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Abstract—Wireless Power Transfer (WPT) technology has
witnessed huge development because of its convenience and
reliability. This paper concerns the fundamental issue of wireless
charger PLacement with Optimized charging uTility (PLOT),
that is, given a fixed number of chargers and a set of points
on the plane, determining the positions and orientations of
chargers such that the overall expected charging utility for
all points is maximized. To address PLOT, we propose a
1−1/e−ε approximation algorithm. First, we present techniques
to approximate the nonlinear charging power and the expected
charging utility to make the problem almost linear. Second,
we develop a Dominating Coverage Set extraction method to
reduce the continuous search space of PLOT to a limited and
discrete one without performance loss. Third, we prove that
the reformulated problem is essentially maximizing a monotone
submodular function subject to a matroid constraint, and propose
a greedy algorithm to address this problem. We conduct both
simulation and field experiments to validate our theoretical
results, and the results show that our algorithm can outperform
comparison algorithms by at least 46.3%.

I. INTRODUCTION

Wireless Power Transfer (WPT) technology has witnessed

huge development and advancement in recent times because

of its advantages of no wiring, no contact, reliable and

continuous power supply, and ease of maintenance. Wireless

Power Consortium, an organization that aims to promote

standardization of WPT, has grown to contain 213 member

companies in 2016 including Microsoft, Qualcomm, Samsung,

and Huawei [1]; and according to a recent report, wireless

power transmission market is estimated to grow 17.04 bil-

lion to 2020 [2]. To achieve efficient energy transfer, WPT

generally requires highly directional transmission by using

high-gain and directional antennas for power transmitters and

receivers to focus the energy in narrow energy beams, such

as in millimeter wave cellular networks [3], [4], wireless

rechargeable sensor networks [5], simultaneous wireless in-

formation and power transfer networks [6], [7], and wireless

powered communication network [8]. Consequently, a power

receiver, or called rechargeable device, can only receive non-

negligible power from a power transmitter, or called wireless
charger, when they are located in the covered regions of

directional antennas of each other. Taking Figure 1 as an

example, the device oj can receive non-zero power from the

wireless charger si while the device ok cannot.

In this paper, we are concerned with the problem of wireless

charger PLacement with Optimized charging uTility (PLOT).

In our considered scenario, devices can appear at some known

points on the plane with any orientation. Given a determined
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wireless charger topology, with different orientations, devices

at a given point would receive different charging power,

which leads to different degree of usefulness called charging
utility in this paper. Then, the expected charging utility for

devices at a point is the expected value of charging utility for

devices whose orientations are uniformly distributed in [0, 2π).
Formally, given a fixed number of chargers and a set of points

on the plane, the PLOT problem is to deploy the chargers on

the plane, i.e., to determine their positions and orientations (the

combination of which we define as strategies), such that the

overall expected charging utility for all points is maximized.

Though there have emerged some wireless charger place-

ment schemes, none of them adopts the directional charging

model for devices and is suitable for our problem. In addition,

though there are some schemes considering the directional

sensor placement problem, which is also close to ours, none

of them can be adapted to address our problem. This is

because essentially the directional sensor placement problem

is a linear and geometric problem, and all its schemes assume

an omnidirectional model for devices, which contradicts ours.

The PLOT problem has two main technical challenges. The

first challenge is that the problem is essentially nonlinear and

continuous. The problem is nonlinear because the charging

power is nonlinear with distance, the utility function is non-

linear with power, and the expected charging utility for a

point is an integral of charging utility from 0 to 2π. It is

also continuous because both the positions and orientations

of chargers are continuous values. The second challenge is to

develop an approximation algorithm, which needs to bound

the performance gap to the optimal one.

We propose an algorithm to address the above two chal-

lenges. First, we approximate the nonlinear charging power

as piecewise constant, and approximate the expected charging

utility for a point as the sum of utility from a limited number of

devices. The objective function of the problem thus becomes



almost linear. Then, we develop a Dominating Coverage Set

extraction method to reduce the continuous search space of

strategies of chargers to a limited number of strategies without

performance loss. Therefore, our problem becomes selecting

a fixed number of strategies from a set of candidate ones to

maximize the overall charging utility, which is discrete. We

thus address the first challenge. Second, we prove that the

reformulated problem falls into the scope of the problem of

maximizing a monotone submodular function subject to ma-

troid constraints, which allows a greedy algorithm to achieve a

constant approximation ratio. Next, we bound the performance

loss during the problem reformulation, and finally obtain the

approximation ratio of our proposed algorithm. Thereby, we

address the second challenge.

We conducted simulations and field experiments to evaluate

our proposed algorithm. The simulation and field experimental

results show that our algorithm can outperform comparison

algorithms by at least 46.3% and at least 56.6%, respectively.

II. RELATED WORK

Wireless charger placement problem. All existing works

considering the wireless charger placement problem adopt the

omnidirectional charging model for devices and even chargers,

rendering them not applicable to our problem. He et al. [9]

considered charger placement for which static or mobile tags

can receive sufficient power to keep continuous working. Chiu

et al. [10] exploited the mobility nature of sensor nodes to

improve charger deployment. Dai et al. [11] concerned the

electromagnetic radiation safety issues for wireless charger

placement.

Directional sensor placement problem. Directional sensor

placement problem is one of the closest problems to ours.

However, it is essentially a linear and geometric problem, and

all related works on this problem assumed that devices are

omnidirectional, which contradicts our model in this paper. In

[12]–[14], the network plane is considered to be a grid, and

any square of the grid is a candidate place for a directional

sensor. Fusco et al. [15] focused on adjusting the orientation

of sensors located at pre-determined positions to maximize

the number of covered targets. Osais et al. [16] studied the

problem of jointly deploying directional sensors and base

stations to some of the candidate points to minimize the

network-wide overhead. Han et al. [17] considered deploying a

minimum number of directional sensors to cover targets while

the sensors are allowed to deploy at any point in the area.

III. PROBLEM FORMULATION

A. Network Model and Charging Model
Suppose we have N points denoted as O = {o1, o2, ..., oN}

in a 2D plane Ω on which rechargeable devices may be placed

with any orientation. We also have M directional wireless

chargers, denoted as S = {s1, s2, ..., sM}, which can be

placed anywhere with any orientation in the plane. By abuse of

notation, we still use oj to denote a rechargeable device, and

TABLE I: Notations

Symbol Meaning

si Wireless charger i, or its position
oj Point j to be charged, or wireless rechargeable

device j
M Number of wireless chargers to be deployed
N Number of points to charge
As Charging angle of chargers
Ao Receiving angle of devices
θi Orientation of charger si
φj Orientation of device oj

Pr(.) Charging power function
Pth Threshold for charging utility function
α, β Constants in the charging model
D Farthest distance a charger can reach

U(.) Utility function
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si to denote the position of charger si. We list the notations

used in this paper in Table I.

We build our charging model by empirical studies. We use

a commodity off-the-shelf TX91501 wireless charger and a

rechargeable sensor node equipped with a P2110 power re-

ceiver both produced by Powercast [18], [19]. First, we let the

sensor node always face to the charger, and vary the distance

of the node from 40 cm to 70 cm and the charger’s orientation

angle with respect to the line connecting the charger and the

node from 0◦ to 360◦. We plot the experimental results in

Figure 3 which shows that the node receives notable power

only when it is within the span of a 60◦ sector, and negligibly

small one elsewhere. Second, we fix the distance to 1m, and

vary the charger’s orientation angle and the node’s orientation

angle (with respect to the line connecting the charger and

the node) from −30◦ (330◦) to 30◦ and from 0◦ to 350◦,

respectively. Figure 4 shows that the node receives notable

charging power only when its orientation angle is within the

range from −60◦ to 60◦.

After all, we propose the directional charging model as

follows. As demonstrated in Figure 1, a charger si with

orientation vector −→rθi only charges devices with non-zero

power in a (power) charging area in the shape of a sector

with (power) charging angle As and radius D. A rechargeable

device oj with orientation vector −→rφj only receives non-zero

power in a (power) receiving area in the shape of a sector

with (power) receiving angle Ao and the same radius D. By

incorporating the widely accepted empirical charging model

proposed in [20], [21], and also following our experimental

results, the charging power from the charger si to the device

oj can be given by



Pr(si, θi, oj , φj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α
(||sioj ||+β)2

, 0 ≤ ||sioj || ≤ D,
−−→sioj · −→rθi − ‖sioj‖cos(As/2) ≥ 0,

and −−→ojsi · −→rφj − ‖ojsi‖cos(Ao/2) ≥ 0.

0, otherwise
where α and β are two constants determined by the surround-

ing environment and the hardware parameters of chargers

[20]–[22], ||sioj || denotes the distance between si and oj , As

is the charging angle of chargers, Ao is the receiving angle

of devices, and −→rθi and −→rφj
are the unit vectors denoting the

orientations of the charger and the device, respectively.

When a device oj is charged by multiple wireless chargers,

we assume the received power of oj is the sum of the received

power from all chargers [9].

B. Charging Utility Model
In practice, rechargeable devices typically have an up-

per bound for their truly received or required power due

to hardware constraints or practical demand. Therefore, we

present the following charging utility model to capture such

characteristics.

U(x) =
{
cu · x, x ≤ Pth

cu · Pth, x > Pth

(1)

where cu and Pth are predetermined constants, and usually

we set cu = 1/Pth for normalization. In this model, the

charging utility is first proportional to the charging power, and

then becomes constant when the charging power exceeds the

threshold Pth.

Based on the above charging utility model, the (expected)
charging utility for a given point oj is the expected value

of charging utility for rechargeable devices at this point with

their orientations uniformly distributed in the range of [0, 2π),
namely ∫ 2π

0

1

2π
U(

M∑
i=1

Pr(si, θi, oj , φ))dφ. (2)

Note that here si and θi (i = 1, 2, . . . ,M) denote the positions

and orientations of placed wireless chargers, respectively.

C. Problem Formulation
Let the tuple 〈si, θi〉 denote the position si and

orientation θi of the charger si, called strategy of

the charger. We define the overall charging utility as

the normalized sum of charging utility from all N
points, i.e., 1

N

∑N
j=1

∫ 2π

0
1
2πU(

∑M
i=1 Pr(si, θi, oj , φ))dφ =

1
2πN

∑N
j=1

∫ 2π

0
U(∑M

i=1 Pr(si, θi, oj , φ))dφ. Finally, our task

is to determine the strategies for all the M chargers so

that the overall charging utility is optimized. With all above,

we define the wireless charger PLacement with Optimized

charging uTility (PLOT) as follows.

(P1) max
1

2πN

N∑
j=1

∫ 2π

0

U(
M∑
i=1

Pr(si, θi, oj , φ))dφ

s.t. si ∈ Ω, 0 ≤ θi < 2π.
Since the objective function of P1 is nonlinear and the con-

straints are continuous, PLOT falls in the realm of nonlinear

programs which are NP-hard [23]. Therefore, we have

Theorem 3.1: The PLOT problem P1 is NP-hard.

IV. SOLUTION

In this subsection, we present our algorithm with approxi-

mation ratio 1−1/e−ε to address PLOT. Generally, the PLOT

algorithm consists of three steps. First, we use a piecewise

constant function to approximate nonlinear charging power,

and approximate the charging utility for a point as the sum

of charging utility from a limited number of devices. By

this means, the charging area of a charger is partitioned into

many subareas. Second, we present a Dominating Coverage

Set extraction method to reduce the continuous search space of

strategies of chargers to a limited number of strategies without

performance loss. The problem is then transferred into finding

M strategies among the obtained strategies to maximize the

overall charging utility. Third, we prove the reformulated

problem falls in the realm of maximizing a monotone sub-

modular optimization problem subject to a uniform matroid,

and propose a greedy algorithm with performance guarantee

to address this problem.

A. Area Discretization
1) Piecewise Constant Approximation of Charging Power:

Let Pr(d) denote the power that a device receives from a

charger with distance d, and suppose that their orientations

are sufficiently close to each other such that Pr(d) =
α

(d+β)2

when 0 ≤ d ≤ D and Pr(d) = 0 otherwise. We use multiple

piecewise constant segments P̃r(d) to approximate the charg-

ing power Pr(d). Our goal is to bound the approximation error

and the computational overhead.
Figure 2 illustrates the key idea of the approximation of

Pr(d). Let l(0), l(1), . . . , l(K) be the end points of K constant

segments in an increasing sequence. Here, K is the number

of segments that controls the approximation error. Obviously,

with a larger K, the approximation error will be reduced, but

more computational overhead will be introduced. In Figure

2, K is set to 2, and the black dotted curves stand for the

approximated value of charging power.
Definition 4.1: Setting l(0) = 0 and l(K) = D, the

piecewise constant function P̃r(d) can be defined as

P̃r(d) =

⎧⎪⎪⎨⎪⎪⎩
Pr(l(1)), d = l(0)

Pr(l(k)), l(k − 1) < d ≤ l(k) (k = 1, ...,K)

0, d > l(K)
The following theorem offers the sufficient condition to ensure

that the approximation error is less than ε1. We omit most

proofs of lemmas and theorems in this paper to save space.
Theorem 4.1: Setting l(0) = 0, l(K) = D, and l(k) =

β((1 + ε1)
k/2 − 1), (k = 1, ...,K − 1) (therefore K =⌈

ln(Pr(0)/Pr(D))
ln(1+ε1)

⌉
), we have the approximation error as

1 ≤ Pr(d)

P̃r(d)
≤ 1 + ε1, (d ≤ D). (3)

2) Charging Utility Approximation for a Point: We present

another technique to approximate the charging utility for a

point to ease the problem. As Figure 5 shows, we use 2π
ΔAo

rechargeable devices centered at a given point o1 with orien-

tations uniformly distributed in [0, 2π) with even space ΔAo

to approximate all possible orientations of devices located at

the point o1.
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After such approximation, the calculation of charging utility
for a given point as expressed in Eq. (2) is simplified from an
integral to a weighted sum, i.e.,

ΔAo

2πAo

2π
ΔAo∑
q=1

U(
M∑
i=1

Pr(si, θi, oj , qΔAo)). (4)

We note that though such approximation incurs performance

loss, we show in the proof to Theorem 4.5 that such loss can

be bounded.

3) Discretizing the 2D Area: In this subsection, we show

how to discretize the 2D area based on the piecewise constant

approximation of Pr(d) and the charging utility approximation

for a point, and therefore, confine the solution space.

The basic idea of area discretization is shown in Figure

6. We draw concentric circles with radius l(1), l(2), ..., l(K)
centered at each device, respectively. Due to geometric sym-

metry, if a charger is located between two successive circles

with radius l(k) and l(k + 1) with respect to a device, then

the device must also lie between two circles with radius l(k)
and l(k + 1) centered at the charger, leading to a constant

approximated charging power if the charger covers the device.

By this approach, the whole 2D plane is partitioned into a

number of subareas. In Figure 6, the charger s1 falls between

the two circles with radius l(1) and l(2) centered at the device

o1, o2, and o3, and s1 covers o1 and o2. Suppose Ao = π
2

and ΔAo = π
4 , the whole 2D plane is divided into 132

subareas. The approximated charging power at o1 and o2 from

the charger is identical and is equal to Pr(l(2)).
Next, we have the following theorems.

Theorem 4.2: Let P̃r(j) be the approximated charging

power of device oj , we have the approximation error as

1 ≤ Pr(j)

P̃r(j)
≤ 1 + ε1. (5)

Theorem 4.3: The number of partitioned subareas is subject

to Z = O(N2ε−2
1 ).

B. Dominating Coverage Set (DCS) Extraction

After the area discretization, the power from any charger to

its surrounding devices is approximated to be constant in each

subarea. Consequently, we only need to consider the coverage

relationship between chargers and devices in each subarea,

which depends on both positions and orientations of chargers.

In this subsection, we show that instead of enumerating all

possible covered sets of devices in each subarea, we only need

to consider a limited number of representative covered sets of

devices, which are formally defined as Dominating Coverage

Sets (DCSs), and determine their corresponding strategies. We

name the procedure of finding DCSs as DCS extraction. Our

ultimate goal is to reduce the problem to a combinatorial

optimization problem of finding M strategies among a limited

number of strategies obtained by DCS extraction.

1) Preliminaries: To begin with, we give the following

definitions.

Definition 4.2: Given two strategies 〈s1, θ1〉, 〈s2, θ2〉 and

their covered device sets O1 and O2. If O2 = O1, we say

〈s1, θ1〉 is equivalent to 〈s2, θ2〉, or 〈s1, θ1〉 ≡ 〈s2, θ2〉; if

O2 ⊂ O1, we say 〈s1, θ1〉 dominates 〈s2, θ2〉, or 〈s1, θ1〉 �
〈s2, θ2〉; and if O2 ⊆ O1, we define 〈s1, θ1〉 
 〈s2, θ2〉.

Definition 4.3: Given a set of devices Oi covered by a

strategy 〈si, θi〉, if there doesn’t exist a strategy 〈sj , θj〉 such

that 〈sj , θj〉 � 〈si, θi〉, then Oi is a Dominating Coverage Set
(DCS).

In addition, for a given subarea, it is possible that only a few

devices can be charged by a charger inside a given subarea,

which we formally define as follows.

Definition 4.4: The candidate covered set of devices Ôi of

the subarea Fi are those devices that can be charged with

non-zero charging power by a charger in Fi.

Apparently, any DCS for a subarea is a subset of the

candidate covered set of devices Ôi.

As choosing DCSs is always better than choosing its sub-

sets, we focus on finding all possible DCSs as well as their

corresponding strategies. In what follows, we first consider

a special case in which the subarea becomes a point as

multiple concentric circles intersect at this point, to facilitate

the following analysis. We then study the general case.

2) DCS Extraction for Point Case: We only sketch the

algorithm for DCS extraction for point case to save space. The

algorithm rotates a device on the point such that its orientation

varies from 0 to 2π. During the process, it tracks the current

set of covered devices, and identifies and records all the DCSs.

3) DCS Extraction for Area Case: Next, we consider how

to extract DCSs given a general subarea Fi. We present the

details of the algorithm in Algorithm 1. Figure 7 shows an

example of how the algorithm operates. Given six devices

and the subarea as shown in Figure 7(a), we first draw lines

passing through each pair of devices, such as o1 and o2
in Figure 7(b), and cross the boundaries of the subarea at

points s1 and s2, then we obtain two DCSs {o1, o2} and

{o1, o2, o4, o5} as well as their strategies 〈s1, θ1〉 and 〈s2, θ1〉,
respectively. Next, we also draw arcs passing each pair of

devices like o3 and o4 as shown in Figure 7(c), and find

two DCSs {o1, o3, o4} and {o1, o2, o3, o4} and their strategies
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Algorithm 1: DCS Extraction for Area Case

Input: The subarea Fi, the candidate covered set of devices Ôi

Output: All DCSs

1 for all pairs of devices, say o1 and o2, in Ôi do
2 Draw a straight line passing through o1 and o2 and extend

the line to intersect with the subarea’s boundaries. Place
chargers at these intersection points and adjust their
orientations such that o1 and o2 lie rightly on its coverage
area’s clockwise boundary. Then compute the DCSs under
the current setting and insert them into the candidate DCS
set.

3 Draw two arcs passing through o1 and o2 and forming an
angle of As with respect to them, and then calculate the
intersection points of the trajectory and the subarea’s
boundaries. Place chargers at these intersection points and
adjust their orientations such that o1 and o2 lie rightly on
its coverage area’s two boundaries, respectively. Then
compute the DCSs under this setting and insert them into
the candidate DCS set.

4 Randomly select a point sj at the boundary of the subarea,
perform the algorithm for DCS extraction for point case and
add the results to the candidate DCS set.

5 Identify and remove all the DCSs which are subsets of some
DCSs in the candidate DCS set.

〈s3, θ2〉 and 〈s4, θ3〉, respectively. Finally, we randomly choose

a point s5 on the boundaries, as Figure 7(d) illustrates, and

perform the algorithm of DCS extraction for point case to

further find DCSs. At the final step, {o1, o2} and {o1, o3, o4}
can be removed as they are subsets to {o1, o2, o4, o5} and

{o1, o2, o3, o4}, respectively.

Next, we define three transformations of strategies.

Definition 4.5: (Projection) Given a strategy 〈s1, θ1〉, move

the charger along the reverse direction of its orientation until

reaching some point s2 on the boundary of the subarea

while keeping its orientation unchanged, i.e., 〈s2, θ1〉 =
f⊥(〈s1, θ1〉).

Definition 4.6: (Rotation) Given a strategy 〈s1, θ1〉, rotate

the charger from θ1 to θ2 and keep the position unchanged.

Definition 4.7: (Translation) Given a strategy 〈s1, θ1〉,
move the charger from the position s1 to another position s2
and keep the orientation unchanged.

Obviously, the projection transformation is a special case of

the translation transformation, and the result is unique. Figure

8 demonstrates the instances of these three transformations.

We have the following lemma for projection.

Lemma 4.1: If 〈s2, θ1〉 = f⊥(〈s1, θ1〉), then 〈s2, θ1〉 

〈s1, θ1〉.

As shown in Figure 8(a), at the new position s2 after the

projection transformation, the charger can not only cover the

devices o2 and o3, but also the device o1 which is not covered

before the projection transformation.

According to Lemma 4.1, we can easily get the following

crucial corollary.

Corollary 4.1: The DCSs extracted by considering the case

wherein chargers located on the boundaries of a subarea are

the same as that by considering the whole subarea.

Corollary 4.1 indeed explains why we only need to consider

the strategies with positions on the boundaries.

Further, let Γ be the obtained set of DCSs in Algorithm 1,

then we have the following theorem.

Theorem 4.4: Given any strategy 〈s, θ〉, there exists

〈s2, θ2〉 ∈ Γ such that 〈s2, θ2〉 
 〈s, θ〉.
Proof: To begin with, from Corollary 4.1, we only need

to consider the strategies with their positions lying on the

boundaries of the subarea. Then, given such a strategy 〈s, θ〉,
we perform the following transformation.

First, we fix the position s, and rotate the charger anticlock-

wise, i.e., perform a rotation transformation, such that there is

at least one device, say o1, touching the right boundary of

the charger’s coverage area, as similar to that in Figure 8(b).

Suppose the obtained strategy is 〈s1, θ1〉 (s1 = s). Obviously,

we have 〈s1, θ1〉 
 〈s, θ〉.
Second, we move the charger along the subarea’s boundaries

and change its orientation accordingly, and during such process

of translation and rotation transformations we guarantee that:

(1) the newly obtained strategy 〈s2, θ2〉 satisfies 〈s2, θ2〉 

〈s1, θ1〉; and (2) the clockwise boundary of the charger’s

coverage area must cross o1. In other words, during the

adjustment, any device covered currently should not fall out

of the coverage area. Apparently, we shall encounter one of

the three possible situations as shown in Figure 9.

Case I: At some position s2 on the boundary of the subarea,

there is some device (e.g., o2 in Figure 9(a)) that touches the

clockwise boundary of the coverage area of 〈s2, θ2〉.
Case II: At some position s2 on the boundary of the subarea,

there is some device (e.g., o3 in Figure 9(b)) that touches the

anticlockwise boundary of the coverage area of 〈s2, θ2〉.
Case III: Neither the situation in (a) nor that in (b) occurs for

any position s2 on the boundary of the subarea (as shown in

Figure 9(c)).

In fact, Case I and II are indeed two critical situations that a

device covered by 〈s1, θ1〉 is about to fall out of the coverage.

In contrast, Case III shows that at any position s2 on subarea’s

boundary, 〈s2, θ2〉 is equivalent to 〈s1, θ1〉 (note that during the

transformations a device would never fall out of the coverage



from the arc boundary of the sector area, we omit analysis

here to save space).

In Algorithm 1, Step 2 and Step 3 correspond to Case I and

II, respectively. At Step 4, randomly selecting a position on

the subarea’s boundaries and performing the DCS extraction

algorithm for point case can find all the DCSs resulted from

Case III. Thus, the corresponding covered set of devices of

strategy 〈s2, θ2〉 must be included in Γ before the reduction

of trivial DCSs at the final step, and it is either equivalent to

or is dominated by some DCS in the final obtained Γ . Since

〈s2, θ2〉 
 〈s1, θ1〉 
 〈s, θ〉, the result follows.

C. Problem Reformulation and Solution

In this subsection, we elaborate on how to select a given

number of strategies from the obtained ones in the last subsec-

tion to maximize the overall charging utility. Specifically, we

first reformulate the problem, then prove its submodularity, and

thereby propose an effective algorithm to address the problem.

For any DCS in the set of all obtained DCSs from all

subareas which is still denoted by Γ , we can compute the

power received by each device correspondingly. Let xi be

a binary indicator denoting whether the ith strategy in Γ is

selected or not. The problem P1 can be reformulated as
(P2)

max
ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ

xiP̃r(si, θi, oj , qΔAo))

s.t.

|Γ |∑
i=1

xi = M (xi ∈ {0, 1}).

(6)

Now P2 becomes a combinatorial optimization problem.

Before addressing P2, we first give the following definitions

to assist further analysis.

Definition 4.8: [24] Let S be a finite ground set. A real-

valued set function f : 2S → R is normalized, monotonic and

submodular if and only if it satisfies the following conditions,

respectively: (1) f(∅) = 0; (2) f(A ∪ {e}) − f(A) ≥ 0 for

any A ⊆ S and e ∈ S\A; (3) f(A ∪ {e}) − f(A) ≥ f(B ∪
{e})− f(B) for any A ⊆ B ⊆ S and e ∈ S\B.

Definition 4.9: [24] A Matroid M is a strategy M = (S,L)
where S is a finite ground set, L ⊆ 2S is a collection of

independent sets, such that: (1) ∅ ∈ L; (2) if X ⊆ Y ∈ L,

then X ∈ L; (3) if X,Y ∈ L, and |X| < |Y |, then ∃y ∈ Y \X ,

X ∪ {y} ∈ L.

Definition 4.10: [24] Given a finite set S and an integer

k. A uniform matroid M = (S,L) is a matroid where L =
{X ⊆ S : |X| ≤ k}.
Based on these definitions, problem P2 can be rewritten as

(P3)

max f(X) =
ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈X

P̃r(si, θi, oj , qΔAo))

s.t. X ∈ L,

L = {X ⊆ Γ : |X| ≤ M}. (7)

Algorithm 2: Strategy Selection

Input: The number of chargers M , DCS set Γ , objective
function f(X)

Output: Strategy set X
1 X = ∅.
2 while |X| ≤ M do
3 e∗ = arg maxe∈Γ\Xf(X ∪ {e})− f(X).
4 X = X ∪ {e∗}.

Lemma 4.2: The objective function f(X) in P3 is a

monotone submodular function, and the constraint is a uniform

matroid constraint.

Therefore, our reformulated problem falls into the scope of

the problem of maximizing a monotone submodular function

subject to matroid constraints, which allows a greedy algo-

rithm to achieve a good approximation [24]. We describe the

algorithm of selecting strategies in Algorithm 2. At each step,

Algorithm 2 greedily adds a strategy e∗ to X such that the

increment of the function f(·) is maximized.

D. Theoretical Analysis
Theorem 4.5: Setting ΔAo = πβ2Pth

αN� π
Ao

�� Pth
α/β2 �ε and ε1 = ε

2 ,

the PLOT algorithm achieves an approximation ratio of 1 −
1/e− ε, and its time complexity is O(Mε−4N4+Mε−3N5).

Proof: Let Γ ∗
1 and Γ ∗

2 denote the set of strategies of
all M chargers under the optimal solution to the problem P1
and the reformulated problem P2, respectively, and Γ2 denote
the obtained strategies of PLOT to the problem P2 (or P3).
First, by Lemma 4.2 and the fact that the greedy algorithm
of maximizing a monotone submodular function subject to a
uniform matroid achieves 1−1/e approximation ratio [24], the
approximation ratio of Algorithm 2 is thus 1− 1/e, namely,

ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ2

P̃r(si, θi, oj , qΔAo))

≥(1− 1

e
)
ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ∗
2

P̃r(si, θi, oj , qΔAo)). (8)

Further, by Eq. (5), we have P̃OPT
r (i) ≥ 1

1+ε1
POPT
r (i).

Second, assume Γ ∗
4 is the optimal solution to the following

problem

(P4) max
ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
M∑
i=1

Pr(si, θi, oj , qΔAo))

s.t. si ∈ Ω, 0 ≤ θi < 2π. (9)

According to Theorem 4.1, we have P̃r(si, θi, oj , qΔAo) ≥
1

1+ε1
Pr(si, θi, oj , qΔAo). Then, by the property of the charg-

ing utility function, we have

ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ∗
2

P̃r(si, θi, oj , qΔAo))

≥ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ∗
4

P̃r(si, θi, oj , qΔAo))

≥ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ∗
4

1

1 + ε1
Pr(si, θi, oj , qΔAo))

≥ 1

1 + ε1

ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ∗
4

Pr(si, θi, oj , qΔAo)). (10)



Note that the first inequality is because Γ ∗
2 is optimal under

the setting of P2.
Third, suppose Γ ∗

5 is the optimal solution to the new
problem P5 which is same as P1 except that the receiving
angle of rechargeable devices is slightly reduced to Ao−ΔAo.
Accordingly, we use P ′

r(si, θi, oj , φj) to denote the charging
power from charger si with orientation θi to device oj with
orientation φj under the settings of P5. Then we have:

ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ∗
4

Pr(si, θi, oj , qΔAo))

≥ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ∗
5

Pr(si, θi, oj , qΔAo))

=
1

N

N∑
j=1

(
1

2π

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ∗
5

Pr(si, θi, oj , qΔAo))ΔAo)

≥ 1

N

N∑
j=1

(
1

2π

2π
ΔAo∑
q=1

∫ (q+ 1
2
)ΔAo

(q− 1
2
)ΔAo

U(
∑

〈si,θi〉∈Γ∗
5

P ′
r(si, θi, oj , φ))dφ)

=
1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

5

P ′
r(si, θi, oj , φ))dφ. (11)

Note that the last inequality is because the receiving area

with receiving angle Ao − ΔAo and orientation φ ∈ [(q −
1
2 )ΔAo (q+ 1

2 )ΔAo] is always covered by the receiving area

with receiving angle Ao and orientation qΔAo.
Fourth, we evaluate the performance gap between the opti-

mal solutions to P1 and P5.
1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

1

Pr(si, θi, oj , φ))dφ

− 1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

5

P ′
r(si, θi, oj , φ))dφ

≤ 1

2πN

N∑
j=1

∫ 2π

0
[U(

∑
〈si,θi〉∈Γ∗

1

Pr(si, θi, oj , φ))

− U(
∑

〈si,θi〉∈Γ∗
1

P ′
r(si, θi, oj , φ))]dφ

≤ 1

2πN

N∑
j=1

∫ 2π

0
cu(

∑
〈si,θi〉∈Γ∗

1

Pr(si, θi, oj , φ)

−
∑

〈si,θi〉∈Γ∗
1

P ′
r(si, θi, oj , φ))dφ

=
cu

2πN

N∑
j=1

∑
〈si,θi〉∈Γ∗

1
||sioj ||≤D

α

(||sioj ||+ β)2
·Ao

− cu

2πN

N∑
j=1

∑
〈si,θi〉∈Γ∗

1
||sioj ||≤D

α

(||sioj ||+ β)2
· (Ao −ΔAo)

≤ cuαM

2πβ2
ΔAo. (12)

Next, to bound the performance of the best solution to
P1, we consider the following baseline placement scheme
first. This scheme deploys chargers to cover given points in
sequence. For each point, it uniformly divides its 2π span angle
into � 2π

Ao
� sectors. For each sector, it puts chargers one by one

in the sector very close to the point until the aggregated power
at the point exceeds Pth, which needs at most � Pth

α/β2 � chargers;

and then moves to the next sector. After all the sectors for a

point are covered, the scheme turns to cover another point.
Obviously, even in the extreme case where each charger can
cover only one single point, the scheme still achieves a utility
of M · 1

N · cuPth

� 2π
Ao

�� Pth
α/β2 � . Then, we have

1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

1

Pr(si, θi, oj , φ))dφ

− 1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

5

P ′
r(si, θi, oj , φ))dφ

≤
αN� 2π

Ao
�� Pth

α/β2 �
2πβ2Pth

ΔAo · cuPthM

N� 2π
Ao

�� Pth
α/β2 �

≤
αN� 2π

Ao
�� Pth

α/β2 �
2πβ2Pth

ΔAo

· 1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

1

Pr(si, θi, oj , φ))dφ, (13)

and thereby
1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

5

P ′
r(si, θi, oj , φ))dφ

≥(1−
αN� 2π

Ao
�� Pth

α/β2 �
2πβ2Pth

ΔAo)

· 1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

1

Pr(si, θi, oj , φ))dφ. (14)

Combining Inequality (8), (10), (11), and (14), we obtain

ΔAo

2πN

N∑
j=1

2π
ΔAo∑
q=1

U(
∑

〈si,θi〉∈Γ2

P̃r(si, θi, oj , qΔAo))

≥(1− 1/e) · 1

1 + ε1
· (1−

αN� 2π
Ao

�� Pth
α/β2 �

2πβ2Pth
ΔAo)

· 1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

1

Pr(si, θi, oj , φ))dφ

≥(1− 1/e− ε1 −
αN� 2π

Ao
�� Pth

α/β2 �
2πβ2Pth

ΔAo)

· 1

2πN

N∑
j=1

∫ 2π

0
U(

∑
〈si,θi〉∈Γ∗

1

Pr(si, θi, oj , φ))dφ. (15)

Hence, if we set ε1 = ε
2 and ΔAo = πβ2Pth

αN� 2π
Ao

�� Pth
α/β2 �ε, then

the approximation ratio of the PLOT algorithm is 1−1/e− ε.

We omit the time complexity analysis to save space.

V. SIMULATION RESULTS

In this section, we conduct simulations to verify the perfor-

mance of the PLOT algorithm by comparing it with three other

randomized algorithms in terms of error threshold ε, charging

angle As, receiving angle Ao and number of chargers M .

A. Evaluation Setup
In our simulation, the target field is a 40m× 40m square

area, and the points are uniformly distributed in this area. If

no otherwise stated, we set α = 100, β = 40, D = 6m,

N = 12, Pth = 0.05W , ε = 0.2, As = π/2, Ao = 2π/3, and

M = 18, respectively. Moreover, each charging utility result

is obtained by averaging results for 100 random topologies.
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B. Baseline Setup
As there are no approaches available to wireless charger

placement for directional charging utility optimization, we

develop three algorithms named Randomized Position and

Discretized Orientation (RPDO), Selected Randomized Po-

sition and Discretized Orientation (SRPDO), and Selected

Randomized Position with Dominating Coverage Sets (SRPD-

CS) for comparison. RPDO randomly distributes directional

chargers in the target field, and picks the direction of each

charger among eight candidate angles, i.e., 0, π/4, . . . , 7π/4
if As ≥ π/4, and among 0, As, . . . , � 2π

As
�As if As < π/4.

SRPDO improves RPDO by selecting positions with at least

one device within the distance of D when generating random

positions. SRPDCS improves SRPDO by applying the algo-

rithm for DCS extraction for point case to generate candidate

orientations. All these algorithms use a greedy method to

sequentially choose M strategies.

C. Performance Comparison
1) Impact of Error Threshold ε: Our simulation results

show that on average, PLOT outperforms SRPDCS, SRPDO,
and RPDO by 41.4%, 43.8%, and 138.0%, respectively, in
terms of ε. Figure 10 shows that the charging utility of PLOT

fluctuates slightly as ε grows, but is always larger than 0.77.

Thus, we can reasonably choose a large ε to reduce the running

time of PLOT without noticeably degrading its performance.

2) Impact of Charging Angle As: Our simulation results
show that on average PLOT outperforms SRPDCS, SRPDO,
and RPDO by 41.7%, 42.9%, and 140.95%, respectively, in
terms of As. Figure 11 shows the charging utility of PLOT,

SRPDCS, or SRPDO increases slowly with As, while that of

RPDO keeps relatively stable at a low level. This is because

the density of devices in our simulation is relatively low and

most chargers can only cover one single device regardless of

their chosen orientation for utility optimization, therefore, the

charging angle As has little impact on the charging utility.

3) Impact of Receiving Angle Ao: Our simulation results
show that on average, PLOT outperforms SRPDCS, SRPDO,
and RPDO by 36.4%, 37.9%, and 115.8%, respectively, in
terms of Ao. Figure 12 shows that the charging utility of three

algorithms increases monotonically with Ao. The charging

utility of our algorithm first increases at a faster speed than the

other three algorithms and approaches 1 when Ao increases

from 60◦ to 180◦, and then keeps stable.

4) Impact of Number of Chargers M : Our simulation
results show that on average, PLOT outperforms SRPDCS, SR-
PDO, and RPDO by 46.3%, 51.9%, and 113.1%, respectively,
in terms of M . Figure 13 shows that the charging utility of

PLOT invariably increases with M until it approaches 1, while

that of RPDO, SRPDCS, and SRPDO increase to about 0.35,

0.6, and 0.6, respectively, and then keeps relatively stable.

D. Insights
In this subsection, we study the impact of uniformness of

position distribution for devices on the overall charging utility.

Suppose there are 12 devices distributed in a 40m × 40m
square area and Ao = 2π/3 and As = π/2. The position of

the devices follows a 2D Gaussian distribution with both x-

and y- coordinates being randomly selected from a Gaussian

distribution with μ = 20. We vary the standard deviation σx

for x-coordinate and σy for y-coordinate both from 3 to 12,

and depict the results in Figure 14. Note that each point on

the surface denotes an average value of 100 experimental re-

sults. We observe that generally the charging utility decreases

monotonically when either σx or σy increases. Indeed, when

σx or σy increases, the position distribution of devices appears

more random, and approaches to uniform distribution. Thus we

claim that the uniformness of position distribution for devices

negatively impacts the charging utility.

VI. FIELD EXPERIMENTS

In this section, we conduct field experiments to evaluate the

performance of the PLOT algorithm.

A. Testbed
As shown in Figure 15, our testbed consists of five TX91501

power transmitters produced by Powercast [18], ten recharge-

able sensor nodes, and an AP connecting to a laptop to report

the collected data from sensor nodes. The rechargeable sensor

nodes are placed in the region of a 240 cm × 240 cm square

area whose coordinates are (140, 135), (167, 140), (233, 185),
(140, 205), (133, 215), (127, 235), (147, 230), (167, 220),
(170, 238), and (180, 213), respectively. We require that all

the chargers should be placed in the area bounded by two

dotted squares with side lengths 360 cm and 240 cm as shown

in Figure 15. We can achieve this requirement by filtering the

obtained results of Algorithm 1 and keeping those strategies

with positions lie in the confined area. Note that we set

Pth = 5mW , and ε such that ΔAo = 20◦.

B. Experimental Results
The placed chargers for PLOT, SRPDO, and SRPDCS are

shown in the blue, red, and green sectors, respectively, in

Figure 15. We can observe that PLOT places chargers in the

four corners of the area, while SRPDO and SRPDCS place

chargers more arbitrarily with many chargers placed close

to each other with similar orientations. Figure 16 shows the

charging utility for each device for the three algorithms. We

can see that PLOT always has higher utility than other two

algorithms for each device. Our algorithm PLOT outperforms

SRPDO and SRPDCS by at least 23.0% and 27.6%, and by
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98.3% and 56.6% on average, respectively. Moreover, Figure

17 shows the CDFs of received charging powers for devices

at 10 positions with 360◦/ΔAo = 18 possible orientations

for the three algorithms. We can see that devices for PLOT

achieve much larger charging power compared to others.

For example, the percentage of devices with charging power

less than 2mW occupies only 3.9% for PLOT, while the

percentages for SRPDO and SRPDCS are up to 70.0% and

61.1%, respectively.

VII. DISCUSSION

Deploying minimum wireless chargers to achieve a
required charging utility. The solution is nearly the same

as the PLOT algorithm, except that in Algorithm 2, we

greedily select strategies for chargers one by one until a

required charging utility is achieved, and then output the

selected strategies. According to the classical results in [25],

the adapted algorithm based on Algorithm 2 achieves 1
lnn

approximation ratio, where n is the number of candidate

strategies. By similar analysis, we can prove that the overall

solution can still achieve 1
lnn approximation ratio. Despite that

n is typically a large value, we can try to reduce n by removing

unnecessary strategies to improve the performance guarantee.

Determined topology of rechargeable devices. When the

topology of devices is determined with known positions and

orientations, we can substitute the devices for the set of devices

we used to approximate the expected charging utility for a

point. Then, we perform the PLOT algorithm in the same way,

and can still obtain a 1− 1/e− ε approximation algorithm.

VIII. CONCLUSION

The key novelty of this paper is on proposing the first

scheme for wireless charger placement with optimized charg-

ing utility. The key contribution of this paper is building

the empirical directional charging model, developing an ap-

proximation algorithm, and conducting field experiments for

evaluation. The key technical depth of this paper is in making

the original nonlinear and continuous optimization problem

almost linear and discrete by presenting the techniques of

area discretization and Dominating Coverage Set extraction,

and proving that the reformulated problem is a problem

of maximizing a monotone submodular function subject to

matroid constraints. Our simulation and experimental results

show that our proposed scheme achieves good performance

and can outperform the other algorithms by at least 46.3%.
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