any information loss, which
is referred to as energy provisioning problem. This wireless
recharge infrastructure is generic and can be reused for diverse
types of different applications. For example, it can be applied
to WRSNs built on equipments from Powercast [10], involving
power transmitters and rechargeable sensor nodes.



We further propose some assumptions about node mobility
and its energy consumption as follows. (i) At any time, a
node can move at an arbitrary speed which is no more than
"™ (ii) the node’s power consumption for working, such as
sensing and logging data, is constant and independent of its
motion, which can be denoted as ps; and (iii) each node has
a battery capacity of E, and its power leakage of battery can
be neglected. Moreover, a node keeps working with a nonzero
residual energy till depletion, and then it suspends its work.
As long as the node absorbs any amount of energy, it resumes
work immediately. The energy cost for switching on or off
can be ignored. Though the third assumption is somewhat
unrealistic, it makes the problem much easier to solve. We
will take into account practical concerns in future work.

B. Recharging Model

A critical factor impacting energy provisioning is the wire-
less recharge model. In this paper, we adopt the practical
models assumed by [8]. In particular, the receive power p, of
RF signal at the location which is d m away from the source
can be expressed as p, = #ﬁ)z, where both 7 and [ are
constants independent of d. In addition, the additivity of the
transmission power of multiple sources has been verified by
realistic experiments for multiple sources, and the impact of
mobility on recharge power can be safely neglected.

C. Concept of Quality of Energy Provisioning

Before formally stating the problem in this paper, we
introduce the following definitions in advance.
Definition 2.1: Instantaneous Quality of Energy Provision-
ing (IQoEP) of node at time ¢ is defined as follows:
pe®) B (t) = 0 and p,(t) < ps

IQoEP(t) =< ps’
QoEP() 1, otherwise

&)

where p,.(t) and E,.(t) respectively denote the received cu-
mulative recharge power and residual energy at time ¢.

Recall that p, is the nodes power consumption for working.
The above equation is derived from the third assumption.

Definition 2.2: The Quality of Energy Provisioning (QoEP)
in the region ) is defined as the expected portion of time in
the long run that a node can sustain normal operation. That
is:

QoEP = lim

t— o0

t
/ IQoEP(t)dt'. @)
t

t—to Jy—,

We note that this concise form of QoEP not only simplifies
our following analysis, but also captures the characteristics
of energy provisioning performance, even when node works
in an intermittent mode. In addition, QoEP also serves as a
metric that helps to evaluate the efficiency of deployment of
energy sources, while factoring in constraints of node speed
and battery capacity.

Definition 2.3: The Quality of Energy Provisioning at Lo-
cation z (LQOEP) is defined as the expected proportion
of cumulative time that a mobile node can sustain normal
operation to that node spent at x.

Jr—oy IQOEP()I(t,)dt’
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where I(t', x) is an indicator function which equals to 1 when

node appears at location z at time ¢/, or 0 otherwise.
With LQoFE P(x), Equation (2) can be rewritten as:
t

/ IQoEP(t')dt'
t'=tg

1
QoEP = lim
t—oo t — 1o

. 1
lim
t—oo t — tO

t
// IQoEP(t)I(t',x)dt dx
Ja =ty

t ’ ’
s, It x)dt
LQoEP(x)ift *tf’t (t ) dx
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/ LQoEP(z) fais(x)dz. &)
Q

= lim
t— o0 Q

D. Problem Statement

Intuitively, there exist infinite mobility models obeying the
same spatial distribution fg;5(x). Denote P the set of all
those qualified mobility models, we define the lower bound
of QoEP with respect to spatial distribution fg;s(z) by
QoEP,,;,, which is no more than any QoFEP of mobility
model in P. Similarly, we define the upper bound of QoF P
by QOoEP,,q;. In this paper, we prefer to investigate the
problems based on spatial distribution rather than a specific
mobility model in that the former is more general, practical
and tractable [11]. After all, our quality of energy provisioning
problems, with respect to single source and multiple sources
respectively, can be formally proposed as follows.

Quality of Energy Provisioning Problem for Single
Source (Multiple Sources): Assume that there is a single
source (multiple sources) and a set of nodes in a region (2.
Given nodes’ spatial distribution fg;s(z), maximum speed
v™** and battery capacity E., the quality of energy pro-
visioning problem for single source (multiple sources) is to
determine QoE P,,;, and QoE P,,,., as there are potentially
infinite mobility models obey the same spatial distribution
f dis (Z)

We emphasize that our work is not confined to 1D case, as
many useful results are also found in 2D and 3D cases.

III. SINGLE SOURCE CASE

In this section, we investigate the QoEP in one dimensional
case with a single source, as a preliminary study.

Assume that the source is placed at the origin while
the node’s movement is confined to a finite line segment
[—%m, Tm|. For simplicity, suppose the node spatial distribu-
tion fg;s(x) is symmetric. Then we are able to obtain exact
QoEPs in some special cases.

Theorem 3.1: Given a source placed at the origin, a node
moves on a line [—z,,, x,,] according to some mobility
model which results in a node spatial distribution fg;s(x).
Then QoEP = 2 [ 22 £y, (2)dx for p,(0) < ps, and
QoEP =1 for p.(zm) > ps.

Proof: If p.(z,,) > ps then a node can sustain
normal working anywhere and anytime. Hence QoEP =
Jo LQOEP(x) fais(x)dx = 1 according to (4). If p,-(0) < ps,



it indicates that any location in the area {2 cannot provide
sufficient recharge power for normal working. Then the node
shall exhaust all its initial energy in a finite period of time,
which can be ignored in a rather long period. Then QoEP =
Jo LQOEP(x) fuis (w)da = 2 [ 222 £y, (z)dx ]

Except for these two special cases we can only estimate
the lower and upper bounds of QoEP.

A. Lower Bound Analysis

As Figure 1 shows, the whole area is divided into two
regions, §2; and 2, by z7 and —z7, such that nodes in region
), are guaranteed to receive a power no less than than pj,
while that in Q, are not. Hence we have p.(zr) = ps, and

[ — 8.
Ps

Theorem 3.2: Under the condition that p,.(0) > ps and
pr(Tm) < ps, the lower bound of QoEP with single source in one
dimensional case is:

QoFEPryin = 2( / Jais(2)dz + / " fdis(-T)%dx) ®)

x=0 =z

xrr =

and it is tight.

Proof: First, given a mobility model .#;, we can con-
struct a new one ./, by slowing down the speed at any
time with a constant factor c. Apparently .#] obeys the same
spatial distribution, f4;s(x), followed by .. As illustrated in
Figure 1, for any node starting from 7 to region €2, following
mobility model ./, x is the furthest location it can reach
with nonzero residual energy. This situation occurs only when
the node starts with a fully charged energy state, and maintains
a constant speed cv™** before it reaches z . Hence we have:

cymaz

Then we calculate the QOEP of .#] as follows:
QoEP :/ LQoEP(x)fais(x)dx
Q

T

=2( fais(x)dx + /IZ LQoEP(x) fais(x)dx
=0 T=xT

+ / :Z Fas (m)mp—f)d:c)

> / medisu)dm / " e )p;(x) 2. ()

s

Note that LQoEP(x) > p’p(w) for x € [rr,xz] due to
the potential nonzero residual energy of the node. Then the
right side of inequality (8) is indeed a lower bound. Next we
continue to prove its tightness. Given an arbitrarily small value
e, we have:

QOEP — QoEPpin =2(

v (LQoEP(z) — I%)fdis(x)dx

T=xT s

Tz
SQ/ 1 fais(z)dz
T=xT

L2c1(xz — x7) ®
where ¢1 = maz,cq, fais(x). Let xz = min{z,,zr +
€/2c1}, then 2¢1(xz — xr) < . Then we substitute it into
Equation (6) and obtain:
1 min{xm,xp+e/2c1}
W/ (ps —pr(x))dz.— (9)
Apparently, we have QoEP — QoEP,,;, < ¢ for c given
by (9). Hence the tightness of the lower bound is proved. W

B. Upper Bound Analysis

Due to symmetry of the topology, we only need to consider
subregion [0, z,,], and still use ; and 2, to denote the area
[0,z7] and [xT,z,,] respectively as long as no confusion
can arise. Next we’ll first propose some new conceptions to
facilitate our further study. Then we derive a loose upper
bound as well as a tight upper bound of QoEP.

B.1 Related Conceptions

First of all, we associate location x € €0, with the expected
battery energy consumption rate, i.e., the average consumption
of nodal battery energy in terms of time at x:

M) = Jim P50+ fim (0=, (o)
< tlggo tt(i)(ps pr(z))  (ps —pr(z) > 0)
= fais (@) (ps = pr(@)) = A (2) (10)

where t1(x)(> 0) is the cumulative time the node stays at

location = when its residual energy is 0. Accordingly, the
expected battery energy consumption rate A.(Q)') for some
subregion Q' C ) can be written as:

A @) = [ A@)de < AT (@ '):/ AP () dz. (1)

Similarly, the expected battery energy harvest rate for
location = € §; is defined by:
t(l‘) — tz

2O g+ i MO8, ) - p)
< fais (@) (pr(2) — ps) = A" (@) (12)
where t3(x)(> 0) is the cumulative time the node stays at
location = when it is fully recharged. And A, (€') for some
subregion Q' C Q;:

An () = / A (z)de < ARE(Q) = / AR (z)dz.  (13)
Q/
Lemma 3.1: Ao(2) = Ap(9;).
Proof: Tts complete proof is available in [11]. ]

B.2 Analysis for A Loose Upperbound

In this section, we give a loose upperbound for QoEP.
Actually, A.(Q,) plays an important role in QoEP, as the
following theorem states.

Theorem 3.3: Under the condition that p,.(0) > ps and
Dr(Tm) < ps, QOEP in single source case is given by:

QoEP = QoEPpin + (@) | (14)

Proof: Its complete proof is availabzfé in [11]. [ ]
Besides, we continue to define energy providing ability of
location x as the average energy a node brings into the area
[, zm](zr <2 < xm):
T Ol (B (@) = B @)
where EL™(z) (or Ejfém(x)) is the residual energy of a node
upon its myy, traveling across location x to region [x, Z,,] (or
[0, 2]) during time interval [to,t], and M () is the number of
times of the node’s crossing to different direction (actually
at most 1 difference exists here and it can be ignored when
M(t) — oo as t — 00).
Denote by Q2% the region [z, z,,]. Based on the principle
of energy conservation, the providing energy from location x

15)

Pep(w) = lim



must be fully converted to the battery energy consumed in
region Q2%

Lemma 3.2: pep(x) = Ao (Q27) (x € Q).

Further we have a related lemma as follows.

Lemma 3.3: For any location x € €2, its energy providing
ability p.,(z) is subject to:

]- max v s — Mr
Pep(z) < maz{0, §fdis(z)’0 (Er — /7 (pvmi{)m(y))dy)}-
y=zr (16)
Proof: Its complete proof is available in [11]. |

For convenience, we refer to the maximum value of p.,(z)
as pp** ().
Lemma 3.4: For any x € Q, (x7 < x < Tpp):

Ae(Q0) = Ac(Qo — QZ7) + pep () 17)
and:
Ae(Q0) < AT (Q0 — QZ7) + P (2) (18)
where: ) - W)
Py @) = man{0, 3 ()" (B2 [ Py,
e (19)
Proof: Its complete proof is available in [11]. [ |

Let x = 27 in Lemma 3.2 and Lemma 3.3, and combine
them with Theorem 3.2, 3.3, we can obtain a relaxed upper
bound of QoEP.

Theorem 3.4: Under the condition that p,.(0) > ps and
Pr(Tm) < ps, QOEP is subject to:

QOEP < QoEPyy, + 1120V Ex 20)

Ds
The right side of the inequality can be used as a loose upper
bound of QoEP in some scenarios.

B.2 Analysis for A Tight Upperbound

We employ a novel technique to pursue the tight upperbound
of QoEP by making an analogy between node’s movement and
flow. However, due to space limit, we can only offer the main
result of the tight upperbound as follows.

Theorem 3.5: Under the condition that p,.(0) > p, and
Dr(Tm) < ps, the upper bound of QoEP with single source in
one dimensional case is: o ot
QOE Py = QoE Py, + 2 HAS (S;")’ AT(RDY
where A% (Q,) and A7 (9;) are the maximum expected bat-
tery energy consumption rate for region €2, and the maximum
expected battery energy harvest rate for region (2; respectively.
It is a tight bound.

As we can see, the most critical issue regarding the tight
bound is how to compute A%(Q,) and AJP*(€);). Actually,
we develop effective algorithms to address this issue. We omit
it here to save space and refer the reader to [11] for details.

IV. MULTIPLE SOURCES CASE

In this section, we attempt to extend the results to multiple
sources case.

For this case, we assume that there are totally /N randomly
deployed one-dimensional sources networks, as is illustrated
in Figure 2. The whole area is partitioned into multiple regions
which can be classified into two types according to whether

Q 9 9 9 Q @9 9 9 9
—— —y— —— ——
source
Fig. 2. TIllustration of Multiple Randomly Deployed Sources

nodes within this region can receive a power no less than py,
as depicted in dark color and light color blocks respectively.
We denote them as Q) (p = 1,2,3,...,P) and Q¢ (¢ =
1,2,3,...,Q) respectively.

Theorem 4.1: Given N sources in region 2, the tight lower
bound of QoEP in one dimensional case is:

P Q
QOEPm'Ln :pz:l/nlib fdzs(x)dx‘f’;/{;g fdls(x)pTTtx)

where ) (p = 1,2,3,..., P) are regions that can receive
a power no less than p, while Q¢ (¢ = 1,2,3,...,Q) are
regions not, p.(z) is the cumulative recharge power node
receives at x.

Its proof is very similar to Theorem 3.2, so we omit it here
to save space. In fact, we can further extend the result to 2D
and 3D cases.

Theorem 4.2: Given N sources in region 2, the tight lower
bounds of QoEP in 2D and 3D cases are:

Q S

dr (22)

(23)
and:

QOEPnLin = fdis (Z’, Y, Z)J(%M)dxdydz (24)

Q

respectively, where J(z) =z for 0 <2z <1 and 1 for x > 1.

Proof: We are concerned with 2D case first. Suppose that
the whole region interest {2 can be divided into two subregions,
i.e., region ). wherein the received power p,.(z,y) is no less
than pg and €, wherein p,.(x,y) is not. In addition, we define
an expansion region {2, wherein node can probably enjoy a
nonzero battery energy. That is, for any point e in 2., there
exists a path p originated from some point s on boundary of €2,
to e, followed by a node which starts with a fully recharged
battery at s and ends with nonzero residual battery energy,
while its speed is no more than v"***. Then we have:

QoEPz/ fdis(xay)dxdy+/ Mfdis(x’y)dxdy
Qp,

c—Se Ps

+ / QoEP(z,y) fais(x,y)drdy
Q

e

> fdis(:c,y)d:cdy—i-/ Wfdis(w,y)dxdy
I's s

Qn c

= / fais(z,y) J(M)dxdy.

Since QoEP(z,y) > pT(w’”) for point & € Q. It shows that
QoFEP,,;, is indeed a lower bound. Next we continue to prove
its tightness. Similar to proof of Theorem 3.2, we can construct
a new mobility model .#/, by slowing down the speed at any
time with a constant factor ¢ based on an arbitrary mobility
model .#,. Apparently .#, and .#{ obey the same spatial
distribution fg;s(x,y). Then its QoEP is subject to:

QoEP — QoEPpin

— [ (QoEP@y) -

(25)

W)fdis(% y)dzdy

e s

<o / ldzdy = ¢1|Q.| (26)
<

e

where ¢, = max; yycq, fais(r,y). On the other side, it is
obvious that |Q2.| decreases monotonically with a decrease
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node maximum speed cv™®* as long as Q.| < [Q.|, and
Q] = 0 for cv™*® = 0 (¢ = 0). For this reason, given
an arbitrarily small value ¢, there must exist an ¢ such that
|Qe| = min{e/c1, ||} based on the properties of continuous
function. Consequently, we have:

QOEP — QoEPp,in = c1|Qe| <€ 27)
The result follows. The analysis is the same for 3D case, so
we omit it to save space. [ |

Nevertheless, the calculation of upper bound in multiple
case turns to be much more complicated. For example, suppose
that the optimal expected battery energy consumption rate
for region 2 in Figure 2 is A% (Q2) in its left side and
A%~ (Q2) in its right side, which are obtained by launching
main flows from the left end point and the right end point
into Q2. Then we claim that A.(Q2) < min{A%P(Q3?) +
AP = (02), Amaz(Q2)}. If one of its end point lies on the
boundary of €2, we set the expected battery energy consump-
tion rate on the corresponding side to 0. For instance, we set
APt (Q3) = 0 for region Q3.

By similar analysis, we can conjecture that Aj(}) for
region QF is subject to: Ay (QY) < min{AP"T(QP) +
AP QD) | A ().

Theorem 4.3: Given N sources in region €2, the QoEP in
one dimensional case is subject to:

P Q
QOEP < QoEP +min{»  AFPY(Q0) + > A (Q1)} (28)
p=1 q=1
where AP (QF) = min{ A" (QF) + AP (QF), Ajrer
()} and A2 (Q2) = min{A2*(Q2) + AP~ (Q1),
Amee(Q)).

Note that the right side of Inequality (28) is not a tight
bound for QoEP. Furthermore, suppose sources are equidis-
tantly distributed with interval distance d, and fg;s(z) are
identical for subregions partitioned by sources and symmetric,
as Figure 3 illustrates. By excluding the recharge power from
other sources outside, we can decompose the problem and
consider only a subregion, and ultimately transformed it into
that in one source case. By doing so, we can obtain its tight
upper bound via solution proposed in the previous section.

V. SIMULATION RESULTS

In this section, we present simulation results to verify
our findings, with two issues considered. Unless otherwise
specified, we use the following default parameter settings:
T =4.328x1074W-m?2, = 0.2316m and p;, = 1 x 1073W.
In addition, we define ratio as v™%* /vmi", which can take
values of 1, 2, 10 and 100 during the simulations.

A. Single Source Case

We first evaluate our theoretical results under random way-
point mobility model (RWMM) [12] for single source case. We

1 ratio=1 1 1| ratio=1
ratio=2 -7 ratio=2
it // R
- - ratio=
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Fig. 4. Simulation Results of Random Waypoint Mobility Model in Single

Source Case

(b) QoEP Vs. Maximum Speed

set x,,, = 1 and fix the pause time to 0, which means nodes
keeps moving throughout the simulation process. Accordingly
we have xp = 0.4257. The spatial distribution of RWMM
is illustrated in Figure 6. Comparison of the simulation data
points on the dotted curve with the theoretical data points on
the solid curve shows they are in good agreement.

As shown in Figure 4(a), if E/; decreases to 0, the simulation
results of QoEP approach to the lower bound 0.8519. The
ratio in Figure 4(a) refers to v™ /u™" while v™% keeps
constant and equals to 0.1. Note that the speed of a node
for each movement is randomly selected from [ y™aez],
Though QoEPs increase monotonically with E,, for RWMMs
of different ratios, they are always bounded by the upper
and lower bounds. Moreover, the RWMM of ratio=1, which
implies that the node moves with an invariable speed v™*",
yields an QoEP very close to the upper bound. This is
largely due to the overall random destination selection policy
that makes the node incline to move globally, thus speeds
up the energy exchange. Likewise, the QoEPs also increase
monotonically with the varying maximum speed v™%%, given
that £, = 0.001 as Figure 4(b) exhibits.

B. Multiple Sources Case

For multiple sources case, we are concerned with the
random walk mobility model when sources are equidistantly
distributed with distance interval d. Due to uniform node
spatial distribution of this mobility model and symmetry of
the sources, we can consider only a subregion [—d/2,d/2]
with a reference source placed at the origin. As a result, the
mobility model can be equivalently viewd as the random walk
with reflection mobility model (RWRMM) in [13], where each
movement occurs in a constant distance traveled [ (we set
[ = 0.4 d in this simulation), at the end of which a new
direction and speed are randomly selected. If node reaches
boundary, it “bounces” off the border and continues along this
new direction. It can be proved that RWRMM follows uniform
distribution.

To evaluate the performance of our work, we compare it
with that of path energy provisioning in [8]. Specifically,
we adapt the solution of path energy provisioning to one-
dimensional case, by applying the following equation to deter-
mine the distance d between adjacent sources: é frd=o [W +
m]dr = ps. Solving this equation we obtain d =
52—;5 — . In fact, this is exactly the maximum distance to
guarantee path energy provisioning, as [8] indicates.
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In Figure 5(a) and 5(b), we can see that the QoEP always
equals to 1 for path energy provisioning, which is referred to
as PEP in these figures, as we set d = [3277 — B = 3.5059.
In contrast, the simulated results, and even the upper bounds,
are much smaller than 1, especially when energy capacity or
maximum speed is low. Next, we vary ps; and compute the
maximum distance which guarantees QoEP = 1 for lower
and upper bounds as well as path energy provisioning. It
can be seen from Figure 7 that the distance for upper bound
increases as F, or v"™** increases. However, it is always
smaller than that of path energy provisioning. We conclude
that our proposed upper and lower bounds are more realistic
than path energy provisioning as it factors in both node speed
and energy capacity.

After all, the results of lower bound and upper bound can
be used to estimate the distance in sources deployment. More
importantly, our solution can meet the requirements of those
applications with a given QOoEP threshold (not necessarily
equal to 1). In this sense, our solution is also more flexible
compared with path energy provisioning.

VI. RELATED WORK

In this section, we briefly review related work on wireless
energy transfer technology in WSNs and energy provision-
ing problem. Tong et al. [14] investigated the impact of
wireless charging technology on sensor network deployment
and routing arrangement. The authors in [2] and [3] used a
wireless charging vehicle (WCV) or a mobile charger (MC)
to periodically travel inside the sensor network and charge
each static sensor node’s battery via wireless, and studied
the optimization problem about routing and charging. In [4],
a mobile charger was used to serve not only as an energy
transporter that charges static sensors, but also as a data
collector. Zhang et al. [15] proposed a scheme employed
multiple energy-constrained MCs to collaboratively charge a
linear WSN. MCs are allowed to charge each other. Their goal
is to maximize the energy efficiency of charging.

All the schemes mentioned above aim to mobilize a charger
to charge static sensor nodes. In contrast, He et al. [§]
proposed the only scheme to the energy provisioning prob-
lem, where static or mobile nodes are charged by stationary
chargers.
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parison of Sources Deployment

VII. CONCLUSION

In this paper, we have studied the impact of mobility on
energy provisioning in WRSNSs, especially in one-dimensional
cases. Our work mainly focuses on the upper and lower bounds
of QoEP in both single source and multiple sources. The the-
oretical results show that the lower bounds in two cases have
nothing to do with node speed and battery capacity. Our results
also provide fundamental insights into the sources deployment
in WRSNs. Numerical results are offered to demonstrate the
effectiveness of our solutions.
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