
Minimizing Transient Congestion during
Network Update in Data Centers

Jiaqi Zheng†, Hong Xu‡, Guihai Chen†§, Haipeng Dai†
† Nanjing University, Nanjing, China

‡ City University of Hong Kong, Hong Kong
§ Shanghai Jiao Tong University, China

ABSTRACT
Data centers are increasingly relying on software defined net-
working (SDN) to orchestrate data transmission. To max-
imize network utilization, the SDN controller needs to fre-
quently update the data plane as the network conditions
change. Due to its asynchronous nature, data plane update
may result in serious transient congestion and packet loss.
Prior work strives to find a congestion-free update plan with
multiple stages, each of which guarantees that there will be
no congestion independent of the update order. This ap-
proach prevents the network from being fully utilized and
requires solving a series of LP with scalability challenges.

In this paper, we study the general problem of minimiz-
ing transient congestion during network update, given the
number of intermediate stages. This exposes the tradeoff be-
tween update speed and transient congestion, which may be
absorbed by switch buffers, and allows the operator to nav-
igate a broader design space. We formulate the minimum
congestion update problem (MCUP) as an optimization pro-
gram, and propose heuristics to find the update sequence
efficiently. Preliminary results show that our approach in-
creases link utilization by 20% and reduces update time by
50% compared to prior work.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Operations

Keywords
SDN, Data Centers, Network Update

1. INTRODUCTION
In a software defined network, the controller needs to fre-

quently update the data plane by modifying switch flow ta-
bles so as to dynamically optimize performance. This pro-
cess is not atomic [8]: each switch is updated independently
and asynchronously. Thus network update may result in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CoNEXT Student Workshop’14, December 2, 2014, Sydney, Australia.
Copyright 2014 ACM 978-1-4503-3282-8/14/12 ...$15.00.
http://dx.doi.org/10.1145/2680821.2680823.

R1 R2 R3

R4R5R6

FCFB

FA

FC

FA FB

FA 0.2 unit FB 1.0 unit
FC 0.8 unit 1.0 unit

R1 R2 R3

R4R5R6

FA

FB

R1 R2 R3

R4R5R6

R1 R2 R3

R4R5R6

FCFA

FB
FA FB FC

R1 R2 R3

R4R5R6

FC

R1 R2 R3

R4R5R6

FC

FA FB

Figure 1: A motivating example.

serious congestion during the transient period, even though
the initial and final configurations are most likely uncongest-
ed [4, 7].

Prior work addressed this problem by introducing inter-
mediate stages, each of which guarantees that there will be
no congestion independent of the update order [4, 7]. This
approach, however, has several drawbacks. First, to guar-
antee that a congestion-free update plan always exists, a
portion (10%–50% [4]) of the network capacity has to be
left vacant at all times, leading to reduced bandwidth uti-
lization. Second, multipath routing is required in order to
make the best use of the vacant capacity during update,
which stresses switches with limited flow table entries [3], e-
specially in large-scale data center networks. Third, a series
of linear programs need to be solved to find the routing at
each stage of the update plan [4, 7]. This is too slow for the
operator to react to failures.

In this paper, we take a different approach. We try to
find an update plan that minimizes the transient congestion,
given the number of intermediate stages within which the
update has to be done. We argue that, since switches are
typically deep buffered, it is worthwhile to explore solutions
with a small extend of transient congestion. This problem is
more general than congestion-free update in the sense that it
allows us to navigate a broader design space, where one may
trade off update speed—the number of intermediate stages—

4

for transient congestion. Thus our approach provides a new
flexibility for the operator to specify different tradeoff points
for network update depending on the scenario.

As a motivating example, consider Figure 1 where there
are six switches R1, . . . , R6. The link capacity is one. FA

and FB are two flows from R1 to R5, whose demands are
0.2 and 1.0, respectively. FC is a flow from R3 to R5, whose
demand is 0.8. The initial routing is illustrated in Fig. 1(a).
At this point, suppose a new flow appears from R3 to R4

with a demand of one. The controller then wants to change
routing to Fig. 1(b) by updating the forwarding rules of
switches. Due to the different update order, the three flows
may be temporarily routed as in Fig. 1(c) during transition.
In this case congestion occurs at the link from R2 to R5,
which is overloaded with twice its capacity, and results in
severe packet loss.

Introducing intermediate stages can reduce transient con-
gestion [4, 7]. zUpdate [7] takes advantage of vacant capac-
ity to find a congestion-free update plan. It first moves 80%
of FB onto path 〈R1, R6, R5〉 and keeps the remaining 20%
in the place. Then FA is moved from path 〈R1, R2, R5〉 to
〈R1, R6, R5〉. Finally the remaining 20% of FB and all FC

are moved to their final paths. The whole process introduces
4 intermediate stages and solving 4 LPs, one for each stage.
Yet a congestion-free update plan may not always exist e-
specially when the number of flows is large. Thus SWAN
[4] sets aside some capacity on each link to guarantee its
existence. In that case, FB with demand 1 cannot be com-
pletely satisfied through path 〈R1, R2, R5〉. It must be split
onto different paths. Thus SWAN reduces link utilization
and stresses the scarce resource of flow table entries.

In contrast, if we first change routing from Figure 1(a)
to Figure 1(d), and then to Figure 1(b), congestion can be
reduced significantly. Specifically, transitioning from Fig-
ure 1(a) to Figure 1(d) only causes the link capacity to ex-
ceed by 0.2, with two possible transient states shown in Fig-
ure 1(e) and Figure 1(f), and the transition from Figure 1(d)
to Figure 1(b) is congestion-free. So the overall transient
congestion is 0.2, and there is only one intermediate stage
which requires just one LP. This update plan may be ac-
ceptable in some scenarios, because switches have buffers to
accommodate bursty traffic, and some applications may not
be mission-critical and tolerate packet loss.

2. AN OPTIMIZATION FRAMEWORK
Formulation We propose an optimization framework for

the minimum congestion update problem (MCUP) both in
data center networks (DCN) and wide area networks (WAN)
which connects geographically distributed data centers. Gen-
erally speaking, the optimization program aims to determine
routing for all n intermediate stages of the update, where n
is given, such that the maximum link congestion during the
transition is minimized. We model single-path routing for
flows as constraints so as to reduce the number of entries
required in flow tables.

Algorithm Design Given the scale of the integer pro-
gram, we aim to develop efficient heuristics for MCUP. We
first propose an approximation algorithm based on random-
ized rounding (RR). It only requires solving one LP and thus
has lower complexity than prior work. We further propose
an enhanced algorithm (EA) which improves upon the result
of randomized rounding by greedily rerouting flows in each
stage when possible.

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Maximum Link Congestion (%)

C
D

F

OPT
EA
RR
One Shot

(a) DCN scenario

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Maximum Link Congestion (%)

C
D

F

OPT
EA
RR
One Shot

(b) WAN scenario

Figure 2: The link congestion in different scenarios.

DCN WAN0

20

40

60

80

100

120

140

Li
nk

 u
til

iz
at

io
n

(%
)

EA
SWAN

Figure 3: Link utilization

DCN WAN0

2

4

6

8

10

12

U
pd

at
e

tim
e

(u
ni

t)

EA
SWAN

Figure 4: Update time

Implementation We develop a prototype of our algo-
rithms using Mininet [6] for performance evaluation. We use
Floodlight 0.9 [1] as the controller, which runs on a PC with
an Intel Core i5-2400 quad-core processor. Switches are em-
ulated by Mininet and run Openflow v2.0. The switch com-
municates with the controller and the controller manages
the switch via the Openflow protocol. We install forward-
ing rules via Floodlight’s static flow pusher API. We adopt
both fat-tree [2] and Microsoft’s backbone topology [5] re-
spectively to simulate the scenario of intra-datacenter and
inter-datacenter. The link bandwidth is 10 Mb with 1 ms
delay and port buffer size is 1 Mb. We use Iperf to gener-
ate flows, with average flow size of 5Mb. The source and
destination of flows are chosen randomly.

Preliminary Results We study the maximum link con-
gestion with One Shot (transition directly from initial stage
to final stage), our algorithms—RR and EA, and OPT ob-
tained using branch and bound method. Figure 2 shows the
measured maximum link congestion for One Shot and for
RR, EA and OPT when introducing 5 intermediate stages
in DCN and WAN scenario respectively. Both EA and R-
R can effectively decrease congestion: EA and RR decrease
link congestion by 67% and 60% respectively compared to
One Shot. Furthermore, EA consistently outperforms RR
by up to 12% on average, and provides near-optimal per-
formance compared to OPT. Figure 3 shows that for link
utilization, EA outperform SWAN by around 20% in both
DCN and WAN scenarios. Finally, we look at update time
which is defined as the total time units that the routing poli-
cies are reconfigured from the initial to final stage without
traffic loss. We observe from Figure 4 that EA is almost
50% faster than SWAN.

3. SUMMARY AND FUTURE WORK
We studied the problem of minimizing transient conges-

tion during network update. We proposed efficient heuristics
to solve the optimization. Preliminary results show that our
solutions lead to higher link utilization and lower update
time. We plan to further our study with rigorous analyses
of the hardness of the MCUP formulation and the approxi-
mation ratios of both algorithms in the near future.

5

4. REFERENCES
[1] Floodlight. http://floodlight.openflowhub.org/.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In
Proc. ACM SIGCOMM, 2008.

[3] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz. On
the effect of forwarding table size on SDN network
utilization. In Proc. IEEE INFOCOM, 2014.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven WAN. In
Proc. ACM SIGCOMM, 2013.

[5] X. Jin, H. H. Liu, X. Wu, R. Gandhi, S. Kandula,
R. Mahajan, M. Zhang, J. Rexford, and

R. Wattenhofer. Dynamic scheduling of network
updates. In Proc. ACM SIGCOMM, 2014.

[6] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: Rapid prototyping for software-defined
networks. In Proc. ACM HotNets, 2010.

[7] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer,
and D. A. Maltz. zUpdate: Updating data center
networks with zero loss. In Proc. ACM SIGCOMM,
2013.

[8] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In
Proc. ACM SIGCOMM, 2012.

6

