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ABSTRACT

This paper is on designing a compact data structure for
multi-set membership testing allowing fast set querying.
Multi-set membership testing is a fundamental operation for
computing systems and networking applications. Most ex-
isting schemes for multi-set membership testing are built
upon Bloom filter, and fall short in either storage space cost
or query speed. To address this issue, in this paper we pro-
pose Noisy Bloom Filter (NBF) and Error Corrected Noisy
Bloom Filter (NBF-E) for multi-set membership testing. For
theoretical analysis, we optimize their classification failure
rate and false positive rate, and present criteria for selec-
tion between NBF and NBF-E. The key novelty of NBF and
NBF-E is to store set ID information in a compact but noisy
way that allows fast recording and querying, and use denois-
ing method for querying. Especially, NBF-E incorporates
asymmetric error-correcting coding technique into NBF to
enhance the resilience of query results to noise by revealing
and leveraging the asymmetric error nature of query results.
To evaluate NBF and NBF-E in comparison with prior art,
we conducted experiments using real-world network traces.
The results show that NBF and NBF-E significantly advance
the state-of-the-art on multi-set membership testing.
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1. INTRODUCTION

1.1 Problem Statement and Motivation

This paper is on designing a compact data structure for
multi-set membership testing allowing fast set querying.
Given a set of sets S = {S1,S2,...,Sn} where S; N S; =@
for any 1 <14 < j < N, a multi-set membership testing al-
gorithm builds an efficient data structure so that given an
element e, the algorithm either finds S; € S such that e € S;,
or report that e ¢ S; U S>...U Sx.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMETRICS 16, June 14-18, 2016, Antibes Juan-Les-Pins, France
© 2016 ACM. ISBN 978-1-4503-4266-7/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2896377.2901451

139

Multi-set membership testing is a fundamental operation
for computing systems and networking applications. For ex-
ample, for frame forwarding in a layer-2 switch, multiple
MAC addresses are mapped to a single port and fast query-
ing for the associated port for a MAC address is crucial
for frame forwarding [11,25]. Here, MAC addresses corre-
spond to elements and the associated port corresponds to
the set. For Web traffic classification, URLs are classified
into different groups on the fly for statistical purposes [11].
For approximate state machines, the simultaneous state of
a large number of agents are tracked by a state machine [4].
For Web cache, each Web proxy maintains a compact sum-
mary of the cache directory of all other proxies and if a cache
miss occurs it searches for the proxy wherein the request is
a cache hit [8].

1.2 Limitations of Prior Art

Many existing solutions addressing multi-set membership
testing are built upon Bloom filter [5,6,8,9,11, 13, 15,23,
24]. Bloom filter is a compact data structure supporting
membership query with no false negatives but with false
positives, i.e., it certainly answers yes if the query element
belongs to the set and may mistakenly answer yes if not.
Given a set of element S, Bloom filter first constructs a bit
array with all bits initialized to 0. For inserting an element
e to S, Bloom filter uses k£ independent hash functions with
uniformly distributed outputs, say hi(:),...,hk(), to map
e to k bits in the array and set them to 1. For querying
whether an element e belongs to S, Bloom filter returns
true if all kK mapped bits for e are 1.

Most of the Bloom filter based schemes regarding multi-set
membership testing fall short in either storage space cost or
query speed. On one hand, some prior art adopts a general
framework that divides the whole storage space into multi-
ple uniform cells and uses one or more cells to record set
IDs of element [6,9,23]. This coarse granularity for storing
set IDs leads to inefficient use of storage space. For the IBF
scheme proposed in [6,9], if two or more distinct set IDs are
accidentally mapped to the same cell and mixed with each
other, then no useful information can be extracted from this
cell, which means the whole cell is wasted. kBF proposed
in [23] improves IBF by allowing mixture from no more than
3 set IDs using a coding technique. However, kBF is still in-
efficient because it fails to decode any set IDs of elements
mapped to the cell where more than 3 set IDs are mixed. On
the other hand, other prior art mainly falls short in mem-
ory access overhead and query processing speed. Most of
proposed schemes in these works assign multiple dedicated
Bloom filters for recording in terms of set ID [5, 8], bit posi-



tion in the binary expression of set IDs [15], and bit position
in the encoding results of set IDs [11], or organizes multiple
Bloom filters into a tree [24]. Consequently, the memory
accesses of these schemes are generally several times higher
than standard Bloom filters depending on the number of es-
tablished Bloom filters, which results in much lower query
processing speed. Still another scheme encodes set ID in-
formation of an element in its location by using offsets [13].
The offset is set to be proportional to the value of set ID.
As both classification failure rate and memory access over-
head grow proportionally to the maximum set ID value, this
scheme is vulnerable to noise and has low query processing
speed. One solution to alleviate this problem is to require
that set IDs be no more than 64 [13], which largely limits
its applications in reality.

1.3 Proposed Approach

In this paper, we propose a Noisy Bloom Filter (NBF)
scheme as well as its enhanced version Error Corrected
Noisy Bloom Filter (NBF-E) scheme for multi-set member-
ship testing. Our NBF and NBF-E schemes simultaneously
improve the storage space cost and query speed issues over
prior art. NBF and NBF-E have two phases: construction
phase and query phase. NBF encodes set IDs of input ele-
ments and records the results in a bit array in a noisy way to
achieve compact storage in the construction phase, and de-
noises the recorded coding information to recover the set IDs
in the query phase. Compared with NBF, NBF-E enhances
the resilience to noise by using asymmetric error-correcting
codes.
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Figure 1: Construction phase of NBF/NBF-E

In the construction phase, given an element, NBF first
maps it to k positions in its bit array using k hash func-
tions. Then, NBF encodes the set ID of the element into
a bit string with fixed length, and ORs the encoding result
with the bitmaps starting from each of k£ hashed positions
and lasting the same length of the encoding result. Figure 1
shows an example of the construction phase. An input ele-
ment e is mapped to k positions in NBF using hash functions
hi(e), ha(e), ... hx(e), its set ID is encoded as v = 1010, and
is ORed with 4 consecutive bits starting from each of these
k positions. The numbers marked in bold font and red col-
or in the resulting NBF denote “noise” from the recorded
information of other elements with respect to e.

In the query phase, NBF first computes the mapped po-
sitions for an input element e using the hash functions
hi(e), ha(e),... hi(e), and then fetches k related bitmaps
starting from these k positions. To remove the potential
noise from other elements, NBF performs AND operation
across all bitmaps and yields the encoding result, which can
be decoded to a set ID if it is valid. Figure 2 illustrates the
querying procedure for the example stated in the construc-
tion phase. It can be seen that all noise is removed after the
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Figure 2: Query phase of NBF/NBF-E

AND operation and NBF finally obtains the correct encod-
ing result 1010, and then decodes it to the original set ID.
Besides, it is clear that when the number of total distinct
sets equals 1, our NBF scheme is reduced to the standard
Bloom filter as it encodes the set ID for all elements as 1
and writes it to or reads it from all k£ hashed bits.

Our proposed enhanced version NBF-E is built upon NBF,
and it differs from NBF only in the encoding and decod-
ing process. Particularly, NBF-E applies (binary) asym-
metric error-correcting coding, or more specifically, (bina-
ry) Z channel coding, for encoding and decoding set IDs
for elements. Asymmetric error-correcting coding is a type
of forward error correction schemes which encode data by
adding additional information such that introduced errors
can be effectively detected and corrected, and it is particu-
larly suitable for asymmetrical channels, or Z channel in our
case. Z channel has {0,1} as input and output alphabets
where the crossover 0 — 1 occurs with positive probability
p whereas the crossover 1 — 0 never occurs. This precisely
describes the error property of query results in our scenari-
o, that is, only “0” bits prone to error but “1” bits do not.
In our previous example as shown in Figure 2, noise only
occurs to the “0” bits in the encoding result 1010 recorded
in the Bloom filter and probably in the query result as we
can image, but cannot occur to the “1” bits. By revealing
this critical fact and using asymmetric error-correcting cod-
ing, we show theoretically that NBF-E achieves almost half
of the false positive rate and twice faster decoding speed
compared with schemes using traditional symmetric error-
correcting coding.

Key intuition: The intuition behind storing element codes
in bits, instead of in cells each of which consists of a fixed
number of bits, is to save memory. Due to the abandon of
delimits for storing data, encoding results for different el-
ement set IDs will overlap with each other. The intuition
behind allowing this overlap is that NBF /NBF-E can effec-
tively extract the original encoding results using AND oper-
ation to denoise mixed-in information from other elements
in the query phase. The motivation behind storing encoding
results in consecutive bits rather than in disjoint bits using
multiple hash functions as [11,15] do is to reduce memory
access overhead. This guarantees each encoding result can
be stored or fetched in one memory access. The motivation
behind using asymmetric error-correcting coding technique
in NBF-E is to enhance the resilience of recorded encod-
ing results to noise by fully exploiting the asymmetric error
nature of query results.

1.4 Key Technical Challenges

The first technical challenge is to minimize the classifica-
tion failure and false positive for NBF scheme under a given
memory constraint. To address this challenge, we first infer



the expression of error rate for “0” bits in a set ID code,
which is uniform and can be reasonably approximated as
independent and identically distributed. Based on this, we
further show that the number of error bits in the query re-
sults can be modeled with Binomial distributions. We then
derive the expressions of classification failure rate and false
positive rate. Furthermore, we optimize these two metrics
in terms of number of hash functions and code size.

The second technical challenge is to best tradeoff the ben-
efits brought by incorporating asymmetric error-correcting
codes in NBF-E scheme and the aggravated noise arose from
such codes. We first derive the expressions of classification
failure rate and false positive rate for our NBF-E scheme.
Among these two metrics, classification failure rate is much
more complicated than its counterpart of NBF due to the
asymmetric error-correcting ability of NBF-E, which hinder-
s further optimization analysis. To address this challenge,
we propose to analyze its upper bound, which is shown to
be a relatively accurate estimate and is much easier to be
analyzed than its exact value. Then, we obtain optimization
results of classification failure rate and false positive rate in
terms of number of hash functions and code size.

The third technical challenge is to provide guidance for
choosing between NBF and NBF-E schemes. As NBF-E
does not always outperform NBF due to its introduced noise,
we need to answer the question of under which condition
which scheme is more preferable than the other in terms
of critical metrics, such as classification failure. This is
a challenging task because of the fundamental difference,
though seemingly small, between these two schemes. We
address this challenge by employing appropriate relaxation
techniques and using the lower bound, rather than exact
value, of the number of asymmetric error-correcting code-
words to make the comparison of classification failure rates
for these two schemes feasible.

1.5 Advantages over Prior Art

Previous literature falls short in either storage space cost
or query speed. To evaluate our NBF and NBF-E schemes
in comparison with prior art, we conduct trace-driven ex-
periments. Our results show that NBF/NBF-E significantly
advances the state-of-the-art on multi-set membership test-
ing. Suppose all schemes are under the same storage space
constraint. In comparison with COMB, NBF-E has 13%
higher correctness rate, 3.7 times smaller memory accesses
and 3.3 times faster query processing speed. In comparison
with Summary Cache, NBF/NBF-E has comparable cor-
rectness rate, 7.7 times lower memory accesses and about
6 times faster query processing speed. In comparison with
kBF, NBF /NBF-E has 8.7 times higher correctness rate and
about 6 times faster query processing speed. In comparison
with IBF, NBF-E has hundreds of times higher correctness
rate.

2. RELATED WORK

In this section, we briefly review related works regarding
Bloom filters for multi-set membership testing.

2.1 Cell Based Approach

David et al. proposed Invertible Bloom Filter (IBF) which
can be inverted to yield some or all of the inserted key IDs
of elements [6,9]. An IBF consists of an array of cells each of
which contains a counter, the XOR of all key IDs that hash
into that cell, as well as the XOR of the hashes of all IDs that
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hash into the cell. In the query phase, the cells that record
only a single element are first identified and recovered. Then,
the set ID information of these elements is subtracted from
IBF using XOR functions. Such identification and removal
process will repeat until no further elements can be recog-
nized. The major shortage of IBF is its memory inefficiency
as it uses cells instead of bits. Xiong et al. proposed key-
value Bloom Filter (kBF) that also stores values of elements
in cells [23]. Each cell contains a counter and a possibly su-
perimposed encoding result, and kBF can only infer original
encodings from superimposed encoding results from at most
three elements, which constrains its success rate of querying.
Both of IBF and kBF are less memory efficient compared to
our NBF scheme because NBF stores encoding results of set
IDs in bits and allows the bit-level overlap.

2.2 Multiple Bloom Filter Based Approach

Fan et al. proposed a scalable web cache sharing scheme
called Summary Cache, which in essence is a straightfor-
ward Bloom filter solution that allows multi-set membership
testing [8]. It generates one Bloom filter for each set in the
construction phase, and performs k x R hashes for recording
set IDs or querying which set the input element belongs to,
where k is the number of hashes for each Bloom filter and
N is the number of distinct sets. Chazelle et al. proposed
Bloomier filter that consists of multiple suites of Bloom fil-
ters, or equivalently, a series of Bloom filters in Summary
Cache [5]. Each suite for Bloomier filter contains X Bloom
filters for N sets, and applies hash functions different from
other suites to store and query set IDs. Especially, during
the query phase, Bloomier filter searches all suites of Bloom
filters one by one until it reaches a suite returning only one
positive answer among X Bloom filters. The goal of Bloomier
filter is to alleviate the false positive of the presented Bloom
filter in Summary Cache. Lu et al. reported an improved
solution based on Summary Cache which assumes each in-
put set ID is L-bit long and generates one Bloom filter for
each bit in set ID [15]. When performing Bloom filter con-
struction or multi-set membership query, it uses k x L hash
functions to record or determine the corresponding bit value
in L-bit long set ID. As normally we have L = O(log X), this
solution is supposed to be much faster than Summary Cache
scheme in [8]. Hao et al. proposed COMbinatorial Bloom fil-
ter (COMB) that encodes each set ID into an L-bit binary
vector with € 1s and L —6 Os and then uses k£ hash functions
for each of L bits in a single Bloom filter [11]. COMB needs
to compute k x 6 hash functions for construction and query
for each element. In comparison, our NBF scheme only needs
to compute k hash functions. Yoon et al. proposed Bloom
tree [24], which maintains a binary search tree with each
node being a Bloom filter and the leaf nodes representing
distinct values. To query a set ID for a given element is to
determine a unique path from the root to a leaf node, and its
query speed is t times that of standard Bloom filter where ¢
is the depth of the Bloom tree. In summary, compared with
the above schemes, NBF needs only £ modulo operations
and £ memory accesses and is thus more time efficient. For
example, NBF is 6 times faster than Summary Cache and
3.3 times faster than COMB in terms of query processing
speed as demonstrated by our experimental results.

2.3 Offset Based Approach

Lee et al. proposed a new data structure called SVBF
that encodes the set information in an offset to save s-



Table 1: Notations
Meaning

Symbol |

Size of a Bloom filter in bits

Bit array of a Bloom filter

Number of stored elements

An element of a set

Set ID of element e

Number of distinct set IDs of elements

The i-th hash function

Number of hash functions for a Bloom filter
Size of set ID code in bits

Constant Hamming weight of codes
Minimum Hamming distance of codes
Number of correcting error bits

Error rate for “0” bits of set ID code in query result
Classification failure rate

False positive rate

W 3

E
/;\
+Lf x> Zea 3

Pe
Py
Prp

pace [13]. In particular, unlike standard Bloom filter that
sets k hash values h;(e)%m (i = 1,...k) to 1 where % rep-
resents modular operation, SVBF sets the bit corresponding
to (hi(e) +75)%m (i =1,...k) to 1 where j (0 < j < g)is
the set ID, g is the maximum set ID, and m is the size of
SVBEF. In the query phase, SVBF first reads the next g con-
secutive bits from each base h;i(e)%m to get a bitmap B;.
Then, SVBF computes the bit-wise AND across all bitmaps
to get the final bitmap B, and outputs the minimum offset
where a bit is set to 1 as the set ID. The main limitation
of SVBF is its bad scalability. On one hand, the classifica-
tion failure of SVBF would increase rapidly as g increases
because the probability that noisy bits from other elements
appear between h;(e)%m and (h;(e)+7)%m increases nearly
proportionally with j. On the other hand, as for each hash
position in the query phase, SVBF needs to fetch all next
g bits starting from this position, which may lead to mem-
ory accesses proportional to g when g becomes large. For
these reasons, g is required to be no more than 64 to con-
trol classification failure and memory accesses in [13], which,
however, constrains its applications. Compared with SVBF,
NBF can scale to a much larger number of distinct set IDs
(up to 1.83 x 10'®).

3. NOISY BLOOM FILTER (NBF)

In this section, we first describe the construction phase
and query phase of our proposed Noisy Bloom Filter (NBF)
scheme. Then, we give detailed theoretical analysis about the
performance of NBF in terms of classification failure rate
and false positive rate. In addition, we discuss parameter
optimization to minimize classification failure rate as well
as false positive rate. Table 1 summarizes notations used in
this paper.

3.1 Construction Phase

In the construction phase, NBF first constructs a bit array
B of size m with all bits initialized to 0. Suppose NBF need-
s to store n distinct elements e, es,..., ey, each of which
with an associated set ID v;. Then, the recording process
for an element e is to first map e into k different position-
s hi(e)%m, ha(e)%m, ..., hi(e)%m using k distinct hash
functions hi(.), h2(.),..., hx(.), where the symbol % repre-
sents modular operation.

Next, instead of recording the original set ID of e, NBF
stores its corresponding constant weight code. Here constant
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weight code refers to a type of codes with constant Hamming
weight. That is, the Hamming weight, namely the number of
1sin a code, for any codeword is a predefined constant w. We
use C(v) to denote the corresponding constant weight code
for a set ID v. In practice, C(v) can be computed by a well
defined function, or obtained by querying a codebook that
records all the mappings of set IDs and their corresponding
codes. Furthermore, the number of codewords for constant
weight code, i.e. ( 5} ), should be sufficiently large to express
all possible values for v, which is presumed to be bounded by
N. That is, NBF should carefully choose f and w such that
(1{) ) > N. We will list the motivations for adopting constant
weight code later in this subsection.

After that, NBF records the set ID of element e by ORing
its constant weight code with the next f consecutive bits s-
tarting from each of the k hashed position. Specifically, NBF
sets Bl(hi(e)%m + )%m] = Bl(hi(e)%m + §)%m] | C(v)[j]
(1 <3<k 0<j < f) As the length of the con-
stant code f is typically set to be small to guarantee one
memory access (< 64, which still allows expressing at most
(g;) ~ 1.83 x 10'® set IDs), all f relevant bits starting from
each hashed position can be fetched or updated using one
memory access operation. Note that modern architectures
like X86 platform CPU can access data starting at any byte,
i.e., access data aligned on any boundary, not just on word
boundaries [1,17]. In addition, if h;(e)%m + j > m, NBF
needs to wrap around and update an appropriate number
of starting bits of B to make the total number of bits be f.
This undoubtedly leads to one extra memory access.

The motivations for storing constant weight codes of input
element set IDs rather than set IDs themselves or other non-
constant weight codes are four-folds. First, constant weight
codes are generally more space-efficient than directly storing
set IDs. The cardinality of distinct values of input elements
N could be far less than the largest set ID of input elements.
As the length of codes should be designed to be uniform a-
mong elements and should accommodate the largest set ID
of input elements, directly storing set IDs of elements could
be a waste of space. For example, expressing elements with
three distinct set IDs 1, 2 and 232 — 1 needs 32 bits, while
constant weight codes 001, 010, 100 with three-bit length
are sufficient to present all set IDs. Second, constant weight
codes simply check the Hamming weight of the query result
to verify its correctness, which is more efficient and explicit
than other methods. Third, compared with other methods,
constant weight codes can eliminate or alleviate the impact
of distribution skewness of input element set IDs, guarantee-
ing the performance of NBF in general cases. The distribu-
tion of element set IDs is typically skewed and unpredictable,
e.g., traffic flows across large networks mostly follow Zipf or
“Zipf-like” distribution which is highly skewed [19]. Using
non-constant weight codes could introduce heavy noise to
data stored in NBF if the codes of set IDs corresponding to
large numbers of elements happen to have large Hamming
weights, and therefore, it leads to high classification fail-
ure rate or high false positive rate. Fourth, constant weight
codes can ensure fairness for set IDs in terms of query suc-
cess rate, whereas other methods do not. As noise in NBF
is approximately uniformly distributed, non-constant weight
codes or set IDs with relatively less Hamming weight would
suffer more from noise as they have more “0” bits (we will
prove “0” bits are affected by noise while “1” bits are not),
and are less likely to be successfully recovered.



3.2 Query Phase

To query an element e, NBF finds its associated set ID
v by the following four steps. First, it computes k£ hash
functions hi(e)%m, ..., hi(e)%m to determine k position-
s from where the data records of e start. Second, for each
1 < < k, it reads the next consecutive f bits B[(h;(e)%m+
7)%m] (0 < j < f) and forms a bitmap B;. Third, we con-
duct bitwise AND operation among all obtained k bitmaps,
te., C(v) = Bi& ... &Bi& ... &By (1 < i < k). Fourth, if
the Hamming weight of the obtained code C(v) is equal to w,
then we report the corresponding v of C(v), i.e. C~*(C(v)),
as the associated set ID of e. In the case that the Hamming
weight is smaller than w, NBF reports that the element v
doesn’t exist in the Bloom filter and discards the query re-
sult.

There are two types of failures that can happen in the
query phase of NBF': classification failure and false positive.
In the case that the Hamming weight of C'(v) is larger than
w, NBF cannot classify the query result into any predefined
constant weight code, which we call it as classification fail-
ure. In the case that the element is not in the Bloom filter,
but the Hamming weight of C'(v) is equal to w due to noises,
NBF will falsely identify the element to a set with set ID v,
which we call it as false positive.

3.3 Analysis

For theoretical analysis, we pay special attention to clas-
sification failure rate and false positive rate. In particular,
we derive expected values of these parameters and discuss
how to optimize them.

As the basis of further analysis, we begin with inferring the
rate of a bit error in the query result, which is quantitatively
evaluated by the equation in the following lemma.

LEMMA 1. Given the NBF size m, number of stored ele-
ments n, code length f, code weight w and number of hash
functions k, the error rate for “0” bits in a set ID code, i.e.
the probability for any “0” bit in a set ID code changing to 1
in the query result, denoted by pe is given by

pe = (17 (1- ;“l)nk)k

and the error rate for “1” bits is zero.

(1)

ProoF. Considering a “0” bit b in a recorded set ID code
in B, the probability that another recorded set ID code with
length f covers this bit is f/m, and the probability that the
overlapped bit in this recorded set ID code taking value 1
is w/f, thus the probability that a “1” bit from another
recorded set ID code overlaps with b is f/m *w/f = w/m.
As there are n x k recorded set ID codes, the probability
that b does NOT change its value is the probability that
every overlapped bit takes value 0, i.e., (1 — w/m)™. In
contrast, the probability that b changes its value is 1 — (1 —
%)”k. Finally, a “0” bit in a set ID code changing to 1 in
the query result after AND operation is conditioned on all k
bits in k corresponding recorded set ID codes are “1”, whose
probability is pe = (1—(1—2£)"*)*. Next, it is easy to see the
error rate for “1” bits is zero. This completes the proof. []

We continue to discuss the correlation between error rates
of bits in a query result. For two bits b;, and bfl in a fetched
bitmap B;, their error rates are indeed statistically correlat-
ed because the “1” bits overlapped with bfa and bé may come
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from the same set ID code and they are dependent of each
other due to the constant weight constraint of set ID code.
To see this, imagine a simple case that both bfo and bfl are
covered by a set ID code C'(v) with code length f and Ham-
ming weight w, then given that b; is overlapped with a “1”
bit in this code, the probability that bf] is also overlapped
with a “1” bit in C(v) is reduced from w/f to (w—1)/(f—1),
which means their error rates are correlated. However, for
the corresponding two bits bg; and bg at the same positions
in another bitmap B; that corresponds to the same element
with B, their error rates should be almost independent of
that of b; and bfl. This is because any set ID code that covers
bg, and bg is unlikely to cover b;, and bfl due to the unifor-
m distribution property of the outputs of the applied hash
functions. Suppose the resulting bits in the query result is
bp = bp&eb? ... &bk and by = by&eb? ... &bE. As b, equals 1 if
and only if b, = 1 for all 1 < i < k and the case is similar
to bg, it is clear that the correlation between error rates of
any pair of bits b; and bfz will be substantially weakened,
which results in a weak correlation between b, and b,. For
this reason, we approximately assume the error rates of bit-
s conform to independent and identical distribution (i.i.d.).
We will justify it by experimental results to several theorems
below based on this assumption.

Next, we analyze the classification failure rate for query
phase. Note that at the last step of query phase, classification
failure occurs if the Hamming weight of the query result
is larger than w, or equivalently, there is one or more “0”
bits are corrupted. The theorem below formally gives the
expression of classification failure rate.

THEOREM 1. Given the NBF size m, number of stored
elements n, code length f, code weight w and number of
hash functions k, the classification failure rate P,y for NBF
is given by
1- (1 7p6)f7w ’
g)nk)k .

PROOF. Suppose there are exactly j (1 < j < f—w) “0”
bits are corrupted while the other f —w — j “0” bits are
not. Apparently, 7 conforms to Binomial distribution, i.e.,
j ~ Binom(f — w,p.) where pe (1—(1— &)k by
following Lemma 1 and our i.7.d. assumption for error rates

of bits in the query result. Thus the classification failure rate
for j corrupted bits is given by (f;w)pi (1—pe)’ 7. By

(2)

where pe = (1 — (1 —

considering all possible cases of j (1 < j < f — w), we have
P = Zf;;“ (f;“’)pg (1 — pe)? ™77, which is equivalent to
Equation (2). This completes the proof. []
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As Figure 3 shows, the theoretical value of classification
failure rate fits well with the empirical value when m =
1.2x10°, f =5, w =2, k = 6, and n increases from 4000
to 10000. The average approximation error is merely 5.3%.

In addition to classification failure rate, false positive rate
is also a critical performance metric which refers to the prob-
ability with which an NBF mistakenly returns a positive
answer for an absent element. The theorem below gives the
formal expression of false positive rate.

THEOREM 2. Given the NBF size m, number of stored
elements n, code length f, code weight w and number of hash
functions k, the false positive rate Py, for NBF is given by

(i)pZ(lpafw,

)nk)k

®3)

where pe = (1 — (1 —

ProoOF. A false positive happens if and only if there are
exactly w bits corrupted which make the obtained result
undistinguishable from valid results. By Theorem 1, each
bit in the final result has probability p. to take value 1 and
probability 1 — p. to take the opposite value. Therefore, the
false positive rate is given by Equation (3). [

Figure 4 shows that the empirical value of false positive
rate agrees well with the theoretical value when m = 1.2 x
105, f =5, w =2, k = 12, and n grows from 6000 to 20000,
and the average approximation error is only about 6.1%.

In what follows, we are dedicated to optimizing classifi-
cation failure and false positive in terms of number of hash
functions k.

THEOREM 3. Given the fired NBF' size m, number of s-
tored elements n, code length f, and code weight w, and the
error rate for “0” bits in a set ID code pe is sufficiently smal-
I, both of the classification failure rate P.y and false positive
rate Py, for NBF can be minimized when

m

PROOF. For classification failure rate, by Equation (2), it
is obvious that P,y is minimized when p. is minimized.

For false positive rate, taking the first-order partial deriva-
tive of In Py, with respect to p. and following Equation (3)

we have
{( > W (1 —pe) v
w f—w

17pc

4]
— InPp, =
€

()

By letting the above formula equal to zero, we obtain p. =
. Furthermore, taking the second-order partial derivative
of In Py, with respect to p. and plugging in p. = > we have

w
n

o? w f—w
L R (S
_ . w _ f—w
(w/n)? (1 —-w/n)?
< 0. (6)

Thus, Py, is maximized at point p. = 7. In contrast, in
order to minimize Py,, we need to minimize p. or maximize
pe to make it being deviate from % as much as possible.
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When p. is sufficiently small such that p. < ¥, minimizing
pe should be a reasonable choice to minimize Pyy.

Next, we study how to minimize p.. In particular, we take
the first-order partial derivative of Inp. with respect to k
and make an appropriate approximation

9] d W\ nkyk
D npe= 2w (1 Ly
0 _wnk  p
~ Bk In(l—e )
wnk wnk e ok
=In(l—e "™ )4+ — — (7)

It is easy to check the above derivative is equal to zero when
k= -1In2, and further this is a global minimum. To sum-
marize, both of P.y and Py, are minimized when p. is min-
imized at point k = - In2. This completes the proof. []

Discussion: We note that there is an interesting similarity
between the optimal number of hash function for our pro-
posed NBF and that for standard Bloom filter, which is giv-
en by k' = 2 1n2. As standard Bloom filter writes a single
1 to each of k hash bits whereas NBF writes w 1s, the to-
tal numbers of written 1s for both filters are the same, i.e.,
wnk = nk’ = mIn 2. Therefore, on average each bit in both
filters has the same probability 1/2 to be 1 or 0.
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Figure 5: P.; vs. k for
NBF

Figure 6: Py, vs. k for
NBF

Figures 5 and 6 show the classification failure rate
P.; and false positive rate Py, when m = 3 x 105,
f =8 w 3, k increases from 1 to 12 and n in-
creases from 5000 to 13000. Basically, all curves for P
and Py, first drops until reaching a minimum, and then
rises. For example, P.; achieves the minimum points
at k = 14,9,8,6,6, while Py, attain its minimum at
k = 14,10,8,7,6, when n = 5000, 7000, 9000, 11000, 13000
respectively. In comparison, the theoretical optimal
k for n 5000, 7000, 9000, 11000, 13000 are k
13.86,9.90,7.70,6.30, 5.33, respectively, which match well
with the actual values. Note that the theoretical k is typi-
cally not an integer, while in practice £ must be an integer.
This corroborates with Theorem 3.

Next, we continue to optimize P.y and Py, in terms of f,
and present theoretical findings in the theorem below.

THEOREM 4. Both of the classification failure rate P.s
and the false positive rate Prp for NBF decrease monoton-
ically when the code size f decreases given that the number
of hash functions k takes its optimal value, i.e., k = u’)’; In2,
and the error rate for “0” bits in a set ID code Pe 1S suffi-

ciently small.

ProOF. For classification failure, plugging the expression
of k in Equation (4) into Equation (2) we obtain P.; =



1-(1- (%)w%2 In2yf=w As m, n and w are fixed, it is clear
that P.y decreases with an decreasing f.

For false positive, we plug the optimal value of k into
Equation (3) and have

B f 1 M In2 1

P = () (2 e
To search for the optimal value of f that minimizes Py, we
take the first-order partial derivative of In Py, with respect

wn

m 97 frw
] (8)

to f
9 9 f 1 %IHQ 1 ﬁan f-w
anr =t (O () - ()]
w—l¢p - e In2
zﬂlnw_ln 1_(1)
of w! 2
w—1 M 1n2
1 1 wn
=y - —1In 17(7) ] (9)
i=0 f—i [ 2
2 w—
As aag—f InPjp, = — >0} ﬁ < 0, f that makes the last

formula equal to zero is a maximum. Furthermore, it is also
. w—1 1 . .
a global maximum because > " 7 Is a monotonically
decreasing function with f and, therefore, there is at most
one value letting the first-order partial derivative of In Py,
equal to zero. Consider the case when p. = (%)L’Z, 2 g
sufficiently small and thereby the value of Formula (9) is
always greater than zero, Py, must decrease as f decreases.

This completes the proof. [

Discussion: Despite of the result stated in Theorem 4, we
should bear in mind that we can NOT arbitrarily cut down
the value of f to minimize P.y and Py, because we need an
adequate number of codewords to accommodate all potential
set IDs of input elements with cardinality X. In other words,
NBF should guarantee that (5}) > XN. To this end, we can
choose f and w that satisfy w f/2 and thereby yield
the minimum value of f under a given constraint (j; ) >N,
We will take this parameter setting in the later theoretical
analysis in this paper.

6 8 10 12 14 16 6 8 10 12 14 16
Code Size f Code Size f

Figure 8: Py & Py, vs.
f for NBF-E

Figure 7: Py & Py, vs.
f for NBF

Figure 7 shows P.; and Py, when m = 1.73x10°%, n = 10,
w = 3, k =4, and f increases from 6 to 16. We can see that
both P.; and Py, decease smoothly as f decreases. This
observation well supports Theorem 4.

4. ERROR CORRECTED NOISY BLOOM
FILTER (NBF-E)

In this section, we incorporate asymmetric error-
correcting codes into our NBF framework, which is called

145

NBF-E. Our goal is to further suppress the classification fail-
ure and/or false positive. First of all, we present the motiva-
tions of applying asymmetric error-correcting codes. Then,
we elaborate on utilizing it in the construction phase and
query phase for NBF-E. Next, we calculate the classifica-
tion failure rate and false positive rate of NBF-E, and study
their optimization.

4.1 Optimization Using Asymmetric Error-
Correcting Code

Our motivation for employing Asymmetric FError-
Correcting (AEC) codes is to leverage the asymmetric error
property of NBF to bring down the classification failure rate
and/or false positive rate of NBF. As revealed by Lemma 1,
the error rates for “0” bits in query results being corrupted
are uniform and are given by p. = (1 — (1 —w/m)"")*, but,
on the contrary, the probability for a “1” bit to be corrupted
is zero. On one hand, the error rates for “0” bits resembles
the bit error rate of common memory-less channel models
in information theory and coding theory that assume er-
rors occur randomly and with a certain probability. This
inspires us to use traditional error-correcting codes to en-
hance the resilience of the query results to noise. On the
other hand, the one-sided error property of query results,
i.e., the crossover 0 — 1 occurs with positive probability
pe whereas the crossover 1 — 0 never occurs as illustrated
in Figure 9, is naturally the property of binary asymmet-
ric channel, or to be specific, Z channel [12]. There has e-
merged a large body of literature studying on AEC codes for
asymmetric channel in recent years such as [12,20,21,26,27].
These proposed AEC codes are commonly as good as or bet-
ter than Symmetric Error-Correcting (SEC) codes in terms
of error-correcting ability and decoding speed. The root rea-
son is that their search space for correcting errors is much
smaller due to the one-sided error pattern of Z channel.

1

Pe

1-pe
Figure 9: Binary Asymmetric Channel (Z Channel)

Notwithstanding, AEC codes have their weakness in slow
encoding speed compared to SEC codes. For instance, the
authors in [12] described a class of AEC codes such as Kim-
Freiman codes, Constantin-Rao codes and Varshamov codes
for which no simple algorithm is known. Surprisingly, our
proposed constant weight codes capture the benefits of SEC
codes in terms of fast encoding speed and the advantages
of AEC codes in terms of strong error-correcting ability and
fast decoding speed, while avoiding their major limitations.
On one hand, we prove in Theorem 5 that AEC codes and
SEC codes have exactly the same error-correcting ability for
present elements that are already stored in the Bloom filter
using constant weight codes, which means NBF-E can follow
traditional encoding process as SEC codes do for constant
weight codes. On the other hand, by the discussion for The-
orems 8 and 9, the false positive rate for NBF-E using AEC
codes is nearly half that of SEC codes in general cases, and,



meanwhile, its expected decoding speed is twice higher than
SEC codes.

We emphasize that our disclosure of inherent asymmetric
error property of our proposed Bloom filters and proposition
of adopting AEC codes would shed light to future researches
including not only NBF-E extensions but also other Bloom
filer based schemes. For example, suppose we have a priori
knowledge regarding the distribution of set IDs, then we can
use non-constant weight codes for the sake of better memory
efficiency (e.g., assign codes with light Hamming weights to
frequent set IDs like Huffman Coding does). In this scenari-
0, AEC codes should have stronger error-correcting ability
than SEC codes even for present elements [12]. Besides, the
decoding algorithm for AEC codes can be applied to the E-
COMB scheme proposed in [11] to accelerate its decoding
speed.

4.2 Construction Phase

Basically, the construction phase for NBF-E is the same as
that for NBF except for the construction of constant weight
codes.

Unlike NBF that merely needs to enumerate all codewords
with length f and constant weight w, NBF-E additionally
requires all codewords share the same Hamming distance
d between each other. Under such an extra constraint, the
maximum number of codewords, which is called A(f,d,w),
is generally impossible to be computed directly. There has e-
merged a large body of works to study effective enumerative
methods of constant weight codes such as Steiner system-
s method [2] and geometric encoding method [22]. Among
these methods, the method proposed in [18] yields essentially
the optimal results and has complexity scale of O(n(logn))
where ¢ > 2 is some fixed constant. As enumerative methods
of constant weight code is out of the focus of this paper, we
simply adopt the enumerative method proposed in [18] to
generate codewords.

We first present some necessary definitions and theoreti-
cal results for Hamming distance and asymmetric distance,
and then propose a critical theorem for asymmetric error-
correcting codes in our case.

DEFINITION 1. (Definition 2.6 in [12]) Given two codes
T = (.'131,.'1327 .. a‘rn)v Yy = (y17y27 o ,yn) € {07 1}” Let
N(z,y) = #{i|]z; = 0 and y; = 1}.

(1) The Hamming distance is defined as:

d(z,y) == N(z,y) + N(y, );
(2) The asymmetric distance is defined as:

Az, y) := max{N(z,y), N(y,z)}.

THEOREM 5. Symmetric error-correcting codes and
asymmetric error-correcting codes have the same error-
correcting ability for present elements when using constant
wetght codes.

PROOF. By Lemma 2.1 in [12], we have 2A(z, y) = d(z,y)
for constant weight codes as all its codewords have the same
weight. This also reveals the fact that the Hamming distance
of constant weight codes d(z,y) must be an even number.
As a result, symmetric error-correcting codes for constant
weight codes can correct up to ts = (d —2)/2 = (2A(z,y) —
2)/2 = A(z,y) — 1 errors by Theorem 2.1.2 in [16], while
asymmetric error-correcting codes can correct up to t, =
A(z,y) — 1 errors by Theorem 2.1 in [12]. Then we have
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ts = tq, which means both of these two types of codes have
the same error-correcting ability. [

Next, we present the Graham-Sloane lower bound, one of
the most known lower bounds, for the maximum number of
codewords A(f,w, d) for binary constant weight codes.

THEOREM 6. (Theorem 4 in [10]) Let g be the smallest
prime power (prime power is a positive integer power of a
single prime number) satisfying q > f, the minimum Ham-
ming distance of codes d is an even number, then

L (f
A(f,d,w) > (ﬂ/21<w>'

As A(f,w,d) is hard to be exactly determined, one reason-
able choice is to alternatively use its lower bound by requir-
ing that the lower bound should be no less than the cardinal-
ity of potential set IDs of input elements, i.e. qd/% () >N

4.3 Query Phase

Compared to NBF, the only difference of the query phase
for NBF-E is the decoding procedure using AEC codes.

Despite of the existence of efficient error-correcting algo-
rithms for constant weight codes like [7], we use the follow-
ing simple decoding algorithm and show the advantages of
AEC codes over SEC codes in terms of decoding speed. For
any obtained query result, normally we scan over the whole
codebook to single out the codeword having the minimum
Hamming distance with the query result as the corrected
code, just as traditional SEC codes do. Here is the differ-
ence between SEC codes and AEC codes: for SEC codes,
they are unaware of asymmetric error pattern and thus at-
tempt to correct all obtained results even if the Hamming
weight of the results is less than the code size f, which means
these results are indeed invalid codes. For AEC codes, they
will identify and ignore all such invalid codes by checking the
Hamming weight of the results before scanning the codebook
for decoding.

4.4 Analysis

In this section, we first derive the expressions of classifica-
tion failure rate and false positive rate for NBF-E, and then
study their optimization. After that, we study the neces-
sary condition to use NBF-E rather than NBF for delivering
insights to real applications.

We present the mathematical expressions of the classifi-
cation failure rate and false positive rate for NBF-E in the
following two theorems.

(10)

THEOREM 7. Given the NBF-E size m, number of stored
elements n, code length f, code weight w, number of hash
functions k, and number of error-correcting bits t, the clas-
sification failure rate Py for NBF-E is given by

f—w f—w ) )
z( . >pz<1—pe>fwa
j=t+1 J

(1-0a-
PROOF. As the proof is similar to that to Theorem 1, we
omit it here to save space. []

(11)

where pe -

THEOREM 8. Given the NBF-E size m, number of stored
elements n, code length f, code weight w and number of hash



functions k, the false positive rate Py, for NBF-E is given

by

w+t f ) )

Z (j>pi (1—pe) ™7, (12)
where pe = (1 — (1 — %)"k)’lC

Proor. For NBF-E, due to its error-correcting capabili-
ty, we consider the even worse case in which NBF-E takes
all codes with weight j that satisfies w < j < w + ¢
as valid codes with or without corruption, which leads to
false positive. Consequently, the false positive rate for NBF-
E can be obtained by summing up all probability for j
(w < j < w+ t) number of bits are corrupted, which is
given by (5)1)?2 (1- pe)ffj. Then, the result follows. []

Discussion: Strictly speaking, Equation (12) is indeed an up-
per bound of false positive rate because in fact not all codes
with j (w < j < w+t) number of bits are wrongly taken as
valid set ID codes. For example, when j = w, only A(f, d, w)
out of ( 1{) ) codes are mistakenly regarded as valid as stated in
Section 4.2. Nevertheless, we approximately take it as false
positive rate for simplicity of analysis. Moreover, by similar
analysis in the above proof, it is easy to see that the false
positive for SEC codes is Pj, Z;‘:@Z?t (f)pje (1—pe) 7.
Considering general cases where w is supposed to be around
n/2, then we have (7 )p¥~" (1 —p)l Tt > (w’;t)p’;"H
(1 —pe)’ ™™, which means P}, is nearly two times of Py,
for AEC codes.

Next, we analyze optimization of P.y and Py, of NBF-E
in terms of the number of hash functions k. Before that, we
present a critical lemma below to assist further analysis.

LEMMA 2. (Theorem 1 in [3]) For Binomial distribution
Binom(n,p), given that p < %, the upper bound of the lower
tail of Binom(n,p), i.e. F(k;n,p) =377 (?)pj(l —p)"I,
can be given by

Fkin, p) < exp{—n Elnl%” +(1— %)m%} }
(13)

Though Lemma 2 offers an upper bound, [3] shows that the
gap between this bound and the exact value is quite small
(only 3% for the numerical example in [3]). In this paper,
we use this bound rather than the lower tail of Binomial
distribution for the convenience of optimization analysis by
assuming that they vary at nearly the same trend, which is a
much weaker assumption than assuming they have the same
value. We will justify its correctness in later simulations for
theoretical results based on this assumption.

The following theorem presents the optimal value of the
number of hash functions for NBF-E.

THEOREM 9. Given the fited NBF-E size m, number of
stored elements n, code length f, and code weight w, and
error rate for “0” bits in a set ID code pe is sufficiently small,
both of the classification failure rate P.y and false positive
rate Py, for NBF-E can be minimized when

k=—""1In2. (14)
wn

Proor. We first consider the classification failure rate
P.f. According to Theorem 7 and Lemma 2, the upper
bound for the classification failure rate is given by
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cxp{—[(t+1)1n w}}

t41
T —w) = (t+ 1)1
G —wpe T OO
(15)
where pe = (1—(1—2)"*)" is the error rate for “0” bits in

a set ID code. To minimize the above formula is equivalent
to maximize
(f-—w)—(t+1)

t+1 J
T —wp. T ) = O 0

We take the first-order partial derivative of the above for-
mula with respect to p. and then have

(t+11n - (16)

t+1 o n(f*w)*(t+1)

ol (R 7 —wyp. T 7w =D (f—w)(l—pa)}

=_t+1+f7w7t717 an
Pe 1—pe

and therefore its second-order partial derivative is

Ct4+1l f-w—t—1

) { t+1  f-w—t—1 }
_ + wot— 2 >0, (18
Ope Pe 1—pe pZ (1 —pe)? s
which means Formula (16) achieves its minimum at point

Pe = ftf—}ﬂ As p. is sufficiently small and is less than ftf—llu,

we need to minimize p. in order to maximize Formula (16),
and finally minimize the classification failure rate.

We proceed to consider the false positive rate Py,. Similar
to the proof to Theorem 3, we can prove that (f)pje(l —

pe)f 9 when w < j < w + t should decrease as p. decreases
under the condition that p. is sufficiently small such that
pe < L. Thus, it is clear that Z;”:tz (f)pje(l —pe)f 7 should
decrease as p. decreases given that p. < %

To sum up, both of P.y and Py, can be minimized when
pe = (1 — (1 — 2)™)* is minimized, which can be achieved
when k = - In 2 indicated by the proof to Theorem 3. This
completes the proof. [

Discussion: By Theorem 9, we can easily reach the conclu-
sion that every bit in NBF-E takes the equal probability to
be 1 or 0. Furthermore, w is generally set to be around n/2.
Due to this symmetry, NBF-E should have roughly the same
chance to process query results with Hamming weight varies
from w to w+t and query results with Hamming weight from
w —t to w— 1. While AEC codes skip computing the latter
kind of results that are indeed false positives, SEC codes
compute both of them, which means the average decoding
speed of SEC is twice slower than that of AEC codes.
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Figure 10: P.; vs. k for
NBF-E

Figure 11: Py, vs. k for
NBF-E

Figures 10 and 11 show P.; and Py, when m = 3 x 10°,
f = 21, w = 3, k increases from 1 to 12 and n increases
from 6000 to 14000. The results well support Theorem 9.
For instance, when n = 6000, 8000, 10000, 12000, 14000, P,



and Py, achieve their minimum at k = 11,9,6,6,5 and at
k = 11,8,7,6,5, respectively, while the theoretical optimal
number of hash functions are k = 11.55, 8.66,6.93,5.78, 4.95,
respectively.

THEOREM 10. Both of the classification failure rate Py
and the false positive rate Py, for NBF-E decrease monoton-
ically when the code size f decreases given that the number
of hash functions k takes its optimal value, i.e., k = -7~ 1n 2,
and the error rate for “0” bits in a set ID code pe is suffi-
ciently small.

ProOF. We first consider the classification failure rate
P.;. Similar to the proof to Theorem 9, to minimize the
upper bound of Py, we need to maximize

t+1 (f—w) —(t+1)
(f — w)pe (f_w)(l — Pe) ’

Taking the first-order partial derivative of the above for-
mula with respect to f and considering the fact that p. =
(1—(1— 2k = (%)ﬁ when k = - In2 has nothing to
do with f, we obtain

(t+1)In +((f—w)—(t+1))In (19)

t+1 (ffw)—(t+1)}
- _ _ In~~ /=)
77 {6+ D 2 + (=) - i R
=In(1 — i) — In(1 — pe), (20)
f—w
and therefore its second-order partial derivative is
a t+1 t+1
af {1 (1- f_w)*ln(lfpe)} = Fow_t—-1 >0, (21)

which means Formula (19) achieves its minimum at point
f ="t + w. As pe is sufficiently small and therefore f is
smaller than £ 4+ w, we need to minimize f in order to
minimize Pey. ‘

Next we consider the false positive rate Py,. Recal-
1 that we have proved in the proof to Theorem 4
that( )(3) ™ wn2py (%)ﬁhﬂ]f*w decreases monotonically
when f decreases given k = - 1n 2. By similar analysis, we
can prove (?)(%)%1“2[1 — (%)ﬁlw]f*j decreases mono-
tonically as f decreases for w < j < w + ¢, and thereby
Z;U:tf, (5)(%)% 1“2[1—(%)ﬁ In2)f=J decreases monotonical-
ly as f decreases as well. This completes the proof. [

Figure 8 illustrates P.y and Py, when m = 1.73 x 10°,
n=10% w =3, k=4, and f increases from 6 to 16. It can
be seen that both of P.; and Py, decease as f decreases,
which confirms Theorem 10.

Apart from parameter optimization for NBF-E, another
crucial and natural question is that under what condition
is it better to use NBF-E rather than NBF or vice versa.
We consider a constrained case and present our theoretical
findings in the following theorem.

THEOREM 11. Given the fized Bloom filter size m, num-
ber of stored elements n, number of hash functions k, and
code weight w, and the error rate for “0” bits in a set ID
code pe is sufficiently small, the necessary (but not sufficien-
t) condition for choosing NBF-E rather than NBF in terms
of classification failure rate Py is

(1 - (1- ;”L)"k)k < H (22)

148

where f is the desirable code length for NBF, that is, the
minimum integer satisfying (1’:) > N where N is the number
of distinct set IDs of elements.

Proor. Under the given parameter settings, NBF would
choose a desirable code length f that is the minimum integer

satisfying (f) > XN where XN is the cardinality of potential

set IDs of input elements. For simplicity, we assume (f ) =
XN for NBF. Essentially, if NBF-E is more preferable than
NBF, it should be true that NBF-E with exact one error-
correcting ability, namely ¢ = 1, has less classification failure
rate than the classification failure rate of NBF. Suppose the
code length for such NBF-E is f’, the above condition can
be formally expressed as

flow e
> (7

=2

w . 7 .
YR —p) T < 1= (1= pe) T, (23)

or equivalently,

— (1= pe)! T — (f —w)pe(1 —pe) T <1 (1 —pe)f Y,
where p. = (1 — (1 —

(24)
%)"k)k7 following Theorem 1 and
Theorem 7.
By rearranging Equation (24), we obtain

1+(f/—w_1)Pe > (l_pe)_(f/_f_1)~ (25)

According to the generalized Newton Binomial theorem [14],
we have

(1— pﬁ)—(f’—f—l)

=1+ = = Dpe 5 (= DU = £ = 1o+ O
NG = Dpet (DU - f =R (26)

The last approximation holds since p. is sufficiently small.
Combing Inequality (25) and Equation (26) we have

A -—w) A —w)
=D —F-n " -nT

To simplify Inequality (27), we want to find an estimation

of f’. By Theorem 6, f is subject to A(f’,d,w) > W% (J;/)
where ¢ is the smallest prime power satisfying q > f'. As d
should be at least 2t + 2 = 4 to ensure the error-correcting
ability of NBF-E is at least 1 and q is approximately equal
to f’, this inequality can be also expressed as A(f’,d, w) >

f,( ) In practical design, we can set fl,( ) =N = (w)

to guarantee the performance of NBF-E in the worst case.
Then we have

Pe < (27)

P D =) (f—w ) (F\Y
r= ey o (7)o
and therefore w
fr<fe-T. (29)

Combining Inequalities (27) and (29) we have Inequality
(22). Furthermore, as Inequality (22) is reached through a
number of relaxations, it is indeed a necessary but not suf-
ficient condition for selection. This completes the proof. []

Discussion: This result is consistent with our intuition that
when the error rate for “0” bits pe = (1 — (1 — £)™)* is
quite small, the bit error rarely happens and most bits in
the Bloom filter are 0, then applying NBF-E can effectively

correct such error and reduce the classification failure rate,



while not introducing much noise to data in NBF. In con-
trast, the situation will be reversed when p. becomes large
because the limited error correcting ability of AEC codes is
of little use to severe noise while the additionally introduced
noise by AEC codes will make the situation even worse. In
addition, as Inequality (22) is a necessary but not sufficien-
t condition, the right side of this inequality is essentially
a lower bound of the threshold for selection between NBF
and NBF-E, and can approximately serve as a threshold in
practice. Finally, we note that Theorem 11 may not suit the
general case where f, k and w can be arbitrarily set.
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Figure 12 illustrates how P.; changes when m = 5 x 10%,
f =13 for NBF and f = 19 for NBF-E, w =7, k = 3, and
P, rises from about 0.04 to 0.78 for NBF and NBF-E. The
results are shown in the solid blue curve and dotted green
curve, respectively. We can observe P.; for NBF-E is first
superior, and then becomes inferior to that for NBF as P. in-
creases, which validates our discussion above. Furthermore,
these two curves cross at point P. = 0.31, as marked by the
vertical red dot-dash line. This is the actual threshold value
for selection between NBF and NBF-E. We also plot our the-
oretical lower bound of threshold P. = 0.25 in the vertical
black dash line in Figure 12. The lower bound of threshold
P. = 0.25 shown in the vertical black dash line in Figure
12 is unsurprisingly smaller than the actual threshold. The
difference of P.; for NBF and NBF-E at the lower bound
of P. is very small, which means using the lower bound for
selection between NBF and NBF-E is reasonable.

Moreover, Figure 13 shows the lower bound and actual
threshold values when m = 5 x 10*, w = 7, k = 3, and f
varies from 8 to 14 as N increases. It can be seen that our
lower bound for the threshold for selection precisely holds,
and on average, the theoretical bound is equal to 58.2% of
the actual threshold value.

S. EVALUATION

In this section, we conduct experiments to validate our
NBF and NBF-E schemes and compare them to state-of-
the-art solutions for multi-set membership testing.

5.1 Experimental Setup

We briefly describe the dataset we use in the experiments,
and describe comparison algorithms as well as related pa-
rameter settings.

To evaluate the performance of NBF/NBF-E and other
comparison algorithms, we deployed a traffic capturing sys-
tem on a 10Gbps link of a backbone router to collect trace
data. The traffic capturing system contains two sub-systems
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each of which is equipped with a 10G network card and uses
netmap to capture packets. Especially, only 5-tuple flow IDs
of packets consisting of source IP, source port, destination
IP, destination port, and protocol type are recorded because
of the high read/write overhead to capture the entire high-
speed traffic. Each 5-tuple flow ID is stored as a 13-byte
string, and used as an element in the experiments. The set
ID of the set that the flow is belonged to is artificially gener-
ated. Overall, we collected up to 10 million flow IDs wherein
8 million flow IDs are distinct.

We use four algorithms, 4.e., COMB [11], Summary Cache
(SC) [8], kBF [23], and IBF [9] for comparison purposes. To
optimize query speed for COMB, SC, IBF and NBF/NBF-
E, we use the following simple yet effective accelerating
technique that is widely adopted in implementing standard
Bloom filter or its variants: fetch k hashed bits (or bitmaps
for NBF/NBF-E) one by one, and check if the value of cur-
rent bit (or value of intermediate query result after perform-
ing AND operation for all obtained bitmaps for NBF /NBF-
E) is 0; if yes, terminate immediately and return negative
answer. Note that this technique can be refined specifically
for NBF/NBF-E by checking whether the Hamming weight
of the current result is smaller than a threshold (w for
NBF/NBF-E) rather than checking whether it is 0. The rea-
son we don’t use it is to make a fair comparison between
NBF/NBF-E and other schemes.

For computing platform, we used a standard off-the-shelf
desktop computer equipped with an Intel(R) Core i7-3520
CPU @2.90GHz and 8GB RAM running Windows 10 to do
our experiments. Throughout the experiments, we use the
following parameter settings unless otherwise stated. The
memory space allocated for any algorithm is m = 2.16 x 10°
bits, the number of stored elements n = 10°, the number of
hash functions is k = 4, the code length f = 7 for NBF, and
f = 15 for NBF-E, the constant Hamming weight of codes
in NBF or NBF-E is w = 3, and the number of distinct set
IDs is N = 35.

5.2 Correctness Rate

Our results show that our schemes, especially NBF-FE,
have nearly the best correction rates among all algorithms
when changing k and R, which is 8.7 times larger than kBF
or IBF. The correctness rate here means the ratio of the
number of correctly answered query elements to the total
number of all query elements. As Figures 14 and 15 illus-
trate, NBF always has similar correctness rate with COM-
B, and NBF-E outperforms NBF or COMB by about 13%.
Furthermore, it can be observed that SC has the best cor-
rectness rate. This is not surprising since SC allocates one
standard Bloom filter to each set, and each Bloom filter
absolutely returns a positive answer if the query elemen-
t belongs to its associated set. The reason why SC cannot
achieve 100% correctness rate at some points in Figures 14
and 15 is due to query failure, which means there are more
than two Bloom filters corresponding to at least two sets re-
turn a positive answer because of false positive of standard
Bloom filter, and therefore SC cannot determine which one
the query element belongs to. Nevertheless, SC suffers from
high memory access overhead and lower querying processing
speed, and doesn’t scale well with the number of distinct set
IDs X as will be detailed later.

5.3 False Positive

Our results show that the false positive rate for
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NBF/NBF-E is about 6 times less than kBF when changing serve that NBF has slightly fewer memory accesses than
k and N. From Figures 16 and 17, we observe that COMB NBF-E for false positives. The reason is that NBF has high-
generally exhibits better false positive rate than NBF /NBF- er opportunity to be terminated early than NBF-E because
E as it uses k different hash functions to verify each bit in it has fewer “1” bits in its encoding result and the interme-
the query result while NBF/NBF-E uses k hash functions diate query result is more likely to become 0.

to verify all bits. However, this comes at the cost of much

higher memory access overhead and query processing speed 5.5 Query Processing Speed

as will be described in Sections 5.4 and 5.5. The false pos- Our results show that NBF (NBF-E) has about 3.2, 5.9
itive rate for NBF/NBF-E is twice that of COMB and is and 5.8 times (3.3, 6.4 and 6.5 times) faster query process-
smaller than 1%, which is practically acceptable. Moreover, ing speed compared to COMB, SC and kBF, when changing
the false positive rate for SC grows at a much faster speed k and X. Figures 20 and 21 demonstrate the query process-
than NBF/NBF-E and COMB as X increases. The reason ing speed, i.e. number of processed queries per second, for
is that the assigned memory for each standard Bloom fil- present elements and absent elements respectively, when the
ter in SC shrinks rapidly as N increases since the aggregate number of hash functions k rises from 5 to 15. We can see
memory for all Bloom filters in SC in fixed, and, therefore, that all six algorithms have faster query processing speed for
the false positive rate of each filter, as well as that of SC, absent elements than that for present elements. The reason
rises dramatically. Note that the false positive rate for IBF is the same as that of memory accesses, i.e., the acceler-
is zero since it stores pairs of an element and its associated ating technique speeds up the querying process for absent
set ID, and returns the set ID only when the query element elements. Moreover, due to the same reason why NBF out-
matches the associated element [9]. performs NBF-E in terms of memory accesses, the query

processing speed of NBF also exceeds that of NBF-E by n-
early 16% for absent elements. As also shown in the two
figures, IBF has the fastest query processing speed. This is
because most cells in IBF in this scenario are mixed by two
or more set IDs and cannot be decoded, IBF can quickly
discover this fact by checking the count field in these cells
and return “not found”, which is much efficient than other
algorithms.

5.4 Memory Accesses

Our results show that NBF/NBF-E has a slightly smaller
number of memory accesses compared to kBF and IBF, and
uses only about 3.7 and 7.7 times smaller memory accesses
compared to COMB and SC respectively. Figures 18 and 19
show the number of memory accesses for all six algorithms
for present elements and absent elements respectively, when
the number of hash functions k increases from 3 to 12. Here,
present elements refer to those elements stored in the Bloom 6. CONCLUSION

filters of these schemes while absent elements do not. It can The key contribution of this paper is to propose Noisy
be seen that all six algorithms have fewer memory access- Bloom Filter (NBF) and Error Corrected Noisy Bloom Fil-
es for false positives than that for present elements. This ter (NBF-E) for multi-set membership testing. The key ad-
is because when using the accelerating technique described vantages of NBF and NBF-E over the prior art are high
above, all these algorithms are capable to identify those false space efficiency and high query processing speed. The key
positives before carrying out all possible memory accesses, technical depth of this paper is in the analytical modeling of
which are indispensable for present elements. We also ob- NBF and NBF-E, optimizing system parameters, finding the
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minimum classification failure rate and false positive rate,
and criteria of selection between NBF and NBF-E. We val-
idated our analytical models through simulations using real
world network traces. Our experimental results show that
NBF and NBF-E significantly advance state-of-the-art solu-
tion regarding multi-set membership testing with 3.7 times
smaller memory accesses and 3.3 times faster query process-
ing speed.
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