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Abstract—Existing scheduling schemes for stochastic event
capture with rechargeable sensors either adopt simplified as-
sumptions on event staying time or provide no performance
guarantee. Considering the stochasticity of event staying time,
we investigate the sensor scheduling problem aiming to maximize
the overall Quality of Monitoring (QoM) in events capture
application of wireless rechargeable sensor networks. We first
provide a paradigm to calculate the QoM of a point of interests
(PoI) and formulate the scheduling problem into an optimization
problem. Although we find that that this problem is NP-complete,
we prove that the objective function of the optimization problem
is monotone submodular. Therefore we can express the problem
as a maximization of a submodular function subject to a
matroid constraint. Accordingly we can design an approximation
algorithm which achieves a factor of 1/2 of the optimum. We
evaluate the performance of our solution through simulations,
and simulation results show that our scheme outperforms former
works.

Index Terms—Rechargeable sensors; events capture; schedul-
ing; submodularity.

I. INTRODUCTION

Although event capture in WSNs has been studied ex-

tensively, there are some new challenges when we consider

the same issue in wireless rechargeable sensor networks

(WRSNs) [1]. There are works such as [2]–[4] focusing

on how to exploit on-line information of event occurrence

to optimize the Quality of Monitoring (QoM). Here QoM

is defined as the ratio of interesting events captured to all

occurred events. These works do not consider the stochastic

characteristic of the event staying time. In duty-cycle sensor

networks, the works [5], [6] aim to maximize the QoM

under the assumption that event staying time follows the

exponential distribution. But these solutions do not provide

any performance guarantee.

In this paper, we study the scheduling problem for stochastic

event capture in WRSNs with more practical considerations.

We present effective approximation algorithm with perfor-

mance guarantee. The contributions of this work are as fol-

lows.

• We consider the scheduling problem for stochastic event

capture in WRSNs in a more practical way. The stochas-

ticity of event staying time is taken into account. We

provide a paradigm to calculate the QoM of a point

of interests (PoI) in the presence of single or multiple

monitoring sensors.

• We formulate the scheduling problem into an optimiza-

tion problem. Although this problem is NP-complete, we

find that we can express the problem as a maximization

of a submodular function subject to a matroid constraint.

This formulation allows us to design an approximation

algorithm which achieves a factor of 1/2 of the optimum.

• We conduct extensive simulations to verify the results.

For small-scale networks, we compare the performance of

the proposed algorithm with that of the optimal solution.

For large-scale networks, we show that the proposed

algorithm outperforms two other scheduling algorithms.

The remainder of the paper is organized as follows. In

Section II, basic assumptions and formal definition of our

problem are presented. In Section III, we prove the hardness

of the problem and present an approximation algorithm with

performance guarantee. Section IV presents simulation results.

Before concluding this work in Section VI, we briefly discuss

the related work in Section V.

II. PROBLEM FORMULATION

A. Network Model

We assume that m sensors V = {v1, v2, . . . , vm} distributed

in a 2D region cover n PoIs O = {o1, o2, . . . , on}. In

particular, suppose that sensor vi covers a subset of PoIs

Oi. Adjacent sensors can cover nonempty PoIs in common.

Accordingly, target oi might be covered by a subset of sensors

Vi. A base station serves as a sink, and requires each sensor

to report its current energy level and other useful information

to it hop by hop on a regular basis. The Collection Tree

Protocol (CTP) [7] is used as the routing protocol for sensors.

Assume that time is divided into time slots and the duration

of a time slot is fixed and given a priori. Every T time slots,

the base station determines the periodic schedules for the next

T interval of all sensors, and disseminate them to sensors.

The periodic schedules followed by sensors are of identical

length L. We name such period starting with the scheduling

process as scheduling period, and let T be a multiple of L. A

sensor can schedule itself to be active or inactive in any time

slot. Therefore, the schedule of sensor vi can be expressed by

a vector Si = (ai1, ai2, . . . , aiL), where component aij = 1
indicates the sensor is active in time slot j while aij = 0
means the opposite. After all, we assume that the reporting

processes of sensors take place with so low frequency (e.g., 1

hour) that its energy overhead can be ignored.
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Fig. 1. Illustration of vector regularization

B. Recharging Model and Energy Consumption Model

Much existing work holds that the energy harvesting rates

in many cases are of high variability, and the environmental

energy model can be cast as a stochastic process [3], [4]. How-

ever, for a wide range of application scenarios, such as that

correspond to indoor environment, the energy availability has

been proved to be time-dependent and predictable [8]–[12].

For instance, by effectively taking into account both the current

and past-days weather conditions, [12] obtains a relative mean

error of only 10%. Hence, with the knowledge of the accurate

harvesting energy prediction of the next scheduling period for

a sensor, along with the current residual energy, one can make

rational decision on energy budget for the sensor in the next

scheduling period. Note that a valid decision should warrant

sensors will never run out of energy.

Besides, the introduction of ultra-capacitor (up to 3000 F)

can effectively offset the variability of the harvesting energy,

and ensures stable power of harvesting [13]. To a great extent,

this approach eliminates the dependence of activities of sensors

on environmental energy model. As a result, one can simply

assign all the residual energy in the capacitor at the end of

the latest scheduling period as the energy budget in the next

scheduling period.

Nevertheless, the energy budget determination is out of the

focus of this paper, we simply assume that the energy budget

of the next scheduling period T for sensor vi has already been

determined, and is denoted as eiT . In addition, assume that

sensor vi consumes δi energy for sensing and capturing an

event in one time slot, but negligible energy if it is inactive, or

switching between states provided that the duration of a time

slot is set to be long enough. For simplicity, assume li =
eiTL

δiT

for each sensor vi is integral, which means that the charged

power for sensor vi can be equivalently converted to no more

than li active time slots in periodic schedule Si. Thus schedule

Si is subject to ||Si||1 ≤ li where ||Si||1 is the L1 norm of

Si. We call li the active time slot budget of sensor vi.

C. Event Model, QoM Concept and Properties

Events are assumed to occur one after another at a PoI,

and have step utility function [14], i.e., the utility reaches one

instantaneously once an event is detected. Moreover, an event

stays for a while before it disappears. Denote by X the staying

time. Similarly, the time duration before another new event

occurs, which is called the event arrival time, is denoted by

Y . Assume that X and Y at PoI i follow the exponential dis-

tribution with means 1

λi
and 1

µi
, respectively. This assumption

has been widely used in the literature (e.g., [5], [6], [14]–

[17]). For simplicity, further assume that 1

λi
= 1

λ
and 1

µi
= 1

µ

for i = 1, 2, . . . , n. Another important assumption relevant to

events is that the events are identifiable among sensors [14]

(please see [14] for a justification of the assumption).

For QoM of a single PoI i, we use the widely adopted
paradigm [17]. Assume there are mi stochastic events occur-
ring at PoI i during time t, and all the sensors capture ci
events. The QoM of PoI i can be formally defined as:

QoM(i) = lim
t→∞

N∑

i=1

ci/

N∑

i=1

mi (1)

Furthermore, define the regularization function which re-

sembles run-length encoding [18] R : {0, 1}L 7→ NL
′

(L′ ≤
L). Informally, if a vector S is in such a form as Fig. 1

illustrates, then we have R(S) = (p0, q1, p1, q2, p2, . . . qk, pk).
Note that p0 = 0 (or pk = 0) if the schedule starts with (or

ends with) an active time slot.

Let us first consider the QoM of a PoI only covered by one

single sensor vi. The pdf of the event staying time X can be

expressed by:

f(x) = λe−λx, x > 0, mean =
1

λ
(2)

According to [17], if a sensor is scheduled to be active for q
every p time periodically, then the QoM for this (q, p) duty-

cycle schedule is given by QoM = q
p
+ 1−e−λ(p−q)

λp
. We extend

this result and present the following lemma (note that f(x) is

normalized such that one time unit of x is equal to the duration

of one time slot).

Lemma 2.1: The QoM of PoI oi covered by a single sensor
vj (Vi = {vj}), whose schedule Sj can be regularized as
R(Sj) = (p0, q1, p1, q2, p2, . . . qkj

, pkj
), is given by:

QoM(i|Sj) =

∑kj

k=1 qk
L

+

∑kj−1

k=1 (1− e−λpk ) + 1− e
−λ(p0+pkj

)

λL
(3)

Proof: The proof is similar to that of Theorem 6 in [14].

The key point is that if an event happening in an inactive

period pj is ever captured, then it must be first captured in the

next present period qj+1. We omit the detailed proof due to

space limitation.

As a PoI might be covered by multiple sensors, we develop

a solution to deal with this situation. We further suppose

Si = (ai1, ai2, . . . , aiL) and Sj = (aj1, aj2, . . . , ajL) are two

different vectors, then we define the OR operation of vectors

as follows:

Si ∨ Sj = (ai1 ∨ aj1, ai2 ∨ aj2, . . . , aiL ∨ ajL) (4)

Lemma 2.2: The QoM of PoI oi covered by multiple sen-
sors Vi = {v1′ , v2′ , . . . , vn′}, whose schedule is Sj′ (j

′ =
1′, 2′, . . . , n′) respectively, is given by:

QoM(i|S1′ , S2′ , . . . , Sn′) = QoM(i|
∨

vj′∈Vi

Sj′) (5)

In other words, the QoM under multiple sensors can be

equivalently viewed as under single sensor with a combined

schedule,
∨
Sj′ , of every sensor.

Proof: Clearly, assuming that an event is first captured by

time slot aj′k of sensor vj′ , regardless of whether the event

occurs at aj′k or not, it must also be captured by va as aj′k ∈∨
vj′∈Vi

Sj′ ; and vice versa. Then the result follows.

Note that this lemma holds only under the assumption that

the events are identifiable among all sensors. According to

Lemma 2.1 and 2.2, the QoM of a PoI can be calculated as

follows.



1

1
o

2
4
o

5
o

2
o

3
o

1
S

2
S

3
S

3 6
o

Fig. 2. An example of scheduling

Corollary 2.1: The QoM of PoI oi is given by:

QoM(i) = QoM(i|
∨

vj∈Vi

Sj) (6)

For simplicity of exposition, we call Ŝi =
∨

vj∈Vi
Sj the

equivalent monitoring schedule for PoI oi. When there is no

ambiguity, we still use aij to denote the jth time slot state in

Ŝi of PoI oi. Moreover, according to Eq. (3), it is obvious that

even if Ŝi is cyclically shifted, e.g., Ŝi changes from (1, 0, 0, 0)
to (0, 0, 1, 0), the QoM of oi remains unchanged. We call this

property of Ŝi as cyclic shift symmetry and formally state this

observation in the following corollary.

Corollary 2.2: The equivalent monitoring schedule Ŝi of

any PoI oi exhibits cyclic shift symmetry in terms of QoM.

D. Problem Statement

We first present a simple example before delving into the

details. As shown in Fig. 2, suppose there are 3 sensors

covering totally 6 PoIs in the region. The sensor schedule

length L = 4, and the active time slot budget for v1, v2 and

v3 are 1, 2 and 1 respectively. Further, it can be seen that the

sensor schedules are set to S1 = (0, 0, 0, 1), S2 = (1, 0, 1, 0)
and S3 = (0, 1, 0, 0), respectively. Therefore, the equivalent

monitoring schedule Ŝi for each PoI can be determined, e.g.,

Ŝ2 = S1 ∨S2 = (1, 0, 1, 1). In addition, assume λ = 1 for the

exponential distribution of the staying time. Consequently, the

QoMs of PoI o1, o2, o3, o4, o5 and o6 are 0.4876, 0.9080, 1,

0.8161, 0.8161 and 0.4876, respectively. In fact, this schedule

yields an optimal overall QoM.

Considering the finite active time slot budget li of sensors,

we wish to find the optimal scheduling of every sensor in

order to maximize the overall QoM of all PoIs. We assign a

normalized weight wi to each PoI oi. Then QoM can be written

as a weighted sum of the individual QoMs. As a result, our

problem can be formally stated as follows:

(P1) : maximize

N∑

i=1

wiQoM(i)

subject to ||Si||1 ≤ li ∀i = 1, 2, . . . ,m,

Note that QoM(i) can be calculated according to Corollary

2.1 and Lemma 2.1. During this procedure, the equivalent

monitoring schedule Ŝi for each PoI oi should be calculated

based on those schedules of sensors covering oi.

III. SCHEDULING TO MAXIMIZE QOM OF STOCHASTIC

EVENT CAPTURE IN WRSNS

In this section, we first show that the scheduling problem

is NP-complete. Then we come up with an approximation

algorithm with performance guarantee.

A. Hardness Analysis of the Scheduling Problem

We prove that the scheduling problem is NP-complete as

stated in the following theorem.

Theorem 3.1: The scheduling problem is NP-complete.

Proof: We place the detailed proof in the Appendix for a

better flow of the paper.

B. Reformulation of the Scheduling Problem

We first give some definitions to be used in our discussions.

Definition 3.1: Let S be a finite ground set. A real-valued

set function f : 2S 7→ R is normalized, nondecreasing

(or monotonic) and submodular if and only if it satisfies

the following conditions, respectively [19]: (i) f(∅) = 0;

(ii) f(A) ≤ f(B) for any A ⊆ B ⊆ S, or equivalently:

f(A∪{e})−f(A) ≥ 0 for any A ⊆ S and e ∈ S\A; and (iii)

f(A∪{e})−f(A) ≥ f(B∪{e})−f(B) for any A ⊆ B ⊆ S
and e ∈ S\B.

Definition 3.2: [19] A matroid M is a tuple M = (S, I),
where S is a finite ground set and I ⊆ 2S is a collection of

independent sets, such that: (i) ∅ ∈ I; (ii) If X ⊆ Y ∈ I, then

X ∈ I; and (iii) If X,Y ∈ I, and |X| < |Y |, then ∃y ∈ Y \X
such that X ∪ {y} ∈ I.

Definition 3.3: [19] Given S =
⋃k

i=1
S′
i is the disjoint

union of k sets, l1, l2, . . . , lk are positive integers, a partition

matroid M = (S, I) is a matroid where I = {X ∈ S :
|X ∩ S′

i| ≤ li for i = 1, 2, . . . , k}.

We will demonstrate that the problem P1 fits perfectly well

in the realm of maximizing a monotone submodular function

subject to a partition matroid. We start with a definition of

ground set S. Denote by aij the activating time slot aij of

sensor vi, then S is given by:

S = {a11, a12, . . . , a1L, . . . , am1, am2, . . . , amL} (7)

The sensor schedule Si can be equivalently defined as a

subset of S, namely Si = {ai1′ , ai2′ , . . . , aiL′} if and only if

aij′ = 1 (j′ = 1′, 2′, . . . ,L′). We use these two definitions

interchangeably if there is no confusion. Further, S can be

partitioned into m disjoint sets, S′
1, S

′
2, . . . , S

′
m, which is given

by S′
i = {ai1, ai2, . . . , aiL}. S′

i is called candidate schedule

of sensor vi, as any feasible schedule Si is the subset of S′
i.

It is obvious that any scheduling policy X , consisting of all

sensor schedule Si, namely X = {S1, S2, . . . , Sm}, is subject

to |X ∩ S′
i| = |Si| ≤ li. Then we can write the independent

sets as I = {X ⊆ S : |X ∩ S′
i| ≤ li for i = 1, 2, . . . ,m}.

On the other hand, it can be easily proved that M = {S, I}
is a matroid by verifying the three properties proposed in Def.

3.2. Hence we have the following lemma.

Lemma 3.1: The constraint in the scheduling problem P1

can be written as a partition matroid on the ground set S.

We rewrite the optimization problem in P1 as following:

(P2) : maximize f(X) =
N∑

i=1

wiQoM(i|
∨

vj∈Vi

Sj)

subject to X ∈ I

Si = X ∩ S′
i ∀i = 1, 2, . . . ,m,



Algorithm 1 Greedy Algorithm

Input: The sensors set V = {v1, v2, . . . , vm}, the PoIs set O =
{o1, o2, . . . , on}, the objective function f(·), the ground set S, the
candidate schedule S′

i, active time slot budget l1, l2, . . . , lm.
Output: The sensor schedules S1, S2, . . . , Sm.
1: D = S; Si = ∅;
2: for i = 1, 2, . . . ,m;X = ∅;
3: k = 1;
4: while k ≤ m× L do

5: aij = argmaxd∈D fX(d);
6: if fX(aij) = 0 then
7: break;
8: end if
9: X ← X + aij ; Si ← Si + aij ; (namely set Sij = 1)

10: D ← D\aij ; S′

i ← S′

i\aij ;
11: if ||Si||1 = li then
12: D ← D\S′

i;
13: end if
14: k = k + 1;
15: end while

The new optimization function f(X) bears a desirable prop-

erty as is stated in the following lemma.

Lemma 3.2: The objective function f(X) in the optimiza-

tion problem P2 is a monotone submodular function.

Proof: We prove this lemma in the Appendix for a better

flow of the paper.

C. Approximation Algorithm

Having proved that the objective function of our problem

is monotone submodular, now we can resort to a simple

greedy algorithm to find an optimized QoM. The details of

the algorithm can be found in Alg. 1. It can be seen that at

each step the algorithm adds one element with the highest

marginal value to set.

Theorem 3.2: The greedy scheduling algorithm can achieve

1/2-approximation.

Proof: According to the classical results obtained by [20]

and Lemma 3.1 and 3.2, the result follows.

IV. PERFORMANCE EVALUATION

We present simulation results to verify our findings. Unless

otherwise stated, we use the following simulation setups: (i)

the event staying time X ∈ exponential(λ), λ = 1; (ii) each

sensor has a sensing range r = 1m; (iii) The weight wi = 1
for each PoI oi.

A. Performance Evaluation in Small-scale Sensor Networks

We compare our proposed approximation algorithm with the

optimal solution for small-scale networks in this section.

We randomly distribute sensors in a 3m × 3m region in

this scenario. As for PoIs, the deployment region is discretized

into square cells of dimensions 0.5m×0.5m, and each vertex

of each cell is a PoI. We vary the number of sensors between

4 and 8, and only record the data where the total number of

covered PoIs is 36, so as to make the comparisons reasonable

among different cases with different number of sensors. We

compute the overall QoMs of the schedules output by the

greedy for three scenarios: (1) sensor schedule length L = 8,

and the active time slot budget li = 1 for every sensor vi; (2)

L = 5, and li = 1; (3) L = 5, and li is randomly selected

from {1, 2}. Note that the optimal solution is obtained by
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enumerating all possible scheduling policies under the same

active time slot budgets constraints.

The simulation results are shown in Fig. 3, where Optimal1

and Greedy1 refer to the first scenario, and Optimal2 and

Greedy2 refer to the second, and so on. It can be seen that

for networks with small size, the performance of our proposed

greedy is quite close to that of the optimal solution. The overall

QoM of both optimal and greedy algorithms rises when the

number of sensors increases. Another observation is that the

overall QoM grows with a larger active time slot budget li.

B. Performance Evaluation in Large-scale Sensor Networks

We compare our algorithm to CSP proposed in [5], an

energy-efficient protocol for stochastic events capture which

accommodates both synchronous and asynchronous networks,

in large-scale sensor networks.

Generally, there are two versions of CSP: S-CSP for syn-

chronous networks, where all the sensors employ the same

(q, p) schedule and start their on periods at the same time;

and A-CSP for asynchronous networks, where each sensor

employs the same (q, p)-periodic schedule, but start their

on periods independently at a uniformly random point in

time within the period p. Since A-CSP is only suitable for

asynchronous networks, we extend it to synchronous networks

in discrete time model by letting each sensor start their on

periods independently at a random time slot in the schedule

of length L, which we call A-CSP-S. In addition, to make the

comparison between CSP and our scheme feasible, we assume

that there is no sensor whose sensing region is completely

covered by those of its active neighbors, which means each

sensor should not go sleep. Note that, in essence, A-CSP-S is

a randomized algorithm.

Throughout the simulation, sensors are distributed randomly

in a 20m× 20m region. The sensor schedule length L is set

to 4, and the active time slot budget li = 1 for any sensor vi.
Further, the distance between adjacent PoIs is increased with

the average number of sensors increasing from 50 to 500, such

that the number of covered PoIs maintains 500 all the time.

As for A-CSP-S, we simulate the algorithm for 50 times and

record the mean value of the outputs. As shown in Fig. 4, our

proposed greedy algorithm always achieves the highest QoM.

In addition, A-CSP-S performs much better than S-CSP.

V. RELATED WORK

We briefly review the related work in this section. Jaggi

et al. [2] exploited the temporal correlations in the event



occurrences to develop efficient activation policies. Ren et

al. [3] focused on general renewal processes, where the

event arrival time can be drawn from an arbitrary probability

distribution. Tang et al. [8] assumed that the utility function

is monotone submodular, and provided a polynomial time

algorithm which guarantees a constant approximation. These

methods are utility-based and do not apply to stochastic

event capture. In duty-cycle sensor networks, Yau et al. [14]

considered the impact of stochastic event arrival time and

staying time on QoM. He et al. [15] extended the results

of periodic coverage problem by incorporating the energy

constraints of mobile sensors, as well as the energy consump-

tion of sensor movement. As for static sensors, He et al. [5]

considered the energy efficiency and the coordination issues

between sensors in synchronous and asynchronous networks.

He et al. discussed a complementary problem in [6] with

respect to connectivity. In [17], Jiang et al. used readers

capable of mobility and functioning as energy distributors

and data collectors to charge sensors. These results provide

no performance guarantee and cannot be applied to optimal

scheduling in WRSNs in terms of QoM maximization.

VI. CONCLUSION

In this paper, we consider the scheduling problem in order

to maximize the QoM of stochastic event capture in WRSNs.

Specifically, we propose an approximation algorithm with

constant approximation ratio. Simulation results show that

our algorithm has performance close to the optimal, and

outperforms the former work. Nevertheless, our work mainly

focuses on a few types of events, we will extend our work to

accommodate general cases in the future.
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APPENDIX

A. Proof of Theorem 3.1

Proof: To show that problem P1 is NP-complete, we

consider its decision version. Denote by bipartite graph G =
(V,O,E) the coverage graph in Fig. 5 where V and O
denote the set of sensors and PoIs respectively, and E denotes

the set of edges between sensors and PoIs. If there is an

edge between sensor vi (depicted in a circle) and PoI oj
(depicted in a rounded rectangle), it means that vi covers

oj . Given the sensor schedule length L, and a real number

Q ≥ 0, we need to answer whether there exists any scheduling

policy of the sensors, such that ||Si||1 ≤ li for any sensor

vi, and the objective function in the problem P1 satisfies:∑N
i=1

wiQoM(i) ≤ Q.

Denote by Ω the set of weights wi for all PoIs, and L the

set of li. Then the above problem instance can be denoted

as SDP (O, V,E, L,L,Ω, Q). As in [21], we reduce an NP-

complete problem called 2-Disjoint Set Cover Problem to

the decision version of the scheduling problem (we call it

scheduling decision problem hereafter).

Consider a bipartite graph G = (A,B,E) with edges E
between two disjoint vertex sets A and B. For each element

bi ∈ B, it has neighborhoods in A which is denoted by

N(bi). Assume that A =
⋃

bi∈B N(bi). Then it is proved

to be NP-complete in [22] to determine whether there exist

two disjoint sets B1, B2 ⊂ B such that |B1| + |B2| = |B|
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Fig. 5. PoI coverage illustration
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Fig. 6. Reduction from 2-Disjoint set
cover problem

and A =
⋃

bi∈B1
N(bi) =

⋃
bi∈B2

N(bi). For simplicity, we

denote the above problem instance as 2DSC(A,B,E).
First of all, it is easy to see that SDP (O, V,E, L,L,Ω, Q)

is in the class NP. Next we show that given a unit time oracle

for scheduling decision problem we can solve 2-Disjoint Set

Cover Problem in polynomial time.

Consider an oracle which can solve any problem instance

SDP (O, V,E, L,L,Ω, Q) in unit time. Then solving an

problem instance 2DSC(A,B,E) is equivalent to solving

SDP (A,B,E, {1, 1, . . . , 1}, 2, {1/|A|, 1/|A|, . . . , 1/|A|}, 1).
Consider A to be the set of PoIs, B to be the set of sensors,

and E to be the edges representing coverage relationship

between sensors and PoIs. The sensor schedule length L is

set to be 2 and the active time slot budget of all sensors is

equal to 1. The PoI weights are assumed to be 1/|A| for all

PoIs. We check if the overall QoM can be greater or equal

to 1. If it is the case, the overall QoM has to be equal to

1 because QoM for each PoI is at most 1. This can only

happens if the equivalent monitoring schedule Ŝi for any PoI

oi is equal to (1, 1). It means there exist 2 disjoint set covers

B1 and B2, while the entire sensors in B1 are active in its

first time slot and that in B2 are active in its second time

slot. Illustration is provided in Fig. 6.

Conversely, if there exist two disjoint set covers, we can set

the sensors in the first set cover to be active in the first time

slot, and that in the second set cover to be active in the second

time slot. By doing so, the SDP instance will be satisfied

since every PoI oi is continuously covered as Ŝi = (1, 1), and

the overall QoM is equal to 1. In summary, our scheduling

problem is NP-complete.

B. Proof of Lemma 3.2

Proof: According to Def. 3.1, we have to check if the

three conditions hold for f(X). First of all, it is obvious that

f(∅) = 0 holds. This is because all the sensors are actually

inactive for all time slots under such a situation.
Secondly, we consider the monotonicity property of f(X).

Given set A ⊆ S and e1 ∈ S\A. Assume that e1 = aij ,
then f(A+ e1) can be regarded as the resulting overall QoM
obtained by activating the time slot aij of sensor vi based on
the original scheduling policy. Consequently, the equivalent
monitoring schedule of PoI ok, which is covered by vi (ok ∈
Oi), may be changed. For simplicity of exposition, denote the
original and changed equivalent monitoring schedule of ok
as Ŝ<A>

k and Ŝ<A+e1>
k , respectively. In particular, the time

slot akj is activated for Ŝ<A+e1>
k . To save space, we only

consider the case where aij 6∈ Ŝ<A>
k (We say aij ∈ Ŝ<A>

k

if the jth time slot of Ŝ<A>
k is active, namely akj = 1, to

simplify the notation). It is obvious that if Ŝ<A>
k is an empty

schedule, we have QoM(Ŝ<A+e1>
k ) > QoM(Ŝ<A>

k )(= 0).

Otherwise, from Corollary 2.2, we can cyclically shift Ŝ<A>
k

... ...
... ...
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Fig. 7. Proof of monotonicity

and Ŝ<A+e1>
k in the same way, such that the nearest active

time slot ahead of akj is moved to the first position in the
schedule, while the QoM remains unchanged. As is illustrated
in Fig. 7, assume that there are successive pl and pr (pl ≥
0, pr ≥ 0, pl + pr + 1 ≤ L− 1) inactive time slots ahead and

behind of akj in Ŝ<A+e1>
k . Accordingly, there are successive

pl + pr +1 inactive time slots in the same locations including
akj . Follows from Eq. (3), we have:

QoM(k|Ŝ<A+e1>
k

)−QoM(k|Ŝ<A>
k

)

=(
1

L
+

1− e−λpl + 1− e−λpr

λL
)− (

1− e−λ(pl+pr+1)

λL
)

=
1

λL
[λ+ 1− e−λpl + 1− e−λpr − (1− e−λ(pl+pr+1))]

>
1

λL
[(1− e−λ)(1− e−λpl ) + (1− e−λ(pr+1))(1− e−λpr )] > 0.

Note that the first inequality holds since e−λ > (1 − λ) for
any λ > 0. Then we have:

fA(e1) =f(A+ e1)− f(A)

=
∑

ok∈Oi

wk[QoM(k|Ŝ<A+e1>
k

)−QoM(k|Ŝ<A>
k

)] ≥ 0.

The monotonicity property of f(X) holds.
Thirdly, we verify the diminishing returns property of f(X).

Given set A ⊆ B ⊆ S and e1 ∈ S\B. Assume that e1 = aij ,
Similarly, we assume that the original equivalent monitoring

schedules for ok in A and B are Ŝ<A>
k and Ŝ<B>

k , while the

changed ones are Ŝ<A+e1>
k and Ŝ<B+e1>

k , respectively. Due

to space limit, we only consider the case where aij 6∈ Ŝ<A>
k

and aij 6∈ Ŝ<B>
k , and Ŝ<A>

k 6= ∅. Similar to the analysis
of monotonicity of f(X), we assume that after cyclic shift
the number of nearest successive inactive time slot ahead
of and behind of akj in Ŝ<A+e1>

k are p<A>
l and p<A>

r

respectively, while that in Ŝ<B+e1>
k are p<B>

l and p<B>
r

respectively. An important observation is that since A ⊆ B,

we have Ŝ<A>
k =

∨
vi∈Vk

S<A>
i =

∨
vi∈Vk

|A ∩ S′
i| ⊆∨

vi∈Vk
|B ∩S′

i| =
∨

vi∈Vk
S<B>
i = Ŝ<B>

k . Thus it is easy to

see that p<A>
l ≥ p<B>

l and p<A>
r ≥ p<B>

r . Hence:

[QoM(k|Ŝ<A+e1>
k

)−QoM(k|Ŝ<A>
k

)]− [QoM(k|Ŝ<B+e1>
k

)

−QoM(k|Ŝ<B>
k

)]

=
1

λL
[λ+ 1− e−λp<A>

l + 1− e−λp<A>
r − (1−

e−λ(p<A>
l

+p<A>
r +1))]−

1

λL
[λ+ 1− e−λp<B>

l + 1− e−λp<B>
r

− (1− e−λ(p<B>
l

+p<B>
r +1))]

=
1

λL
{(1− e−λp<A>

l )(e−λp<B>
r − e−λp<A>

r ) + (1− e−λp<B>
r )

(e−λp<B>
l − e−λp<A>

l ) + (1− e−λ)(e−λ(p<B>
l

+p<B>
r )

− e−λ(p<A>
l

+p<A>
r ))} > 0.

Then we have:
fA(e1)− fB(e1)

=
∑

ok∈Oi

wk{[QoM(k|Ŝ<A+e1>
k

)−QoM(k|Ŝ<A>
k

)]

− [QoM(k|Ŝ<B+e1>
k

)−QoM(k|Ŝ<B>
k

)]} ≥ 0.

We conclude that f(X) is indeed submodular. Summing up

all the analyses above, the result follows.


