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Abstract—One fundamental question in Wireless Rechargeable
Sensor Networks (WRSNs) is the energy provisioning problem,
i.e., how to deploy energy sources in a network to ensure that
the nodes can harvest sufficient energy for continuous operation.
Though the potential mobility of nodes has been exploited to
reduce the number of sources necessary in energy provisioning
problem in existing literature, the non-negligible impacts of
the constraints of node speed and battery capacity on energy
provisioning are completely overlooked, in order to simplify the
analysis.

In this paper, we propose a new metric — Quality of Energy
Provisioning (QoEP) — to characterize the expected portion of
time that a mobile node can sustain normal operation in WRSNs,
which factors in the constraints of node speed and battery
capacity. To avoid confining the analysis to a specific mobility
model, we study spatial distribution instead. We investigate the
upper and lower bounds of QoEP in one-dimensional case with
one single source and multiple sources respectively. For single
source case, we prove the tight lower bound and upper bound of
QoEP. Extending the results to multiple sources, we obtain tight
lower bound and relaxed upper bound in normal cases, together
with tight upper bound for one special case. Moreover, we give
the tight lower bounds in both 2D and 3D cases. Finally, we
perform extensive simulations to verify our findings. Simulation
results show that our bounds perfectly hold, and outperform the
former works.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are mainly powered

by small batteries, and the limited energy supply constrains

the lifetime of WSNs. Recently, the emergence of wireless

power charging technology [1] has shed light on the power

supply problem in WSNs. By using the wireless charging

technology, we can create a controllable and perpetual energy

source to provide wireless power from a distance. Despite the

fact that many schemes [2] [3] [4] have been proposed to

make use of wireless charging, little literature focuses on the

issues with mobile nodes. The role of mobility in Wireless

Rechargeable Sensor Networks (WRSNs) has been largely

overlooked, whereas a number of studies have illustrated that

mobility enhances the capacity [5], increases the connectivity

[6], and brings coverage improvement [7] in WSNs.

Nevertheless, He et al. [8] investigated the energy provi-

sioning problem in a WRSN built from the industrial Wireless

Identification and Sensing Platform (WISP) [9]. Specifically,

one of their studied problems, which is called the path (energy)

provisioning problem, refers to how to deploy readers in

a network to ensure that mobile tags can harvest sufficient

energy for continuous operation. They proposed the necessary

requirement for path provisioning, that is, the average recharge

rate during the tag’s movement should be no smaller than the

power consumption of the tag in the long run. However, this

condition may not really guarantee sustainable operation for

tags due to constraints of node speed and battery capacity,

which are totally ignored in the literature. For example,

recharge energy loss will happen if a tag travels into a power-

rich area with fully charged battery, which would eventually

result in energy shortage and operation suspension in power-

deficient areas. This observation shows that battery capacity

limits the performance of energy provisioning.

To evaluate the performance of energy provisioning for

mobile nodes, we propose a new metric, namely Quality of

Energy Provisioning (QoEP), which is defined as the expected

portion of time that a node can sustain normal operation.

It captures the characteristics of energy provisioning perfor-

mance even when node works in an intermittent mode. In this

paper, our work is mainly focused on the upper and lower

bounds of QoEP based on node spatial distribution. Theoretical

results provide insights into how to effectively deploy energy

sources to meet requirements for energy provisioning perfor-

mance in applications, while factoring in constraints of node

speed and battery capacity.

II. PROBLEM STATEMENT

A. Network Model

In this paper, we use a wireless recharge infrastructure

which is much similar to [8]. That is, a WRSN consists of

a single or multiple static sources and a set of mobile nodes

(e.g., they are worn by human users for activity monitoring) in

a region of interest. Sources are responsible for recharging the

nodes via wireless. Nodes harvest wireless energy and store

it in their batteries for normal operations like sensing and

logging data. One objective proposed by [8] is to keep nodes’

sustainable operation to avoid any information loss, which

is referred to as energy provisioning problem. This wireless

recharge infrastructure is generic and can be reused for diverse

types of different applications. For example, it can be applied

to WRSNs built on equipments from Powercast [10], involving

power transmitters and rechargeable sensor nodes.



We further propose some assumptions about node mobility

and its energy consumption as follows. (i) At any time, a

node can move at an arbitrary speed which is no more than

vmax; (ii) the node’s power consumption for working, such as

sensing and logging data, is constant and independent of its

motion, which can be denoted as ps; and (iii) each node has

a battery capacity of Eπ , and its power leakage of battery can

be neglected. Moreover, a node keeps working with a nonzero

residual energy till depletion, and then it suspends its work.

As long as the node absorbs any amount of energy, it resumes

work immediately. The energy cost for switching on or off

can be ignored. Though the third assumption is somewhat

unrealistic, it makes the problem much easier to solve. We

will take into account practical concerns in future work.

B. Recharging Model

A critical factor impacting energy provisioning is the wire-

less recharge model. In this paper, we adopt the practical

models assumed by [8]. In particular, the receive power pr of

RF signal at the location which is d m away from the source

can be expressed as pr = τ
(d+β)2 , where both τ and β are

constants independent of d. In addition, the additivity of the

transmission power of multiple sources has been verified by

realistic experiments for multiple sources, and the impact of

mobility on recharge power can be safely neglected.

C. Concept of Quality of Energy Provisioning

Before formally stating the problem in this paper, we

introduce the following definitions in advance.

Definition 2.1: Instantaneous Quality of Energy Provision-

ing (IQoEP) of node at time t is defined as follows:

IQoEP (t) =

{

pr(t)
ps

, Ere(t) = 0 and pr(t) < ps

1, otherwise
(1)

where pr(t) and Ere(t) respectively denote the received cu-

mulative recharge power and residual energy at time t.
Recall that ps is the nodes power consumption for working.

The above equation is derived from the third assumption.

Definition 2.2: The Quality of Energy Provisioning (QoEP)

in the region Ω is defined as the expected portion of time in

the long run that a node can sustain normal operation. That

is:

QoEP = lim
t→∞

1

t− t0

∫ t

t′=t0

IQoEP (t′)dt′. (2)

We note that this concise form of QoEP not only simplifies

our following analysis, but also captures the characteristics

of energy provisioning performance, even when node works

in an intermittent mode. In addition, QoEP also serves as a

metric that helps to evaluate the efficiency of deployment of

energy sources, while factoring in constraints of node speed

and battery capacity.

Definition 2.3: The Quality of Energy Provisioning at Lo-

cation x (LQoEP) is defined as the expected proportion

of cumulative time that a mobile node can sustain normal

operation to that node spent at x.

LQoEP (x) = lim
t→∞

∫ t

t′=t0
IQoEP (t′)I(t′, x)dt′

∫ t

t′=t0
I(t′, x)dt′

(3)

mx- mx0
source

TxTx-

iWoW oW

ZxZx-

Fig. 1. Illustrations of Single Source in One Dimensional Case

where I(t′, x) is an indicator function which equals to 1 when

node appears at location x at time t′, or 0 otherwise.
With LQoEP (x), Equation (2) can be rewritten as:

QoEP = lim
t→∞

1

t− t0

∫ t

t′=t0

IQoEP (t′)dt′

= lim
t→∞

1

t− t0

∫

Ω

∫ t

t′=t0

IQoEP (t′)I(t′, x)dt′dx

= lim
t→∞

∫

Ω

LQoEP (x)

∫ t

t′=t0
I(t′, x)dt′

t− t0
dx

=

∫

Ω

LQoEP (x)fdis(x)dx. (4)

D. Problem Statement

Intuitively, there exist infinite mobility models obeying the

same spatial distribution fdis(x). Denote P the set of all

those qualified mobility models, we define the lower bound

of QoEP with respect to spatial distribution fdis(x) by

QoEPmin, which is no more than any QoEP of mobility

model in P . Similarly, we define the upper bound of QoEP
by QoEPmax. In this paper, we prefer to investigate the

problems based on spatial distribution rather than a specific

mobility model in that the former is more general, practical

and tractable [11]. After all, our quality of energy provisioning

problems, with respect to single source and multiple sources

respectively, can be formally proposed as follows.

Quality of Energy Provisioning Problem for Single

Source (Multiple Sources): Assume that there is a single

source (multiple sources) and a set of nodes in a region Ω.

Given nodes’ spatial distribution fdis(x), maximum speed

vmax and battery capacity Eπ , the quality of energy pro-

visioning problem for single source (multiple sources) is to

determine QoEPmin and QoEPmax, as there are potentially

infinite mobility models obey the same spatial distribution

fdis(x).
We emphasize that our work is not confined to 1D case, as

many useful results are also found in 2D and 3D cases.

III. SINGLE SOURCE CASE

In this section, we investigate the QoEP in one dimensional

case with a single source, as a preliminary study.

Assume that the source is placed at the origin while

the node’s movement is confined to a finite line segment

[−xm, xm]. For simplicity, suppose the node spatial distribu-

tion fdis(x) is symmetric. Then we are able to obtain exact

QoEPs in some special cases.

Theorem 3.1: Given a source placed at the origin, a node

moves on a line [−xm, xm] according to some mobility

model which results in a node spatial distribution fdis(x).

Then QoEP = 2
∫ xm

x=0
pr(x)
ps

fdis(x)dx for pr(0) < ps, and

QoEP = 1 for pr(xm) ≥ ps.

Proof: If pr(xm) ≥ ps, then a node can sustain

normal working anywhere and anytime. Hence QoEP =
∫

Ω
LQoEP (x)fdis(x)dx = 1 according to (4). If pr(0) < ps,



it indicates that any location in the area Ω cannot provide

sufficient recharge power for normal working. Then the node

shall exhaust all its initial energy in a finite period of time,

which can be ignored in a rather long period. Then QoEP =
∫

Ω
LQoEP (x)fdis(x)dx = 2

∫ xm

x=0
pr(x)
ps

fdis(x)dx.

Except for these two special cases, we can only estimate

the lower and upper bounds of QoEP.

A. Lower Bound Analysis

As Figure 1 shows, the whole area is divided into two

regions, Ωi and Ωo by xT and −xT , such that nodes in region

Ωi are guaranteed to receive a power no less than than ps,

while that in Ωo are not. Hence we have pr(xT ) = ps, and

xT =
√

τ
ps

− β.

Theorem 3.2: Under the condition that pr(0) ≥ ps and
pr(xm) < ps, the lower bound of QoEP with single source in one
dimensional case is:

QoEPmin = 2(

∫ xT

x=0

fdis(x)dx+

∫ xm

x=xT

fdis(x)
pr(x)

ps
dx) (5)

and it is tight.

Proof: First, given a mobility model M1, we can con-

struct a new one M ′
1, by slowing down the speed at any

time with a constant factor c. Apparently M ′
1 obeys the same

spatial distribution, fdis(x), followed by M1. As illustrated in

Figure 1, for any node starting from xT to region Ωo following

mobility model M ′
1, xZ is the furthest location it can reach

with nonzero residual energy. This situation occurs only when

the node starts with a fully charged energy state, and maintains

a constant speed cvmax before it reaches xZ . Hence we have:

Eπ −

∫ xZ

xT

(ps − pr(x))

cvmax
dx = 0. (6)

Then we calculate the QoEP of M ′
1 as follows:

QoEP =

∫

Ω

LQoEP (x)fdis(x)dx

=2(

∫ xT

x=0

fdis(x)dx+

∫ xZ

x=xT

LQoEP (x)fdis(x)dx

+

∫ xm

x=xZ

fdis(x)
pr(x)

ps
dx)

≥2(

∫ xT

x=0

fdis(x)dx+

∫ xm

x=xT

fdis(x)
pr(x)

ps
dx). (7)

Note that LQoEP (x) ≥ pr(x)
ps

for x ∈ [xT , xZ ] due to

the potential nonzero residual energy of the node. Then the
right side of inequality (8) is indeed a lower bound. Next we
continue to prove its tightness. Given an arbitrarily small value
ε, we have:

QoEP −QoEPmin =2(

∫ xZ

x=xT

(LQoEP (x)−
pr(x)

ps
)fdis(x)dx

≤2

∫ xZ

x=xT

1 · fdis(x)dx

≤2c1(xZ − xT ) (8)

where c1 = maxx∈Ωo
fdis(x). Let xZ = min{xm, xT +

ε/2c1}, then 2c1(xZ − xT ) ≤ ε. Then we substitute it into

Equation (6) and obtain:

c =
1

Eπvmax

∫ min{xm,xT+ε/2c1}

xT

(ps − pr(x))dx. (9)

Apparently, we have QoEP − QoEPmin ≤ ε for c given

by (9). Hence the tightness of the lower bound is proved.

B. Upper Bound Analysis

Due to symmetry of the topology, we only need to consider

subregion [0, xm], and still use Ωi and Ωo to denote the area

[0, xT ] and [xT , xm] respectively as long as no confusion

can arise. Next we’ll first propose some new conceptions to

facilitate our further study. Then we derive a loose upper

bound as well as a tight upper bound of QoEP.

B.1 Related Conceptions

First of all, we associate location x ∈ Ωo with the expected
battery energy consumption rate, i.e., the average consumption
of nodal battery energy in terms of time at x:

λc(x) = lim
t→∞

t1(x)

t− t0
· 0 + lim

t→∞

t(x)− t1(x)

t− t0
(ps − pr(x))

≤ lim
t→∞

t(x)

t− t0
(ps − pr(x)) (ps − pr(x) > 0)

= fdis(x)(ps − pr(x)) = λ
max
c (x) (10)

where t1(x)(≥ 0) is the cumulative time the node stays at

location x when its residual energy is 0. Accordingly, the

expected battery energy consumption rate Λc(Ω
′) for some

subregion Ω′ ⊆ Ω can be written as:

Λc(Ω
′) =

∫

Ω′

λc(x)dx ≤ Λmax
c (Ω′) =

∫

Ω′

λ
max
c (x)dx. (11)

Similarly, the expected battery energy harvest rate for
location x ∈ Ωi is defined by:

λh(x) = lim
t→∞

t2(x)

t− t0
· 0 + lim

t→∞

t(x)− t2(x)

t− t0
(pr(x)− ps)

≤ fdis(x)(pr(x)− ps) = λ
max
h (x) (12)

where t2(x)(≥ 0) is the cumulative time the node stays at

location x when it is fully recharged. And Λh(Ω
′) for some

subregion Ω′ ⊆ Ωi:

Λh(Ω
′) =

∫

Ω′

λh(x)dx ≤ Λmax
h (Ω′) =

∫

Ω′

λ
max
h (x)dx. (13)

Lemma 3.1: Λc(Ωo) = Λh(Ωi).
Proof: Its complete proof is available in [11].

B.2 Analysis for A Loose Upperbound

In this section, we give a loose upperbound for QoEP.

Actually, Λc(Ωo) plays an important role in QoEP, as the

following theorem states.

Theorem 3.3: Under the condition that pr(0) ≥ ps and

pr(xm) < ps, QoEP in single source case is given by:

QoEP = QoEPmin +
2Λc(Ωo)

ps
. (14)

Proof: Its complete proof is available in [11].

Besides, we continue to define energy providing ability of

location x as the average energy a node brings into the area

[x, xm](xT ≤ x ≤ xm):

pep(x) = lim
t→∞

1

t− t0
(Σ

M(t)
m=1(E

i,m
re (x)− E

o,m
re (x))) (15)

where Ei,m
re (x) (or Eo,m

re (x)) is the residual energy of a node

upon its mth traveling across location x to region [x, xm] (or

[0, x]) during time interval [t0, t], and M(t) is the number of

times of the node’s crossing to different direction (actually

at most 1 difference exists here and it can be ignored when

M(t) → ∞ as t → ∞).

Denote by Ω≥x the region [x, xm]. Based on the principle

of energy conservation, the providing energy from location x



must be fully converted to the battery energy consumed in

region Ω≥x.

Lemma 3.2: pep(x) = Λc(Ω
≥x) (x ∈ Ωo).

Further we have a related lemma as follows.

Lemma 3.3: For any location x ∈ Ωo, its energy providing

ability pep(x) is subject to:

pep(x) ≤ max{0,
1

2
fdis(x)v

max(Eπ −

∫ x

y=xT

(ps − pr(y))

vmax
dy)}.

(16)

Proof: Its complete proof is available in [11].

For convenience, we refer to the maximum value of pep(x)
as pmax

ep (x).
Lemma 3.4: For any x ∈ Ωo (xT ≤ x < xm):

Λc(Ωo) = Λc(Ωo − Ω≥x) + pep(x) (17)

and:
Λc(Ωo) ≤ Λmax

c (Ωo − Ω≥x) + p̃
max
ep (x) (18)

where:

p̃
max
ep (x) = max{0,

1

2
fdis(x)v

max(Eπ−2

∫ x

y=xT

(ps − pr(y))

vmax
dy)}.

(19)

Proof: Its complete proof is available in [11].

Let x = xT in Lemma 3.2 and Lemma 3.3, and combine

them with Theorem 3.2, 3.3, we can obtain a relaxed upper

bound of QoEP.

Theorem 3.4: Under the condition that pr(0) ≥ ps and

pr(xm) < ps, QoEP is subject to:

QoEP ≤ QoEPmin +
fdis(xT )v

maxEπ

ps
(20)

The right side of the inequality can be used as a loose upper

bound of QoEP in some scenarios.

B.2 Analysis for A Tight Upperbound

We employ a novel technique to pursue the tight upperbound

of QoEP by making an analogy between node’s movement and

flow. However, due to space limit, we can only offer the main

result of the tight upperbound as follows.

Theorem 3.5: Under the condition that pr(0) ≥ ps and

pr(xm) < ps, the upper bound of QoEP with single source in

one dimensional case is:

QoEPmax = QoEPmin + 2
min{Λopt

c (Ωo),Λ
opt
h (Ωi)}

ps
(21)

where Λopt
c (Ωo) and Λopt

h (Ωi) are the maximum expected bat-

tery energy consumption rate for region Ωo and the maximum

expected battery energy harvest rate for region Ωi respectively.

It is a tight bound.

As we can see, the most critical issue regarding the tight

bound is how to compute Λopt
c (Ωo) and Λopt

h (Ωi). Actually,

we develop effective algorithms to address this issue. We omit

it here to save space and refer the reader to [11] for details.

IV. MULTIPLE SOURCES CASE

In this section, we attempt to extend the results to multiple

sources case.

For this case, we assume that there are totally N randomly

deployed one-dimensional sources networks, as is illustrated

in Figure 2. The whole area is partitioned into multiple regions

which can be classified into two types according to whether

1

cW
2

cW
3

cW
4

cW
5

cW
1

hW
2

hW
3

hW
4

hW
5

hW

source

Fig. 2. Illustration of Multiple Randomly Deployed Sources

nodes within this region can receive a power no less than ps,

as depicted in dark color and light color blocks respectively.

We denote them as Ωp
h (p = 1, 2, 3, . . . , P ) and Ωq

c (q =
1, 2, 3, . . . , Q) respectively.

Theorem 4.1: Given N sources in region Ω, the tight lower

bound of QoEP in one dimensional case is:

QoEPmin =

P
∑

p=1

∫

Ω
p

h

fdis(x)dx+

Q
∑

q=1

∫

Ω
q
c

fdis(x)
pr(x)

ps
dx (22)

where Ωp
h (p = 1, 2, 3, . . . , P ) are regions that can receive

a power no less than ps while Ωq
c (q = 1, 2, 3, . . . , Q) are

regions not, pr(x) is the cumulative recharge power node

receives at x.

Its proof is very similar to Theorem 3.2, so we omit it here

to save space. In fact, we can further extend the result to 2D

and 3D cases.

Theorem 4.2: Given N sources in region Ω, the tight lower

bounds of QoEP in 2D and 3D cases are:

QoEPmin =

∫

Ω

fdis(x, y)J(
pr(x, y)

ps
)dxdy (23)

and:

QoEPmin =

∫

Ω

fdis(x, y, z)J(
pr(x, y, z)

ps
)dxdydz (24)

respectively, where J(x) = x for 0 ≤ x ≤ 1 and 1 for x > 1.
Proof: We are concerned with 2D case first. Suppose that

the whole region interest Ω can be divided into two subregions,
i.e., region Ωc wherein the received power pr(x, y) is no less
than ps and Ωh wherein pr(x, y) is not. In addition, we define
an expansion region Ωe wherein node can probably enjoy a
nonzero battery energy. That is, for any point e in Ωe, there
exists a path p originated from some point s on boundary of Ωh

to e, followed by a node which starts with a fully recharged
battery at s and ends with nonzero residual battery energy,
while its speed is no more than vmax. Then we have:

QoEP =

∫

Ωh

fdis(x, y)dxdy +

∫

Ωc−Ωe

pr(x, y)

ps
fdis(x, y)dxdy

+

∫

Ωe

QoEP (x, y)fdis(x, y)dxdy

≥

∫

Ωh

fdis(x, y)dxdy +

∫

Ωc

pr(x, y)

ps
fdis(x, y)dxdy

=

∫

Ω

fdis(x, y)J(
pr(x, y)

ps
)dxdy. (25)

Since QoEP (x, y) ≥ pr(x,y)
ps

for point x ∈ Ωe It shows that

QoEPmin is indeed a lower bound. Next we continue to prove
its tightness. Similar to proof of Theorem 3.2, we can construct
a new mobility model M ′

1, by slowing down the speed at any
time with a constant factor c based on an arbitrary mobility
model M1. Apparently M1 and M ′

1 obey the same spatial
distribution fdis(x, y). Then its QoEP is subject to:

QoEP −QoEPmin

=

∫

Ωe

(QoEP (x, y)−
pr(x, y)

ps
)fdis(x, y)dxdy

≤ c1

∫

Ωe

1dxdy = c1|Ωe| (26)

where c1 = max(x,y)∈Ωc
fdis(x, y). On the other side, it is

obvious that |Ωe| decreases monotonically with a decrease
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node maximum speed cvmax as long as |Ωe| ≤ |Ωc|, and
|Ωe| = 0 for cvmax = 0 (c = 0). For this reason, given
an arbitrarily small value ε, there must exist an c such that
|Ωe| = min{ε/c1, |Ωc|} based on the properties of continuous
function. Consequently, we have:

QoEP −QoEPmin = c1|Ωe| ≤ ε (27)

The result follows. The analysis is the same for 3D case, so

we omit it to save space.

Nevertheless, the calculation of upper bound in multiple

case turns to be much more complicated. For example, suppose

that the optimal expected battery energy consumption rate

for region Ω2
c in Figure 2 is Λopt+

c (Ω2
c) in its left side and

Λopt−
c (Ω2

c) in its right side, which are obtained by launching

main flows from the left end point and the right end point

into Ω2
c . Then we claim that Λc(Ω

2
c) ≤ min{Λopt+

c (Ω2
c) +

Λopt−
c (Ω2

c),Λ
max
c (Ω2

c)}. If one of its end point lies on the

boundary of Ω, we set the expected battery energy consump-

tion rate on the corresponding side to 0. For instance, we set

Λopt−
c (Ω5

c) = 0 for region Ω5
c .

By similar analysis, we can conjecture that Λh(Ω
p
h) for

region Ωp
h is subject to: Λh(Ω

p
h) ≤ min{Λopt+

h (Ωp
h) +

Λopt−
h (Ωp

h) ,Λ
max
h (Ωp

h)}.

Theorem 4.3: Given N sources in region Ω, the QoEP in

one dimensional case is subject to:

QoEP ≤ QoEPmin +min{

P
∑

p=1

Λopt
h (Ωp

h) +

Q
∑

q=1

Λopt
c (Ωq

c)} (28)

where Λopt
h (Ωp

h) = min{Λopt+
h (Ωp

h) + Λopt−
h (Ωp

h),Λ
max
h

(Ωp
h)} and Λopt

c (Ωq
c) = min{Λopt+

c (Ωq
c) + Λopt−

c (Ωq
c),

Λmax
c (Ωq

c)}.

Note that the right side of Inequality (28) is not a tight

bound for QoEP. Furthermore, suppose sources are equidis-

tantly distributed with interval distance d, and fdis(x) are

identical for subregions partitioned by sources and symmetric,

as Figure 3 illustrates. By excluding the recharge power from

other sources outside, we can decompose the problem and

consider only a subregion, and ultimately transformed it into

that in one source case. By doing so, we can obtain its tight

upper bound via solution proposed in the previous section.

V. SIMULATION RESULTS

In this section, we present simulation results to verify

our findings, with two issues considered. Unless otherwise

specified, we use the following default parameter settings:

τ = 4.328×10−4W ·m2, β = 0.2316m and ps = 1×10−3W .

In addition, we define ratio as vmax/vmin, which can take

values of 1, 2, 10 and 100 during the simulations.

A. Single Source Case

We first evaluate our theoretical results under random way-

point mobility model (RWMM) [12] for single source case. We
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Fig. 4. Simulation Results of Random Waypoint Mobility Model in Single
Source Case

set xm = 1 and fix the pause time to 0, which means nodes

keeps moving throughout the simulation process. Accordingly

we have xT = 0.4257. The spatial distribution of RWMM

is illustrated in Figure 6. Comparison of the simulation data

points on the dotted curve with the theoretical data points on

the solid curve shows they are in good agreement.

As shown in Figure 4(a), if Eπ decreases to 0, the simulation

results of QoEP approach to the lower bound 0.8519. The

ratio in Figure 4(a) refers to vmax/vmin while vmax keeps

constant and equals to 0.1. Note that the speed of a node

for each movement is randomly selected from [vmin, vmax].
Though QoEPs increase monotonically with Eπ for RWMMs

of different ratios, they are always bounded by the upper

and lower bounds. Moreover, the RWMM of ratio=1, which

implies that the node moves with an invariable speed vmax,

yields an QoEP very close to the upper bound. This is

largely due to the overall random destination selection policy

that makes the node incline to move globally, thus speeds

up the energy exchange. Likewise, the QoEPs also increase

monotonically with the varying maximum speed vmax, given

that Eπ = 0.001 as Figure 4(b) exhibits.

B. Multiple Sources Case

For multiple sources case, we are concerned with the

random walk mobility model when sources are equidistantly

distributed with distance interval d. Due to uniform node

spatial distribution of this mobility model and symmetry of

the sources, we can consider only a subregion [−d/2, d/2]
with a reference source placed at the origin. As a result, the

mobility model can be equivalently viewd as the random walk

with reflection mobility model (RWRMM) in [13], where each

movement occurs in a constant distance traveled l (we set

l = 0.4 d in this simulation), at the end of which a new

direction and speed are randomly selected. If node reaches

boundary, it “bounces” off the border and continues along this

new direction. It can be proved that RWRMM follows uniform

distribution.

To evaluate the performance of our work, we compare it

with that of path energy provisioning in [8]. Specifically,

we adapt the solution of path energy provisioning to one-

dimensional case, by applying the following equation to deter-

mine the distance d between adjacent sources: 1
d

∫ d

r=0
[ τ
(r+β)2+

τ
(d−r+β)2 ]dr = ps. Solving this equation we obtain d =
2τ
βps

− β. In fact, this is exactly the maximum distance to

guarantee path energy provisioning, as [8] indicates.
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Fig. 5. Simulation Results of Random Walk Mobility Model in Multiple
Sources Case

In Figure 5(a) and 5(b), we can see that the QoEP always

equals to 1 for path energy provisioning, which is referred to

as PEP in these figures, as we set d = 2τ
βps

− β = 3.5059.

In contrast, the simulated results, and even the upper bounds,

are much smaller than 1, especially when energy capacity or

maximum speed is low. Next, we vary ps and compute the

maximum distance which guarantees QoEP = 1 for lower

and upper bounds as well as path energy provisioning. It

can be seen from Figure 7 that the distance for upper bound

increases as Eπ or vmax increases. However, it is always

smaller than that of path energy provisioning. We conclude

that our proposed upper and lower bounds are more realistic

than path energy provisioning as it factors in both node speed

and energy capacity.

After all, the results of lower bound and upper bound can

be used to estimate the distance in sources deployment. More

importantly, our solution can meet the requirements of those

applications with a given QoEP threshold (not necessarily

equal to 1). In this sense, our solution is also more flexible

compared with path energy provisioning.

VI. RELATED WORK

In this section, we briefly review related work on wireless

energy transfer technology in WSNs and energy provision-

ing problem. Tong et al. [14] investigated the impact of

wireless charging technology on sensor network deployment

and routing arrangement. The authors in [2] and [3] used a

wireless charging vehicle (WCV) or a mobile charger (MC)

to periodically travel inside the sensor network and charge

each static sensor node’s battery via wireless, and studied

the optimization problem about routing and charging. In [4],

a mobile charger was used to serve not only as an energy

transporter that charges static sensors, but also as a data

collector. Zhang et al. [15] proposed a scheme employed

multiple energy-constrained MCs to collaboratively charge a

linear WSN. MCs are allowed to charge each other. Their goal

is to maximize the energy efficiency of charging.

All the schemes mentioned above aim to mobilize a charger

to charge static sensor nodes. In contrast, He et al. [8]

proposed the only scheme to the energy provisioning prob-

lem, where static or mobile nodes are charged by stationary

chargers.
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VII. CONCLUSION

In this paper, we have studied the impact of mobility on

energy provisioning in WRSNs, especially in one-dimensional

cases. Our work mainly focuses on the upper and lower bounds

of QoEP in both single source and multiple sources. The the-

oretical results show that the lower bounds in two cases have

nothing to do with node speed and battery capacity. Our results

also provide fundamental insights into the sources deployment

in WRSNs. Numerical results are offered to demonstrate the

effectiveness of our solutions.
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