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Abstract—Existing scheduling schemes for stochastic event
capture with rechargeable sensors either adopt simplified as-
sumptions on event staying time or provide no performance
guarantee. Considering the stochasticity of event staying time,
we investigate the sensor scheduling problem aiming to maximize
the overall Quality of Monitoring (QoM) in events capture
application of wireless rechargeable sensor networks. We first
provide a paradigm to calculate the QoM of a point of interests
(Pol) and formulate the scheduling problem into an optimization
problem. Although we find that that this problem is NP-complete,
we prove that the objective function of the optimization problem
is monotone submodular. Therefore we can express the problem
as a maximization of a submodular function subject to a
matroid constraint. Accordingly we can design an approximation
algorithm which achieves a factor of 1/2 of the optimum. We
evaluate the performance of our solution through simulations,
and simulation results show that our scheme outperforms former
works.

Index Terms—Rechargeable sensors; events capture; schedul-
ing; submodularity.

I. INTRODUCTION

Although event capture in WSNs has been studied ex-
tensively, there are some new challenges when we consider
the same issue in wireless rechargeable sensor networks
(WRSNs) [1]. There are works such as [2]-[4] focusing
on how to exploit on-line information of event occurrence
to optimize the Quality of Monitoring (QoM). Here QoM
is defined as the ratio of interesting events captured to all
occurred events. These works do not consider the stochastic
characteristic of the event staying time. In duty-cycle sensor
networks, the works [5], [6] aim to maximize the QoM
under the assumption that event staying time follows the
exponential distribution. But these solutions do not provide
any performance guarantee.

In this paper, we study the scheduling problem for stochastic
event capture in WRSNs with more practical considerations.
We present effective approximation algorithm with perfor-
mance guarantee. The contributions of this work are as fol-
lows.

o We consider the scheduling problem for stochastic event
capture in WRSNs in a more practical way. The stochas-
ticity of event staying time is taken into account. We
provide a paradigm to calculate the QoM of a point
of interests (Pol) in the presence of single or multiple
monitoring sensors.

o We formulate the scheduling problem into an optimiza-
tion problem. Although this problem is NP-complete, we
find that we can express the problem as a maximization
of a submodular function subject to a matroid constraint.
This formulation allows us to design an approximation
algorithm which achieves a factor of 1/2 of the optimum.

o« We conduct extensive simulations to verify the results.
For small-scale networks, we compare the performance of
the proposed algorithm with that of the optimal solution.
For large-scale networks, we show that the proposed
algorithm outperforms two other scheduling algorithms.

The remainder of the paper is organized as follows. In

Section II, basic assumptions and formal definition of our
problem are presented. In Section III, we prove the hardness
of the problem and present an approximation algorithm with
performance guarantee. Section IV presents simulation results.
Before concluding this work in Section VI, we briefly discuss
the related work in Section V.

II. PROBLEM FORMULATION
A. Network Model

We assume that m sensors V' = {v1, va, ..., v, } distributed
in a 2D region cover n Pols O = {01,09,...,0,}. In
particular, suppose that sensor v; covers a subset of Pols
O;. Adjacent sensors can cover nonempty Pols in common.
Accordingly, target o; might be covered by a subset of sensors
Vi. A base station serves as a sink, and requires each sensor
to report its current energy level and other useful information
to it hop by hop on a regular basis. The Collection Tree
Protocol (CTP) [7] is used as the routing protocol for sensors.
Assume that time is divided into time slots and the duration
of a time slot is fixed and given a priori. Every 7' time slots,
the base station determines the periodic schedules for the next
T interval of all sensors, and disseminate them to sensors.
The periodic schedules followed by sensors are of identical
length £. We name such period starting with the scheduling
process as scheduling period, and let T be a multiple of £. A
sensor can schedule itself to be active or inactive in any time
slot. Therefore, the schedule of sensor v; can be expressed by
a vector S; = (a1, @2, ..., aic), Where component a;; = 1
indicates the sensor is active in time slot j while a;; = 0
means the opposite. After all, we assume that the reporting
processes of sensors take place with so low frequency (e.g., 1
hour) that its energy overhead can be ignored.
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Fig. 1. Tllustration of vector regularization

B. Recharging Model and Energy Consumption Model

Much existing work holds that the energy harvesting rates
in many cases are of high variability, and the environmental
energy model can be cast as a stochastic process [3], [4]. How-
ever, for a wide range of application scenarios, such as that
correspond to indoor environment, the energy availability has
been proved to be time-dependent and predictable [8]-[12].
For instance, by effectively taking into account both the current
and past-days weather conditions, [12] obtains a relative mean
error of only 10%. Hence, with the knowledge of the accurate
harvesting energy prediction of the next scheduling period for
a sensor, along with the current residual energy, one can make
rational decision on energy budget for the sensor in the next
scheduling period. Note that a valid decision should warrant
sensors will never run out of energy.

Besides, the introduction of ultra-capacitor (up to 3000 F)
can effectively offset the variability of the harvesting energy,
and ensures stable power of harvesting [13]. To a great extent,
this approach eliminates the dependence of activities of sensors
on environmental energy model. As a result, one can simply
assign all the residual energy in the capacitor at the end of
the latest scheduling period as the energy budget in the next
scheduling period.

Nevertheless, the energy budget determination is out of the
focus of this paper, we simply assume that the energy budget
of the next scheduling period 7" for sensor v; has already been
determined, and is denoted as eiT. In addition, assume that
sensor v; consumes ¢, energy for sensing and capturing an
event in one time slot, but negligible energy if it is inactive, or
switching between states provided that the duration of a time

slot is set to be long enough. For simplicity, assume [; = C;STTE
for each sensor v; is integral, which means that the charged
power for sensor v; can be equivalently converted to no more
than /; active time slots in periodic schedule .S;. Thus schedule
S; is subject to |[S;||1 < I; where ||S;||; is the Ly norm of
S;. We call [; the active time slot budget of sensor v;.

C. Event Model, QoM Concept and Properties

Events are assumed to occur one after another at a Pol,
and have step utility function [14], i.e., the utility reaches one
instantaneously once an event is detected. Moreover, an event
stays for a while before it disappears. Denote by X the staying
time. Similarly, the time duration before another new event
occurs, which is called the event arrival time, is denoted by
Y. Assume that X and Y at PoI 1 follow the exponential dis-
tribution with means /\ and — u , respectively. This assumption
has been widely used in the literature (e g., [5] [6], [14]-
[17]). For simplicity, further assume that —7 = )\ and lle = }L
for « = 1,2,...,n. Another important assumption relevant to
events is that the events are identifiable among sensors [14]

(please see [14] for a justification of the assumption).

For QoM of a single Pol ¢, we use the widely adopted
paradigm [17]. Assume there are m,; stochastic events occur-
ring at Pol ¢ during time ¢, and all the sensors capture c;
events. The QoM of Pol ¢ can be formally defined as:

N N

QoM(i) = lim D i/ Y mi (0
i=1 i=1

Furthermore, define the regularization function which re-
sembles run-length encoding [18] R : {0,1}£ — N£' (£ <
L). Informally, if a vector S is in such a form as Fig. |
illustrates, then we have R(S) = (po, q1,DP1, 92, P2, - - - Qs Dk)-
Note that pyg = 0 (or pi = 0) if the schedule starts with (or
ends with) an active time slot.

Let us first consider the QoM of a Pol only covered by one
single sensor v;. The pdf of the event staying time X can be
expressed by:

f(x)=Xe ™™ 2> 0, mean = 1 2)
According to [17], if a sensor is scheduled to be active for ¢
every p time periodically, then the QoM for this (g,p) duty-
cycle schedule is given by QoM = %—0— 1‘%;%(1). We extend
this result and present the following lemma (note that f(x) is
normalized such that one time unit of x is equal to the duration
of one time slot).

Lemma 2.1: The QoM of Pol o; covered by a single sensor

vj (V; = {v;}), whose schedule S; can be regularized as
R(SJ) = (p07Q17p17Q2’p27-- qk]7pk ) is giVeIl by
kj _ APk _)‘(P()+Pk,- )
QoM (i|S;) = 2okt Gk Zk 1 (1 € )+ 1-— J
c A 3

Proof: The proof is similar to that of Theorem 6 in [14].
The key point is that if an event happening in an inactive
period p; is ever captured, then it must be first captured in the
next present period ¢;11. We omit the detailed proof due to
space limitation. ]
As a Pol might be covered by multiple sensors, we develop
a solution to deal with this situation. We further suppose
S; = (ail, @iy ...y aiL) and Sj = ((ljl, Aj2y -y aﬂ;) are two
different vectors, then we define the OR operation of vectors
as follows:
S‘\/S‘Z(ail Va1, a2 Vaja,. .. aw\/ajg) 4)
Lemma 2.2: The QoM of Pol o; covered by multiple sen-

sors V; = {vl/ Vor, .. vn} whose schedule is S (j' =
1,2',...,n)) respectlvely, is glven by:
QoM(i|51,,52,,...7 =QoM(i| \/ Sy 5)
v /6\/1

In other words, the QoM under multiple sensors can be
equivalently viewed as under single sensor with a combined
schedule, \/ S;/, of every sensor.

Proof: Clearly, assuming that an event is first captured by
time slot a;r;, of sensor v/, regardless of whether the event
occurs at a,, or not, it must also be captured by v, as a;/;, €
Vo eV Sjs; and vice versa. Then the result follows. [ |

Note that this lemma holds only under the assumption that
the events are identifiable among all sensors. According to
Lemma 2.1 and 2.2, the QoM of a Pol can be calculated as
follows.
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Fig. 2.
Corollary 2.1: The QoM of Pol o; is given by:
QoM (i) = QoM(i| \/ S)) 6)

v EV;

An example of scheduling

For simplicity of exposition, we call S, = \/vjew S; the
equivalent monitoring schedule for Pol o;. When there is no
ambiguity, we still use a;; to denote the j;;, time slot state in
:S'\Zv of POAI 0;. Moreover, according to Eq. (3), it is obvious that
even if S; is cyclically shifted, e.g., S; changes from (1, 0, 0, 0)
to (0,0, 1,0), the QoM of 0; remains unchanged. We call this
property of S; as cyclic shift symmetry and formally state this
observation in the following corollary. R

Corollary 2.2: The equivalent monitoring schedule S; of
any Pol o; exhibits cyclic shift symmetry in terms of QoM.

D. Problem Statement

We first present a simple example before delving into the
details. As shown in Fig. 2, suppose there are 3 sensors
covering totally 6 Pols in the region. The sensor schedule
length £ = 4, and the active time slot budget for vy, ve and
vg are 1, 2 and 1 respectively. Further, it can be seen that the
sensor schedules are set to S; = (0,0,0,1), Sy = (1,0, 1,0)
and S3 = (0,1,0,0), respectively. Therefore, the equivalent
rllonitoring schedule S'\Z for each Pol can be determined, e.g.,
Sy =51V.Sy =(1,0,1,1). In addition, assume A = 1 for the
exponential distribution of the staying time. Consequently, the
QoMs of Pol o1, 09, 03, 04, 05 and og are 0.4876, 0.9080, 1,
0.8161, 0.8161 and 0.4876, respectively. In fact, this schedule
yields an optimal overall QoM.

Considering the finite active time slot budget /; of sensors,
we wish to find the optimal scheduling of every sensor in
order to maximize the overall QoM of all Pols. We assign a
normalized weight w; to each Pol o,;. Then QoM can be written
as a weighted sum of the individual QoMs. As a result, our
problem can be formally stated as follows:

N
(P1): maximize ZwiQoM (1)
i=1
subject to [1Silh <1; Vi=1,2,...,m,

Note that QoM (i) can be calculated according to Corollary
2.1 and Lemma 2.1. During this procedure, the equivalent
monitoring schedule S; for each Pol o; should be calculated
based on those schedules of sensors covering o;.

III. SCHEDULING TO MAXIMIZE QOM OF STOCHASTIC
EVENT CAPTURE IN WRSNS

In this section, we first show that the scheduling problem
is NP-complete. Then we come up with an approximation
algorithm with performance guarantee.

A. Hardness Analysis of the Scheduling Problem

We prove that the scheduling problem is NP-complete as
stated in the following theorem.
Theorem 3.1: The scheduling problem is NP-complete.
Proof: We place the detailed proof in the Appendix for a
better flow of the paper. ]

B. Reformulation of the Scheduling Problem

We first give some definitions to be used in our discussions.

Definition 3.1: Let S be a finite ground set. A real-valued
set function f : 2° — R is normalized, nondecreasing
(or monotonic) and submodular if and only if it satisfies
the following conditions, respectively [19]: (i) f(0) = 0;
(i) f(A) < f(B) for any A C B C S, or equivalently:
f(AU{e})—f(A) >0 forany A C S and e € S\ A; and (iii)
f(AU{e}) = f(A) = f(BU{e}) - f(B) forany AC BC S
and e € S\B.

Definition 3.2: [19] A matroid M is a tuple M = (S,7),
where S is a finite ground set and Z C 2° is a collection of
independent sets, such that: (i) ) € Z; (ii) If X C Y € Z, then
X €Z;and (i) If X,Y € Z, and | X| < |Y], then Jy € Y\ X
such that X U {y} € 7.

Definition 3.3:  [19] Given S = |J¥_, S/ is the disjoint
union of k sets, l1,0s,...,l; are positive integers, a partition
matroid M = (S,Z) is a matroid where Z = {X € S :
|IXNSl <l fori=1,2,...,k}.

We will demonstrate that the problem P; fits perfectly well
in the realm of maximizing a monotone submodular function
subject to a partition matroid. We start with a definition of
ground set S. Denote by a;; the activating time slot a;; of
sensor v;, then S is given by:

S:{311,312,...,alﬁ,...,aml,amg,...,am[,} (7)

The sensor schedule S; can be equivalently defined as a
subset of S, namely S; = {a;1/,a;2/,...,a;¢/ } if and only if
a;y = 1" =1,2,...,L). We use these two definitions
interchangeably if there is no confusion. Further, S can be
partitioned into m disjoint sets, S1, S5, ..., S,,, which is given
by S! = {a;1,a;2,...,a;¢}. 5] is called candidate schedule
of sensor v;, as any feasible schedule \S; is the subset of S.
It is obvious that any scheduling policy X, consisting of all
sensor schedule S;, namely X = {51, 55,...,5n}, is subject
to | X NS} = ]S;] <;. Then we can write the independent
setsas Z={X C S:|XNS)| <l fori=1,2,...,m}.

On the other hand, it can be easily proved that M = {S,Z}
is a matroid by verifying the three properties proposed in Def.
3.2. Hence we have the following lemma.

Lemma 3.1: The constraint in the scheduling problem P;
can be written as a partition matroid on the ground set S.

We rewrite the optimization problem in P; as following:

N
(P): maximize f(X) = ZwiQoM(ﬂ \/ S;)
i=1 v; €V}
Xel
Si=XnSs;

subject to
Vi=1,2,...,m,



Algorithm 1 Greedy Algorithm

Input: The sensors set V. = {vi,v2,...,um}, the Pols set O =
{01,02,...,0,}, the objective function f(-), the ground set S, the
candidate schedule S’ ; active time slot budget [1, 2, .

Output: The sensor schedules S1,S2,...,Sm.

:D=25;8;=0;

cfori=1,2,...,mX =0;

k=1,

: while £ <m x L do

a;; = argmaxgep fx (d);

if fx(aij) = 0 then

break;

end if

X < X +a;;; S; < S; + ag;; (namely set S;; = 1)

10: D «+ D\aij; S; < S;\aij;

11: if ||S;||1 = I; then

12: D < D\SJ;

13: end if

14: k=k+1;

15: end while

.
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The new optimization function f(X) bears a desirable prop-
erty as is stated in the following lemma.
Lemma 3.2: The objective function f(X) in the optimiza-
tion problem P, is a monotone submodular function.
Proof: We prove this lemma in the Appendix for a better
flow of the paper. [ ]

C. Approximation Algorithm

Having proved that the objective function of our problem
is monotone submodular, now we can resort to a simple
greedy algorithm to find an optimized QoM. The details of
the algorithm can be found in Alg. 1. It can be seen that at
each step the algorithm adds one element with the highest
marginal value to set.

Theorem 3.2: The greedy scheduling algorithm can achieve
1/2-approximation.

Proof: According to the classical results obtained by [20]
and Lemma 3.1 and 3.2, the result follows. |

IV. PERFORMANCE EVALUATION

We present simulation results to verify our findings. Unless
otherwise stated, we use the following simulation setups: (i)
the event staying time X € exponential(A), A = 1; (ii) each
sensor has a sensing range r = 1m; (iii) The weight w; = 1
for each Pol o;.

A. Performance Evaluation in Small-scale Sensor Networks

We compare our proposed approximation algorithm with the
optimal solution for small-scale networks in this section.

We randomly distribute sensors in a 3m x 3m region in
this scenario. As for Pols, the deployment region is discretized
into square cells of dimensions 0.5m x 0.5 m, and each vertex
of each cell is a Pol. We vary the number of sensors between
4 and 8, and only record the data where the total number of
covered Pols is 36, so as to make the comparisons reasonable
among different cases with different number of sensors. We
compute the overall QoMs of the schedules output by the
greedy for three scenarios: (1) sensor schedule length £ = 8§,
and the active time slot budget [; = 1 for every sensor v;; (2)
L =05,and [; = 1; (3) L = 5, and [; is randomly selected
from {1,2}. Note that the optimal solution is obtained by

- S-CSP
085l 4 A-CsP-s|
——Greed

Overall QoM

4

Fig. 3.

8 100 400 500

200 300
Number of Sensors

Fig. 4. Greedy vs S-CSP & A-CSP-S

5 6 7
Number of Sensors

Greedy vs optimal

enumerating all possible scheduling policies under the same
active time slot budgets constraints.

The simulation results are shown in Fig. 3, where Optimall
and Greedyl refer to the first scenario, and Optimal2 and
Greedy?2 refer to the second, and so on. It can be seen that
for networks with small size, the performance of our proposed
greedy is quite close to that of the optimal solution. The overall
QoM of both optimal and greedy algorithms rises when the
number of sensors increases. Another observation is that the
overall QoM grows with a larger active time slot budget [;.

B. Performance Evaluation in Large-scale Sensor Networks

We compare our algorithm to CSP proposed in [5], an
energy-efficient protocol for stochastic events capture which
accommodates both synchronous and asynchronous networks,
in large-scale sensor networks.

Generally, there are two versions of CSP: S-CSP for syn-
chronous networks, where all the sensors employ the same
(¢,p) schedule and start their on periods at the same time;
and A-CSP for asynchronous networks, where each sensor
employs the same (g, p)-periodic schedule, but start their
on periods independently at a uniformly random point in
time within the period p. Since A-CSP is only suitable for
asynchronous networks, we extend it to synchronous networks
in discrete time model by letting each sensor start their on
periods independently at a random time slot in the schedule
of length £, which we call A-CSP-S. In addition, to make the
comparison between CSP and our scheme feasible, we assume
that there is no sensor whose sensing region is completely
covered by those of its active neighbors, which means each
sensor should not go sleep. Note that, in essence, A-CSP-S is
a randomized algorithm.

Throughout the simulation, sensors are distributed randomly
in a 20m x 20 m region. The sensor schedule length L is set
to 4, and the active time slot budget /; = 1 for any sensor v;.
Further, the distance between adjacent Pols is increased with
the average number of sensors increasing from 50 to 500, such
that the number of covered Pols maintains 500 all the time.
As for A-CSP-S, we simulate the algorithm for 50 times and
record the mean value of the outputs. As shown in Fig. 4, our
proposed greedy algorithm always achieves the highest QoM.
In addition, A-CSP-S performs much better than S-CSP.

V. RELATED WORK

We briefly review the related work in this section. Jaggi
et al. [2] exploited the temporal correlations in the event



occurrences to develop efficient activation policies. Ren et
al. [3] focused on general renewal processes, where the
event arrival time can be drawn from an arbitrary probability
distribution. Tang et al. [8] assumed that the utility function
is monotone submodular, and provided a polynomial time
algorithm which guarantees a constant approximation. These
methods are utility-based and do not apply to stochastic
event capture. In duty-cycle sensor networks, Yau et al. [14]
considered the impact of stochastic event arrival time and
staying time on QoM. He er al. [15] extended the results
of periodic coverage problem by incorporating the energy
constraints of mobile sensors, as well as the energy consump-
tion of sensor movement. As for static sensors, He er al. [5]
considered the energy efficiency and the coordination issues
between sensors in synchronous and asynchronous networks.
He et al. discussed a complementary problem in [6] with
respect to connectivity. In [17], Jiang et al. used readers
capable of mobility and functioning as energy distributors
and data collectors to charge sensors. These results provide
no performance guarantee and cannot be applied to optimal
scheduling in WRSNs in terms of QoM maximization.

VI. CONCLUSION

In this paper, we consider the scheduling problem in order
to maximize the QoM of stochastic event capture in WRSNSs.
Specifically, we propose an approximation algorithm with
constant approximation ratio. Simulation results show that
our algorithm has performance close to the optimal, and
outperforms the former work. Nevertheless, our work mainly
focuses on a few types of events, we will extend our work to
accommodate general cases in the future.
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APPENDIX

A. Proof of Theorem 3.1

Proof: To show that problem P; is NP-complete, we
consider its decision version. Denote by bipartite graph G =
(V,O,E) the coverage graph in Fig. 5 where V and O
denote the set of sensors and Pols respectively, and £ denotes
the set of edges between sensors and Pols. If there is an
edge between sensor v; (depicted in a circle) and Pol o;
(depicted in a rounded rectangle), it means that v; covers
o0;. Given the sensor schedule length £, and a real number
@ > 0, we need to answer whether there exists any scheduling
policy of the sensors, such that ||S;||1 < I; for any sensor
v;, and the objective function in the problem P; satisfies:
SV wiQoM(i) < Q.

Denote by (2 the set of weights w; for all Pols, and L the
set of [;. Then the above problem instance can be denoted
as SDP(O,V,E,L,L,Q,Q). As in [21], we reduce an NP-
complete problem called 2-Disjoint Set Cover Problem to
the decision version of the scheduling problem (we call it
scheduling decision problem hereafter).

Consider a bipartite graph G = (A, B, E) with edges F
between two disjoint vertex sets A and B. For each element
b; € B, it has neighborhoods in A which is denoted by
N(b;). Assume that A = J, cp N(b;). Then it is proved
to be NP-complete in [22] to determine whether there exist
two disjoint sets By, By C B such that |By| + |Bz| = |B]
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and A = Uy, cp, N(bi) = Uy, ep, N(b;i). For simplicity, we

denote the above problem instance as 2DSC(A, B, E).

First of all, it is easy to see that SDP(O,V, E,L,L,Q,Q)
is in the class NP. Next we show that given a unit time oracle
for scheduling decision problem we can solve 2-Disjoint Set
Cover Problem in polynomial time.

Consider an oracle which can solve any problem instance
SDP(O,V,E,L,£,9,Q) in unit time. Then solving an
problem instance 2DSC(A, B, E) is equivalent to solving
SDP(A,B,E,{1,1,...,1},2,{1/|A],1/]4],...,1/]A|}, 1).
Consider A to be the set of Pols, B to be the set of sensors,
and F to be the edges representing coverage relationship
between sensors and Pols. The sensor schedule length L is
set to be 2 and the active time slot budget of all sensors is
equal to 1. The Pol weights are assumed to be 1/|A| for all
Pols. We check if the overall QoM can be greater or equal
to 1. If it is the case, the overall QoM has to be equal to
1 because QoM for each Pol is at most 1. This can only
happens if the equivalent monitoring schedule S; for any Pol
0; is equal to (1,1). It means there exist 2 disjoint set covers
By and B, while the entire sensors in B are active in its
first time slot and that in By are active in its second time
slot. Ilustration is provided in Fig. 6.

Conversely, if there exist two disjoint set covers, we can set
the sensors in the first set cover to be active in the first time
slot, and that in the second set cover to be active in the second
time slot. By doing so, the SDP instance will be satisfied
since every Pol o; is continuously covered as S; = (1,1), and
the overall QoM is equal to 1. In summary, our scheduling
problem is NP-complete. [ |

B. Proof of Lemma 3.2

Proof: According to Def. 3.1, we have to check if the
three conditions hold for f(X). First of all, it is obvious that
f(®) = 0 holds. This is because all the sensors are actually
inactive for all time slots under such a situation.

Secondly, we consider the monotonicity property of f(X).
Given set A C S and e; € S\A. Assume that e; = a;j,
then f(A+ e1) can be regarded as the resulting overall QoM
obtained by activating the time slot a;; of sensor v; based on
the original scheduling policy. Consequently, the equivalent
monitoring schedule of Pol oy, which 1s covered by v; (o) €
0;), may be changed. For simplicity of exposition, denote the
original and changed equivalent monitoring schedule of oy
as SSA> and ST respectively. In particular, the time
slot ay; is activated for ST, To save space, we only
consider the case where a;; ¢ S§A> (We say a;; € S§A>
if the j;, time slot of Sk<A> is active, namely ax; = 1, to
simplify the notation). It is obvious that if S;-*> is an empty
schedule, we have QoM (SgA1>) > QoM (S54>)(= 0).

Otherwise, from Corollary 2.2, we can cyclically shift §§A>
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Fig. 7. Proof of monotonicity
Q<A+e;>

and S in the same way, such that the nearest active
time slot ahead of ay; is moved to the first position in the
schedule, while the QoM remains unchanged. As is illustrated
in Fig. 7, assume that there are successive p; and p, (p; >

0,p 2 0,pr +pr +1 < L —1) inactive time slots ahead and
behind of a; in Sk<A+el>. Accordingly, there are successive
p1+ pr + 1 inactive time slots in the same locations including
ay;. Follows from Eq. (3), we have:
QoM (K|S 417) — QoM (K|S A7)
1 1—e 2 Plg1—e 2pr 1 — e~ AMprtpr+1)
=z AL )= AL

:g[)\ +1—e W41 — e Pr (1 — e Mprtrrtl)y)

>%[(1 —e ML —e M) 4 (1 — e MPrEDY (1 — g7 AP > 0.
Note that the first inequality holds since e™* > (1 — \) for
any A > 0. Then we have:

faler) =f(A+e1) — f(A)

= > wp[QoM(K[SF A7) — QoM (k[SF4>)] > 0.
0, €0;
The monotonicity property of f(X) holds.

Thirdly, we verify the diminishing returns property of f(X).
Given set A C B C S and e; € S\B. Assume that e; = a;,
Similarly, we assume that the original equivalent monitoring
schedules for oy, in A and B are S ,C<A> and S ,C<B >, while the

Q<A+e;> a<B+e1> .
changed ones are Sk< and S}, , respectively. Due
to space limit, we only consider the case where a;; ¢ S
and a;; ¢ Sy P>, and S~ # 0. Similar to the analysis
of monotonicity of f(X), we assume that after cyclic shift
the number of nearest succAes%ive inactive time slot ahead
of and behind of aj; in ST~ are pS4> and psA>
respectively, while that in Sg2t“> are p<P> and psP>
respectively. An important observation is that since A C B,
Q<A>  _ <A>
we have 5547 =V, oy, 5; = Voev, [AN S]] C
_ <B> _ §<B> s
Vo,ev 1BNSI =V, ey, Si = S;>77. Thus it is easy to
see that p*> > p P> and ps4> > p<P>. Hence:

[QoM (KIS 17) — QoM (K|S A7) — [QoM (kST 7)

— QoM (K|S B>)]
=$[A T N G

RGNy s S ) é[,\ I N B

(- e*A(pr>+pr<B>+1))]

<B>

v L S (Ao L

)+ (1—e i "7
(67’\pl<B> - 67A1)1<A>) +(1 - 67>‘)(6’A(1’1<B>+PSB>)
N s
Then we have:

faler) — fe(e1)
= > we{[QoM(K|SS A1) — QoM (K|S A7)

0 €0,

— [QoM (K|S BTy — QoM (K|S E>)]) > o.
We conclude that f(X) is indeed submodular. Summing up
all the analyses above, the result follows. [ |

1 >o.



