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Abstract—This paper considers the fundamental problem of
Placement of unmanned Aerial vehicles achieviNg 3D Directional
coverAge (PANDA), that is, given a set of objects with determined
positions and orientations in a 3D space, deploy a fixed number of
UAVs by adjusting their positions and orientations such that the
overall directional coverage utility for all objects is maximized.
First, we establish the 3D directional coverage model for both
cameras and objects. Then, we propose a Dominating Coverage
Set (DCS) extraction method to reduce the infinite solution space
of PANDA to a limited one without performance loss. Finally,
we model the reformulated problem as maximizing a monotone
submodular function subject to a matroid constraint, and present
a greedy algorithm with 1 — 1/e approximation ratio to address
this problem. We conduct simulations and field experiments to
evaluate the proposed algorithm, and the results show that our
algorithm outperforms comparison ones by at least 75.4%.

I. INTRODUCTION

Camera sensor network has attracted great attention in
recent years as it provides detailed data of environment by
retrieving rich information in the form of images and videos
[1], [2]. It has found a wide range of applications, such as
surveillance, traffic monitoring, and crowd protection, efc.
For some temporary situations, such as assembly, concerts,
matches, and outdoor speeches, establishing stationary camera
sensor network in advance may cost too much time and money,
and may be inconvenient or even impossible. Fortunately, the
development of Unmanned Aerial Vehicle (UAV) technology
in the past few years [3], [4] offers a promising way to address
this issue. With the low-cost and agile UAVs, camera sensor
network can be deployed dynamically to capture real-time,
reliable and high-quality images and videos. For example, DJI
Phantom 4 UAV can fly at 72 km/h, rise at 6 m/s, swerve at
250°/s, and provide 2K real-time images and videos [5].

To guarantee high quality of monitoring, UAVs should
jointly adjust their coordinates and the orientations of their
cameras to cover objects at or near their frontal view [6].
Though some sensor placement methods have emerged to
study directional sensor or camera sensor coverage problem
[7]1-[19], none of them considers that sensors and objects are
placed in 3D environment. Although a few camera sensor
coverage methods consider 3D environment [20]-[22], almost
all of them assume that all objects are still distributed on
2D plane. However, in many scenarios, the objects cannot
be served as distributed on 2D plane. For example, in face

d,
Fig. 1: 3D Directional coverage model

recognition [23] UAVs won’t be more than 15m far and
5m high from the human faces, which implies the height of
humans cannot be ignored, especially they are on different
floors. Another example, in crop inspection [24] UAVs need
to monitor crop closely to capture the details of them, hence
the height of crop also cannot be neglected.

In this paper, we study the problem of Placement of Un-
manned Aerial Vehicles achieviNg 3D Directional coverAge
(PANDA). In our considered scenario, some objects are dis-
tributed in 3D space with known facing direction, and we
have a given number of UAVs to deploy in the free 3D space
whose cameras can freely adjust their orientation. The practical
3D directional coverage model for cameras and objects is
established as Figure 1. The coverage space of camera is
modeled as a straight rectangle pyramid and the efficient
coverage space of object is modeled as a spherical base
cone, which are both fundamentally different from previous
work. Moreover, we define directional coverage utility to
characterize the effectiveness of directional coverage for all
objects. Formally, given a fixed number of UAVs and a set
of objects in the space, PANDA problem is to deploy the
UAVs in the 3D free space, i.e., to determine their coordinates
and orientations (the combinations of which we define as
strategies), such that the directional coverage utility for all
objects is maximized.

We face two main technical challenges to address PANDA.
The first challenge is that the problem is essentially continues
and nonlinear. The problem is continues because both coor-
dinates and orientations of UAVs are continuous values. It is
also nonlinear because the angular constraints for both camera
model and object model, and the constraint of pitching angle
of camera in objective function. The second challenge is to
develop an approximation algorithm which needs to bound
the performance gap to the optimal solution.



To address these two challenges, first, we propose a Domi-
nating Coverage Set extraction method to reduce the continu-
ous search space of strategies of UAVs to a limited number of
strategies without performance loss. Hence, PANDA problem
becomes to select a fixed number of strategies from a set
of candidate ones to maximize the overall object directional
coverage utility, which is discrete, and we address the first
challenge. Then, we prove that the reformulated problem falls
into the scope of the problem of maximizing a monotone
submodular function subject to a matroid constraint, which
allows a greedy algorithm to achieve a constant approximation
ratio. Consequently, we address the second challenge.

II. RELATED WORKS

Directional sensor coverage and camera sensor coverage.
Directional sensor coverage works can be classified into object
coverage and area coverage, whose respective goal is maximiz-
ing the number of covered objects [7], [25] and area coverage
ratio [8], [26], but most of them do not take the objects’ facing
direction into account [10]. In addition, although most of
camera sensor coverage works consider objects’ facing direc-
tion [9], [27], [28] and address directional coverage problems
under various scenarios, i.e., barrier coverage [27], they only
consider 2D sector model which is also the assumption of most
of directional sensor coverage works.

3D camera sensor coverage. There exists a few works
focusing on camera sensor coverage in 3D environment. Ma
et al. in [20] proposed the first 3D camera coverage model
and developed an algorithm for area coverage on 2D plane
with the projecting quadrilateral area of 3D camera coverage
model. Based on this model, Yang et al. in [29] introduced
coverage correlation model of neighbor cameras to decrease
the number of cameras. Han er al. in [30] and Yang et
al. in [31] took energy and storage of camera sensors into
account and proposed high-efficient resource utility coverage
algorithm. Si ef al. in [32] considered the intruders’ facing
direction and the size of face in barrier coverage. Hosseini
et al. in [33] addressed the problem of camera selection and
configuration problem for object coverage by binary integer
programming solution. Li ef al. in [21] and Peng ef al. in [22],
[34] established a more practical 3D camera coverage model,
and studied three area coverage problems based on this model.
However, most of above works simply use 3D camera coverage
model to address those problems whose covered objects or
area are only distributed on 2D plane, and thus none of them
can solve our problem.

III. PROBLEM STATEMENT

Suppose we have M objects O = {01,09,...,0p} to be
monitored in a 3D free space, each object o; has a known
orientation, which is denoted by a vector cfoj. We also have
N UAVs C = {c1,¢a,...,cn} equipped with cameras which
can hover anywhere in the 3D free space. Because of hardware
limitation, their cameras can only rotate in the vertical plane.
However, this limitation has no influence to the coverage
orientation, because UAV can hover in the air and rotate itself

TABLE I: Notations

Symbol | Meaning
ci UAV 14, or its 3D coordinate
0; | Object j to be monitored, or its 3D coordinate
N | Number of UAVs to be deployed
M | Number of objects to be monitored
deg Orientation of camera of UAV 1
7 | Pitching angle of camera
Minimum pitching angle
Maximum pitching angle

« | Horizontal offset angles of the FoV around d;
B | Vertical offset angles of the FoV around d.;
do; | Orientation of object o;

0 | Efficient angle around a?oj for directional coverage
D | Farthest sight distance of camera with guaranteed moni-
toring quality
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Fig. 3: Directional coverage
model

Fig. 2: Camera model

to face any horizonal orientation. By a little abuse of notation,
¢; and o, also denote the coordinate of UAV and object. Table
I lists the notations we use in this paper.

A. Camera Model

More complicated than previous sector model of 2D direc-
tional sensor, camera model in 3D environment needs to be
modeled as a straight rectangular pyramid as shown in Figure
2. Due to cameras only can rotate in vertical plane, edge AC
and BD are always parallel to the ground.

We use a 5-tuple (c;, cfm v, a, () to denote the cam-
era model. As illustrated in Figure 2, point ¢; denotes the
coordinate of UAV ¢;, its value is (zo, %o, 20). Vector cfm
denotes the orientation of c¢;’s camera which is perpendic-
ular to undersurface ABCD and its unit vector equals to
(z1,y1,21). Point O is the centre of rectangle ABCD and
the distance |c;O| = D, where D is the farthest distance
from camera which can guarantee the quality of monitoring
of every object on ABCD. Thus, the coordinate of point O is
(zo+ Dz1,yo+ Dy, 20+ Dz1). Clearly, we can mathematically
express plane ABCD as

x — (zo + Dz1)
dei - | y—(yo+Dy1) | =0. (1)
z— (20 4+ Dz1)

Connecting point ¢; to midpoint P of AC and Q of CD
respectively, we can get plane ¢;OP and ¢;OQ). As cameras
only can rotate in vertical field, plane ¢;OP is parallel to z-
axis. Thus, plane ¢;OP can be expressed as

—y12 + 21y + Toy1 — yor1 = 0. 2)



As shown in Figure 2, OQ L OP,0Q 1 Oc; , thus OQ L
¢;OP . By Equation (2) and ZOc¢;(Q equals to the horizontal
offset angle v, so |[OQ| = D - tan« . Thus, we can obtain

O@:D~tana~(—y1,m1,0)‘ 3)

Similar, OP 1 ¢;0Q, ZOc; P equals to the vertical offset
angle 3, then we have |OP| = D-tan . Combine the equation
of plane ¢;OP, vector O? can be obtained as

OF = (w121, 9121, —yi — 27) - D - tan . 4)

To a given object o;, if 0; is covered by c;, it must be in
some rectangle which is parallel to ABCD, i.e. rectangle (2
between ¢; and ABC'D in Figure 2. According to this idea,
we can illustrate the camera model as follows. Point O’ is
the centre of the rectangle and its coordinate is easy to figure
out by o; and normal vector d:z Utilize normal vectors O
in Equation (3) and O? in Equation (4), if o; satisfies the
following constraint, point o; is covered by camera c;.

—
1, Prjz0'o; <|0'P|,
— I
Prjs50'0; <10'Q],

Fe(ci,o04 i J:Jj) =
U Prj; o) < D.

) )
0, otherwise.
s.t. |c:O'| = Prjjcici—o;, |O'P'| = |¢;O'| - tan §3,
|0'Q'| = |¢;O'| - tan av.

B. 3D Directional Coverage Model

First, we define 3D directional coverage as follows.

Definition 3.1: (3D directional coverage) For an given
object o; and its facing direction cf(x,y, z), there is an UAV
c; with camera orientation cfci, such that o; is covered by c;
and a(d_: oj—ci) < 6 (0 is called the efficient angle), then object
0; is 3D directional covered by c;.

According to Definition 3.1, object model can be established
as a spherical base cone as Figure 3. Let Object o; be the
vertex, rotate a sector of 6 central angle and D radius around
vector d for one revolution, then we obtain the object model

as follows.
|Gioj| < D, ©
a(OJ'—C;’ dZDj) <é.
Based on Equation (6), UAV ¢; can efficiently cover object
o; only when it locates in the cone of object o; where can
guarantee |¢;o;| < D and a(o;¢;,d,;) < 0. Thereby, combine
Equation (5) and (6), we can obtain the directional coverage
function as
—
1, Prjgp0'o; <|0'P],
PT]@O 0; <10'Q’|,
Prjg o) < |co)| < D.
(056, do) < 0. Q)
0, otherwise
st O = Prjd—cho?, |O"P’| = |¢;O’| X tan 3,
|0'Q’'| = |¢; 0’| - tan av.

Fv(cﬁojacz:ﬁhd_;j) =

Then, the directional coverage utility can be defined as

e e 17 j\i F, Ci70'7d1i7dz7' >17
Z/{’U(C’i,dci70j7dl)j) = { Zz—l ( ! ]) B (8)

0, otherwise.

C. Problem Formulation

Let the tuple {(¢;,d.;), called strategy, denotes the coordi-
nate of UAV ¢; and orientation of its camera d:, Due to the
limited resource of UAV, our task is to determine the strategies
for all N UAVs to optimize overall directional coverage utility
for all M objects, namely the number of directional covered
objects. Formally, the PANDA problem is defined as follows.

M N
P maz Y U Folci 05, dei, dog)),
j=1 i=1
s.t. TYmin S Y S Ymazx-

Since the function F),(-) is nonlinear and the constraints
of P1 is continuous, PANDA falls in the realm of nonlinear
programs which are NP-hard [35]. Hence, we have

Theorem 3.1: The PANDA problem is NP-hard.

IV. SOLUTION

In this section, we present an algorithm with approximation
ratio 1 —1/e to address PANDA. Before describing the details
of it, we first present the key intuitions and solution overview.

A. Key Intuitions and Solution Overview

1) Key Intuitions: (1) Focus on possible covered sets of
objects of UAVs rather than candidate positions and orienta-
tions of UAVs. As we can deploy UAVs on any position and
set the orientation of their cameras arbitrarily, the number of
candidate strategies of UAVs is infinite, or the solution space
of PANDA is infinite. However, many strategies are essentially
equivalent if they cover the same set of objects. Apparently, we
only need to consider one representative strategy among its as-
sociated class of all equivalent strategies, and the number of all
such representative strategies is finite because the number of
all possible covered sets of objects is finite. (2) Focus on those
strategies that cover large sets of objects. If a representative
strategy covers the set of objects {01, 02, 03, 04}, undoubtedly
you don’t need to consider strategies that cover its subsets,
such as {01,092} or {02,03,04}. Our goal is to find those
representative strategies that possibly cover maximal covered
sets of objects while avoiding the others. (3) Find or “create”
constraints to help determine representative strategies. To
uniquely determine a strategy, mathematically we need at least
9 equations. Then, even if we know the associated covered
set of objects for a class of equivalent strategies how can
we efficiently determine at least one representative strategy?
Our solution is to imagine that given a feasible strategy,
we can adjust its position and orientation such that one or
more objects touch some sides of the pyramid of the strategy
while keeping no objects out of coverage. Obviously, the
obtained strategy after the adjustment is also feasible and
can be selected as a representative strategy. Then, we in turn
use the touching conditions as constraints and formulate them
as equations to help determine the representative strategies.



Apart from such kind of constraints, we also find an additional
constraint regarding positions of representative strategies for
their determination in this paper.

2) Solution Overview: First, any object only can be ef-
ficinetly covered by an UAV in its efficient coverage space,
which is modeled as a spherical base cone, by the 3D
Directional Coverage Model. The whole solution space is
thus the union of all spherical base cones for all objects.
We further present a space partition approach to partition the
whole solution space into multiple subspaces, which can be
considered separately. Especially, for each subspace, the set of
all possibly covered objects by adjusting the orientation of an
UAV at any point in the subspace is exactly the same.

Second, we propose the notion of Dominating Coverage
Set (DCS), which covers the maximal set of objects and has
no proper superset of covered objects by other strategies.
Then, our goal turns to find all candidate DCSs and their
associated representative strategies. Specifically, we first prove
that the positions of associated strategies of DCSs must lie on
the boundaries of subspaces, which serves as a constraint to
help determine the representative strategies. Next, we imagine
that we adjust the positions and orientations of strategies to
create touching conditions and thus new constraints. More
importantly, we prove that it is sufficient to enumerate the
seven different cases where 1 to 7 objects touch on the
sides of pyramid in order to extract all possible DCSs, and
the enumeration process must be done in polynomial time.
Consequently, our problem is transformed into choosing N
strategies among the obtained candidate DCS strategies to
maximize the number of covered objects.

Finally, we prove that the transformed problem falls into
the realm of maximizing a monotone submodular optimization
problem subject to a uniform matroid, and propose a greedy
algorithm to solve it with performance guarantee.

B. Space Partition

As mentioned in 3D Directional Coverage Model, efficient
coverage space of each object is modeled as a spherical base
cone. These spherical base cones intersect among each other
and form many 3D partitions called subspaces.

Due to geometric symmetry, only the UAVs locating in
subspaces have chance to cover objects, and their potentially
covered objects vary from one subspace to another. For exam-
ple, in Figure 1, UAV ¢; locates in the common subspace of
01 and o, and it can cover o7 and o5 simultaneously. Then we
focus on the upper bound of the number of subspaces. First, we
prove that the number of partitioned subareas Z for n uniform
sectors in 2D plane is subject to Z < 5n? —5n + 2 with Euler
characteristic [36]. Then, based on above result, we prove
the upper bound of the number of partitioned subspaces for
uniform cones by reduction, as formally stated in the following
theorem. We omit the detailed proof due to space limit.

Theorem 4.1: The number of partitioned subspaces is
subject to Z = O(M?).

C. Dominating Coverage Set (DCS) Extraction

After the space partition, we only need to consider the
relationship between objects and UAVs in each subspace,
which depends on the coordinates and orientations of UAVs.
In this subsection, we show that instead of enumerating all
possible covered sets of objects, we only need to consider
a limited number of representative covered sets of objects,
which are defined as Dominating Coverage Sets (DCSs), and
figure out their corresponding strategies. Our ultimate goal is
to reduce the problem to a combinatorial optimization problem
which is selecting N strategies from a limited number of
strategies obtained by DCS extraction.

1) Preliminaries: To begin with, we give the following
definitions to assist analysis.

Definition 4.1: (Dominance) Given two strategies (1, cfcl),
(:2,dlg> and their covered sets of objects O; and Os. If
1 = Oa, (cl,d_;l> is equivalent to (027(122), or (cl,d_;l)
= <cz,cf(;2); If Ql O 0o, (cl,cicﬁ dominates <62,J;22, or
(c1,de1) > (c2,dea); And if O1 D Oo, (c1,de1) = (c2,de2).

Definition 4.2: (Dominating Coverage Set) Given a set of
objects O; covered by a strategy (01,J;,> if there does not
exist a strategy (cj,(fcj> such that <cj,cfcj> = (¢;,d,), then
O; is a Dominating Coverage Set (DCS).

For a given subspace, it is possible only a few objects in
the ground set of objects can be covered by an UAV locating
in this subspace. We formally give the following definition.

Definition 4.3: (Candidate Covered Set of Objects) The
candidate covered set of objects O, for subspace S} are
those objects possible to be covered by UAV ¢; with some
orientation d;; in Sg.

Obviously, any DCS of a subspace is a subset of its
candidate covered set of objects O;.

As selecting DCSs is always better than selecting its subsets,
we focus on figuring out all DCSs as well as their strategies.

2) DCS Extraction: First, we define four kinds of transfor-
mations as follows.

Definition 4.4: (Translation) Given a strategy (cl,cfcl),
keep the orientation unchanged and move the UAV from
coordinate cq to coordinate cs.

Definition 4.5: (Rotation Around Camera (RAC)) Given
a strategy (c1, CZ:31>, keep the coordinate unchanged and rotate
the orientation from cfcl to cfcz.

Definition 4.6: (Rotation Around Objects (RAO)) Given
a strategy (cq, J;1>, keep the object(s) on the touching side of
pyramid, i.e. left side in Figure 4(c), and move the UAV from
<Cl, dc1> to <62, dC2>. -

Definition 4.7: (Projection) Given a strategy (c1,d.1), keep
the orientation unchanged and move the UAV along the reverse
direction of orientation (fcl until reaching some point ce on the
boundary of subspace, i.e. {ca, cfd) = f1({c1, cfcl))

Figure 4 depicts four instances of these four transformations.
Figure 4(c) illustrates the RAO subject to objects o3 and o4.

According to the definition of projection , we have the
following lemma.

Q/\



(@)
Fig. 4: Four kinds of transformations: (a) Translation, (b) Rotation Around Camera, (c) Rotation Fig. 5: View orientation

Around object(s), (d) Projection

-

Lemma 4.1: If (c3,do1) = f1({c1,de1)). then (ca,dey) =
<Cl7 dcl > .

By Lemma 4.1 we can get the following corollary.

Corollary 4.1: Considering the case wherein UAVs lying on
the boundaries of a subspace is equivalent to considering the
whole subspace in terms of DCS extraction.

By Corollary 4.1, we only need to consider the strategies
wherein cameras lying on the boundaries of subspace. We
can perform the following transformation that begins with an
arbitrary strategy (c,cﬁ) where c lies on the boundary. First,
we execute RAC until there is at least one object touches some
side of the straight rectangle pyramid (note that an object
will never fall out of the pyramid through its undersurface as
we discussed before). Next, keeping ¢ lying on the boundary
and former touched objects lying on their former touching
sides, execute RAO and translation such that there is at least
another object touches some side of pyramid. Execute above
transformation of RAO and translation under given constraints
repeatedly, such that as many as possible objects touch sides of
pyramid until there is no objects will touch any side, we call it
final condition. Finally, the position and orientation of straight
rectangle pyramid, namely strategy, can be either uniquely
determined or not. For the former case, we can directly extract
DCS of the unique strategy. For the latter, we can select an
arbitrary strategy of final condition and extract DCS.

Because that during above transformation there is no object
falling out of the pyramid, the set of covered objects of final
condition dominates all sets under conditions of the process
of transformation. Thus we only need to analyze the final
condition which generate representative strategy. In particular,
we can enumerate all possible cases of final conditions for
which there are 1 to 7 objects touch sides of the pyramid.
Then, we argue that there is NO performance loss and will
prove it in Theorem 4.3.

In the following analysis, we use (a, b, ¢) to denote the
case of final condition where a(b,c) sides have three(two,
one) objects touching each of them. We only analyze typical
cases and omit the discussion of similar cases in this paper
to save space. Figure 6 to 10 depict the typical cases of final
conditions, whose view is from the inverse direction of d;
as shown in Figure 5. The crossing dotted lines denote four
edges of straight rectangle pyramid and their intersection point
denotes the vertex of it.

To one- and two-object case, only need to choose a point ¢;
on the boundary of subspace S; arbitrarily and extract DCSs
greedily. In three-object case, there are three typical subcases.

() (1, 0, 0). As (1, 0, 0) in Figure 6, 01, 02, and o3 lie on
the up side. Clearly, with the coordinates of three objects and
expression of camera model, we have

T_iup + 0102 = O,ﬁup + 0203 = O7
dyi - up = sin B, du; - i1 = 0, )
|flup| = 1, |dei| = 1, |70| = 1,71/ /2Oy

where 1,,, is the normal vector of up side, 7; is the direction
vector of the intersecting line of up side and the horizonal
plane, and d; -7,y = 0 describes camera can only rotate in the
vertical plane we have discuss in Section III . Hence, we can
obtain the orientation J;Z with Equation (9) and the candidate
coordinates c; can be expressed as follows:

{—> < D,|cio}| < D, |&o}| < D, (10,

a(mv d-;j) < 97 O‘(OQ_C;7 Joj) < 07 a(03—6;7 CZ?J') <.
Then we only need to pick an arbitrary critical value of ¢; that
satisfies Inequality (10) to determine the strategy.

(2) (0, 1, 1). First, as (0, 1, 1) shown in Figure 6, we can give
the following equation:

— — = — tan o tan 3

s - 0108 = 0,7 f - Typ = —natanp
f s up VsecZ ay/sec2 g’

ff - 1 = coS @, Mup - M = 0,

|ﬁup‘ =1, |ﬁlf| =1, |ﬁl| = 1,ﬁz//x0y,

an

where 77 ¢ is the normal vector of left side. With Equation (11),
we can obtain an single-variable expression of the intersection
line of left and up side. Then, combining Inequality (10)
and the constraint of ~, we can determine the range of this
parameter. Finally, selecting a legal parameter to determine
intersection line, we can determine c¢; easily with Inequality
(10). Therefore, the strategy (c;, cfm> can be determined.
Subcases (0, 1, 2) and (0, 1, 3) can be solved by the same
way. Here, we omit their analysis to save space.

3) (0, 0, 3). As (0, 0, 3) in Figure 6, select a point ¢; on the
boundary of subspace arbitrarily and connect c;o01, ¢;02, and
c;03, respectively. Then, this subcase is transformed into (0, 3,
0) with two objects on each side. We can obtain the equation

S L L
Tup - €i01 = 0,7irg - ;05 = 0,7y - ;03 = 0,

tan o tan 8 tan o tan 8

Thup *Thrg = Vsec? ay/sec? B »Tirg = Tt = Vsec? ay/sec? [)’7 (12)
Tup - Mot = €08 203, |Mlup| = 1, [7rg| = 1, [7ipe| = 1.

where 77, is the normal vector of right side. Thus, selecting
a feasible solution arbitrarily, we can get a strategy. Finally,
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Fig. 9: Typical six-object cases

execute projection until ¢; reaching on the boundary of sub-
space to determine the final (c;, dzl> Moreover, subcase (0, 0,
4) can be solved by the same way.

In four-object case, we have two typical subcases.

() (1, 0, 1). Similar to (1, 0, 0), d.; can be obtained, then
normal vectors of four sides are easily to get. As (1, 0, 1)
in Figure 7, with the normal vector of down side and oy,
we can obtain the intersection line expression of up side and
down side. Then, selecting a point on this intersection line and
execute projection, we can determine the strategy. Subcases
(1, 1, 0) in five-object and (2, 0, 0) in six-object cases can be
solved by the same way.

(2) (0, 2, 0). As (0, 2, 0) in Figure 7, combining 7,,,- 0105 = 0
and Equation (11), we can obtain the intersection line of up
side and left side. Then, selecting ¢; and d,i by the same way
as (1, 0, 1), the strategy can be determined.

In five-object case, we have two typical cases.

(1) (1, 0, 2). Similar to (1, 0, 1), we can obtain the orientation
J;i and every normal vector of four sides. Thus, with the
coordinates of 04, 05 and normal vectors of left and down
sides as (1, 0, 2) in Figure 8, we can determine c¢; as well as
a strategy. Then, execute projection until ¢; reaching on the
boundary of subspace to determine the final {c¢;, dc;).

2) (0, 2, 1). Similar to (0, 2, 0), we can obtain J;l and
normal vectors of four sides. With coordinates of 01, 03, 05 and
normal vectors of left, down, and right sides, we can obtain the
intersection point of these three sides, saying c¢;. Then, execute
projection until ¢; reaching on the boundary of subspace, we
can obtain the final strategy.

Six-object case can be classified into two kinds of subcases.
The first is (2, 0, 0), it can be solved by the same way as (1,
0, 1). The second kind includes (1, 1, 1), (0, 3, 0), and (0, 2,
2), which has the only strategy.

In seven-object case, every subcase has the only strategy,
no matter how distributed on four sides.

Based on the above analysis for all cases, we present
Algorithm 1. Let I" be the output set of DCSs in Algorithm
1, then we have the following theorem.

Theorem 4.2: Given any_strategy (cl, dcz> there exists
(cr,doi) € I such that (cg, do) = (¢, du;).

Fig. 7: Typical four-object cases

Fig. 8: Typical five-object cases

Algorithm 1: DCS Extraction for the Area Case

Input: The subspace S;, the candidate covered set of objects
O;
Output: All DCSs
1 for i < 7 (number of objects < the maximum of minimum
number of objects on 4 sides to determine the only one
strategy) do

2 for every combination oy, ...,or,; of all objects in OAl do

3 if i > 3 then

4 for every subcases a + b+ c subject to
3a+2b+c=iand a+b+c<4do

5 for every possible arrangement of 4 sides

taken a + b+ c to arrange 3,2,1 objects
respectively do

6 Execute the process following the
corresponding subcase a + b + c.

7 if exists corresponding strategy {c;, J‘CJ
then

8 Add the results to the candidate DCS
L set.  break

9 Select one point p on the boundary of S; arbitrarily.

10 if i = I then

1 Build strategy (p, d,,) with object o5, on the

surface of straight rectangle pyramid.
12 if i = 2 then
13 Decide if these objects can be in one camera

coverage. If it is, build straight rectangle pyramid
with line po,, and po,, on the surface.

Proof: Without loss of generality, we start from searching
strategies for three-object cases. Assuming objects 01, 0o and
o3 touching one side of straight rectangle pyramid, we select
an arbitrary feasible strategy (c1, Jc1> Then, keeping the three
objects on this side and execute transformations, there exists
numerous conditions which can be classified into three classes.

Class 1. There is the only one strategy for objects 01, 02 and
o03. Obviously, the selected feasible strategy (¢, J;l) is unique,
and it must generate the only DCS such that (¢, 07(,1) el.

Class 2. There won'’t be any new object touch any side
of pyramid. This condition implies (cy,dy) = (cx, dp)(k #
1,k € U), where U is the universe of all strategies. Thus
strategy (cl,dcl) generates DCS such that (cl,dd> el.

Class 3. Some new object(s) touch some side(s) of pyramid.
Assuming object o4 touches one side and we arbitrarily select
a strategy <62,d22> covering these four objects. Then, there
exists two subclasses.

Subclass 3.1. <02,Ci;2> = (0176121) This indicates that ob-



Algorithm 2: Strategy Selection
Input: The number of UAVs N, DCSs set I', object function
F(X)
Output: Strategy set X
1 X =0.
2 while | X| < N do
3 e’ =arg max,cp\ x f(X U{e}) — f(X).
4 X =XU{e}.

ject o4 has been covered by (1, (1_;1), then (cy, Jd) generates
the DCS such that (cl,cfcl) el .

Subclass 3.2. <02,d_;2> - (cl,d_;l>. This indicates that
object o4 isn’t covered by (cl,d_;l), thus (cl,(fc1> is not
a DCS. However, as Algorithm 1, when searching strategy

(ca, CZ;2> for objects 01, 02, 03 and o4 in the next round of all
combination of four objects on the sides, strategy (cy, d_;l> for
objects 01, 0o and o3 will be replaced by strategy <cz,d;2>.
If no object will touch any side of pyramid during continuous
transformation, strategy {ca, cfc2> generates the DCS such that

-

(c1,de1) = {ca,de2) € I'. Otherwise, similar to the above,
strategy {ca, cfc2> will be replaced by (0375;3), R (ck,d_;k>
iteratively until no object will touch any side or there is the
only determined strategy. Strategy (cx, cfck) generates the DCS
for o1,...,0, as well as, for o1, oy and o3. Consequently,

=

(c1,der) = <Ck7jck> elrl. ]

D. Problem Reformulation and Solution

In this subsection, we discuss about how to select a given
number of strategies from the obtained ones to maximize the
number of coverage objects. We first reformulate the problem,
then prove its submodularity, and finally present an effective
algorithm to address this problem.

Let x; be a binary indicator denoting whether the iy,
strategy in the strategy set of DCSs I is select or not. For
all DCSs from all subspaces in I, we can compute the
coverage function with each object. The problem P1 can be
reformulated as

M

P2) max Zuv( Z

J=1 (cirdes) €T

ziFy(ci, 05, deiy doy)),
13)
||

sty =Nz €{0,1}).

The problem is then transformed to a combinatorial opti-
mization problem. Now, we give the following definitions to
assist further analysis before addressing P2.

Definition 4.8: [37] Let S be a finite ground set. A real-
valued set function f : 25 s R is normalized, monotonic, and
submodular if and only if it satisfies the following conditions,
respectively:(1) f(0) = 0; (2) f(AU{e}) — f(A) > 0 for any
AC Sandee S\A4; 3) f(AU{e}) — f(A) > f(BU{e}) —
f(B) forany AC B C S and e € S\B.

Definition 4.9: [37] A Matroid M is a strategy M = (5, L)
where S is a finite ground set, L C 25 is a collection of
independent sets, such that (1) ) € L; (2) if X CY € L, then

XeL 3if X, Y € L, and | X| < |V
X U{y} € L.

Definition 4.10: [37] Given a finite set .S and an integer
k. A uniform matroid M = (S, L) is a matroid where L =
{X CS:|X| <k}

Then, our problem can be reformulated as

, then Jdy € Y\ X,

M
(P3) maz f(X) = U( D Fu(ci,05,dei,doy)),
J=1 (i dei) EX
st. X €L,
L={XCTI:|X|<M}.

(14)

Lemma 4.2: The objective function f(X) is a monotone
submodular function, whose constraint is a uniform matroid.

Therefore, the reformulated problem falls into the scope
of maximizing a monotone submodular function subject to
matroid constraints, and we can use a greedy algorithm to
achieve a good approximation [37]. The pseudo code of this
strategy selecting algorithm is shown in Algorithm 2. In every
round, Algorithm 2 greedily adds a strategy e* to X to
maximize the increment of function f(X). We omit the proof
to save space.

Theorem 4.3: Algorithm 2 achieves an approximation ratio
of 1 —1/e, and its time complexity is O(NM?).

V. SIMULATION RESULTS
A. Evaluation setup

In our simulation, objects are uniformly distributed in a
100m x 100m x 50 m cuboid space. If no otherwise stated,
weseta = /3, 8 =x/12, D = 25m, N = 10, Ynin = 7/6,
Ymaz = 7/3, 8 = 7/6, and M = 20, respectively. The
orientations of objects are randomly selected from [0, 27] in
horizonal plane and [0°,90°] in vertical plane. Each data point
in evaluation figures is computed by averaging the results of
200 random topologies. As there are no existing approaches for
PANDA, we present three compare algorithms. Randomized
Coordinate with Orientation Discretization (RCOD) randomly
generates coordinates of UAVs, and randomly selects orienta-
tion of UAVs from {0, «, ..., k., ..., 27} in horizonal plane and
{’Ymina Tmin +ﬁ7 (33} ’Vm'in"’ L(’Ymax _'Ymin)/ﬁjﬁv (33 ’Ymam} in
vertical plane. Grid Coordinate with Orientation Discretization
(GCOD) improves RCOD by placing UAVs at grid points.
Grid Coordinate with Dominating Coverage Set (GCDCS)
further improves GCOD by extracted DCSs greedily on each
grids to generate candidate orientations and selects orientation
greedily. Moreover, GCOD and GCDCS have the same square
erid points whose length is v/3/3 - D.

B. Performance Comparison

1) Impact of Number of UAVs N: Our simulation results
show that on average, PANDA outperforms RCOD, GCOD,
and GCDCS by 12.35 times, 10.27 times, and 76.51%, respec-
tively, in terms of N. Figure 11 shows that the coverage utility
for all algorithms increase monotonically with N. In partic-
ular, the coverage utility of PANDA first fast increases and
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TABLE II: Coordinate and orientation of objects

Object Coordinate Orientation Object Coordinate Orientation
o1 (19.4,0.7.9.5.8) (T /4,7/2) o9 (83.0.2.7.9.5.0) 0,7/2)
o9 (21.0,5.9.33) (47 /5,27 /6) o010 (84.332.4.6) (7 /4,7/3)
o3 (2.1,09,5.8) (0,7/6) o011 (1.5,193,1.7) B /47/2)
o4 (9.6,1.2,5.4) (37 /4.,0) 019 (16.2,66.9,1.7) (7 /2,0)
o5 (11.43.94.2) (37/4.0) 013 (9.94,53.4,0.5) (m/2,7/2)
og (18.7,2.9,4.6) (7 /4,7/6) 014 (83.2,28.9,0.5) (7,7 /3)
o7 (3.0,6.1,3.3) Bw/2,7/2) o015 (36.6,63.8,0.5) (37/4,0)
og (84.43.0.9.4.6) (7,7 /6)

approaches 1 when N = 15, and then becomes stable. GCDCS
increases relatively linearly because it can only choose among
given grid coordinates for placing UAVs. In contrast, the
coverage utility of RCOD and GCOD always remain low,
because their candidate coordinates of UAVs are limited and
orientations are predetermined or randomly generated.

2) Impact of Number of Objects M : Our simulation results
show that on average, PANDA outperforms RCOD, GCOD,
and GCDCS by 12.37 times, 11.74 times, and 41.5%, respec-
tively, in terms of M. From Figure 12, the coverage utility
decreases monotonically with M. PANDA first performs well
for no more than 13 objects but then decreases when M is
larger than 13. The decreasing rate tends to be gentle and
around 0.8. In contrast, GCDCS invariably degrades while
RCOD and GCOD always keep low performance.

3) Impact of Efficient Angle 0: Our simulation results show
that on average, PANDA outperforms RCOD, GCOD, and
GCDCS by 10.01 times, 9.94 times, and 110.36%, respectively,
in terms of 0. As shown in Figure 13, the coverage utility of
four algorithms increases monotonically with 6. The coverage
utility of PANDA first increases at a fast speed and approaches
1 when 6 increases from 10° to 60°, and then keeps stable.
However, the three comparison algorithms increase slowly.

4) Impact of Farthest sight distance D: Our simulation
results show that on average, PANDA outperforms RCOD,
GCOD, and GCDCS by 21.20 times, 13.53 times, and 84.35%,
respectively, in terms of D. Figure 14 shows that the cov-
erage utility of PANDA invariably increases with D until
it approaches 1, while that of RCOD, GCOD, and GCDCS
increase to about 0.2, 0.2, and 0.55, respectively, and then
keeps relatively stable.

VI. FIELD EXPERIMENTS

As shown in Figure 15, our testbed consists of 7 DIJI
Phantom 4 advanced UAVs and 15 randomly distributed face
figures as objects, and our experimental site is the playground
of our school including its stands, whose size is 110 m x 80 m.
Specifically, we set a« = 35°, 8 = 20°, D = 10m, Ymin =
10°, Ymaz = 70°, and @ = 7/6 based on real hardware
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Fig. 16: Objects distribution and UAV placement by PANDA

parameters. The orientations of objects (6, ) are randomly
generated where 0 € {kn/4,k € {1,2,3,4,5,6,7,8}} is the
angle between orientation and Oz and ¢ € {kw/6,k €
{0,1,2,3}} is the angle between orientation and xOy. Table
II lists the obtained coordinates and orientations of all objects.
Moreover, we draw a circle around the face on each face figure
as shown in Figure 15(b) to help demonstrate the coverage
result by observing the circle’s distortion degree.

Figure 16 illustrates the placement results for PANDA. Note
that the spherical base cones of objects are depicted in grey
while the straight rectangle pyramids of UAVs are in yellow.
Figure 17 shows the 7 pictures took by 7 UAVs for each of
the three algorithms PANDA, GCDCS, and GCOD. The rect-
angular enlarged views in each figure demonstrate the details
of successfully efficient covered objects for the corresponding
UAV. From Figure 17, we can see that PANDA covers the
most objects among all the three algorithms. The coverage
utilities of PANDA, GCDCS, and GCOD are 0.93, 0.53, and
0.20, respectively, which means PANDA outperforms GCDCS
and GCOD by 75.4% and 3.65 times.

VII. CONCLUSION

In this paper, we solve the problem of 3D placement of
UAVs to achieve directional coverage. The key novelty of this
paper is on proposing the first algorithm for UAV placement
with optimized directional coverage utility in 3D environment.

The key contribution of this paper is building the practical
3D directional coverage model, developing an approximation
algorithm, and conducting simulation and field experiments for
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Fig. 17: Experimental results of different algorithms

evaluation. The key technical depth of this paper is in reducing
the infinite solution space of this optimization problem to
a limited one by utilizing the techniques of space partition
and Dominating Coverage Set extraction, and modeling the
reformulated problem as maximizing a monotone submodular
function subject to a matroid constraint. Our evaluation results
show that our algorithm outperforms the other comparison
algorithms by at least 75.4%.
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