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Abstract—Wireless Rechargeable Sensor Networks (WRSNs)
can be recharged after deployment for sustainable operations.
Recent works propose to use a single mobile charger (MC)
traveling through the network fields to recharge every sensor
node. These algorithms work well in small scale networks.
However, in large scale networks these algorithms do not work
efficiently, especially when the amount of energy the MC can
provide is limited. To address these challenges, multiple MCs
can be used. In this paper, we investigate the minimum MCs
problem (MinMCP) for rechargeable sensor networks: how to
find the minimum number of energy-constrained MCs and design
their recharging routes given a sensor network such that each
sensor node in the WRSN maintains continuous work. Our results
are three folds. We first prove that for any ε > 0, there is no
(2−ε)-approximation algorithm for Distance Constrained Vehicle
Routing Problem (DVRP) on a general metric space, which is
the best as far as we know. By reducing from DVRP, we prove
that MinMCP is NP-hard, and the inapproximability bound
for MinMCP is the same as that of DVRP. Then we propose
approximation algorithms for this problem. Finally, we conduct
simulations to validate the effectiveness of our algorithms.

I. INTRODUCTION

Recent studies [1]–[6] propose to use a mobile charger
(MC), which can transfer energy to any sensor node nearby
in Wireless Rechargeable Sensor Networks (WRSNs) [7].
Typically, the MC periodically traverses every node in the
network and stays near each node for a short period to
recharge it. Research results demonstrate that this approach
work well for small scale networks. For large scale wireless
sensor networks, a single mobile charger may not be enough.
This is because the MC may not carry sufficient energy to
recharge every node in a large scale network on a single
tour. Therefore, the MC needs to return to the base station
after recharging a part of the network. As a result, single MC
recharging algorithms become invalid and continuous working
of sensor nodes can no longer be guaranteed.

To recharge a large scale sensor network, it is necessary
to use multiple energy constrained mobile chargers. In this
work, we investigate the minimum mobile charger problem
for wireless sensor networks. That is, finding the minimum
number of energy-constrained MCs as well as their routes to
recharge a given WRSN such that each sensor node in the

WRSN maintains continuous work. This problem is highly
challenging as we should jointly considered the energy con-
straints of MCs and the time-sensitive charging requirements
of sensor nodes when determining the routes of MCs. We
prove that this problem is NP-hard. Approximation algorithms
are proposed to solve this problem. Authors of [8] also
employed multiple energy-constrained MCs. However, their
work focuses on only one-dimensional (1-D) sensor networks,
and their goal is to maximize the ratio of the amount of
payload energy to overhead energy. Our solution is designed
for two-dimensional (2-D) sensor networks, and concentrates
on an entirely different problem compared with [8]. It can be
widely used for existing systems.

In particular, our solution is mainly based on the classical
results of Distance Constrained Vehicle Routing Problem
(DVRP). Though DVRP seems similar to the classical multiple
traveling salesman problem (mTSP) which has been exten-
sively studied, it has not received the same amount of attention
and its theoretical analysis is quite limited. In this paper, we
also present some meaningful theoretical findings for DVRP.

The contributions of this work are as follows.

• We are the first to consider the minimum mobile chargers
problem (MinMCP) in general 2-D WRSNs, i.e., how
to find the minimum number of energy-constrained MCs
and their recharging routes given a 2-D WRSN, so as to
keep the network running forever.

• We prove that for any ε > 0, there is no (2 − ε)-
approximation algorithm for Distance Constrained Vehi-
cle Routing Problem (DVRP) on a general metric space,
which is the best result as far as we know. Based on
this result, we prove that MinMCP is NP-hard, and its
inapproximability bound is the same as that of DVRP.

• We propose approximation algorithms to address Min-
MCP. Then we conduct simulations to verify our theoret-
ical findings.

The remainder of the paper is organized as follows. In
Section II, we investigate some related works. We present pre-
liminaries and background in Section III. In Section IV we first
formulate the problem and investigate its hardness. Then we



propose approximation algorithms and conduct performance
analysis respectively. Experimental results are presented in
Section V before we conclude the paper in Section VI.

II. RELATED WORK

We briefly review some related works according to whether
single or multiple MCs are used. Tong et al. [1] investigated
the impact of wireless charging technology on deployment of
sensor network and routing where an MC is applied. Shi et
al. [2] also employed an MC to charge sensor nodes, where
the aggregate charging time and travel time is expected to be
minimized. A more practical scheme considering routing and
charging jointly was reported in [3]. It aims to maximize the
network lifetime under practical constraints such as dynamic
communication environment. In [9], an MC is used to serve
both as a charger and a data collector. Different from [1]–
[3], [9] which assume that the MC employed has unbounded
energy, [10] tried to maximize the number of sensor nodes to
be charged by using a single MC with limited energy. Zhang et
al. [8] proposed the only scheme employing multiple energy-
constrained MCs to collaboratively charge a 1-D WSN. Their
goal is to maximize the energy efficiency of charging, which
is totally different from ours.

III. PROBLEM STATEMENT

A. Network Model

We assume that there is a collection of rechargeable sensor
nodes distributed over a 2-D region. A base station (BS)
periodically dispatches MCs to charge the sensor nodes. Let
G = (V,E) represent the sensor nodes and the BS. Let
vBS ∈ V denote the BS, and J = V \vBS (|J | = n) be
the set of sensor nodes. Denote by w(i, j) the time cost
of moving from vertex vi to vj , which we call the edge
weight. We assume that G is complete and the edge weights
form a metric space W (i.e., they are symmetric and satisfy
the triangle inequality). This assumption is without loss of
generality because an MC can always travel along the shortest
path between any two vertices.

Every sensor node has a battery capacity of Emax, and
needs a minimum energy Emin to be operational. We assume
that the energy consumption rate is constant and uniform for
all sensor nodes, and is denoted by pw. This assumption holds
for a number of scenarios. For example, Jiang et al. [11] stud-
ied wireless power transmission for sensor nodes buried inside
concrete. These sensor nodes collect valuable volumetric data
related to the health of a structure, and wirelessly transmit data
to a data collection receiver directly [12]. Therefore, the energy
consumptions of sensor nodes are identical. In [4], a civil
structure is instrumented with sensor nodes capable of being
charged wirelessly by a mobile helicopter, which also serves
as a data collector. Thus hop-by-hop data transmissions are no
longer needed, and the energy consumptions can be conserved
and balanced on sensor nodes. In addition, RFID sensors in
Wireless Identification and Sensing Platform (WISP) [13] [14]
typically consume energy at the same rate, and they can be
wireless charged by a mobile charger [15].

B. Charging Model

Suppose that a fully charged MC k starts from the BS
and visits every node of a subset of sensor nodes Sk ∈ J
exactly once and charges them. MC k spends τki units of
time in charging a node vi. Denote the tour of MC k by
Pk = (π0, π1, . . . , π|Sk|, π|Sk|+1) where π0 = π|Sk|+1 = vBS

and {πi}|Sk|i=1 = Sk. Consequently, the time MC k takes to
travel along Pk is given by τkP = Σ

|Sk|
i=0w(πi, πi+1). Further, let

M be the set of tours of all MCs, which means that Pk ∈M
and k ∈ [|M|] for any MC k.

After finishing the charging, MC k returns to the BS to
be serviced (e.g., replacing or recharging its battery) and gets
ready for the next trip. This period is called vacation time,
and is denoted as τkvac. We demand that τkvac for any MC k
should not be smaller than a given constant value τ cvac, i.e.,

τkvac ≥ τ cvac (k ∈ [|M|]) (1)

in order to meet the requirements of most applications. MC k
repeats its recharge schedule every period of time τk, which
consists of charging time, travel time and vacation time, i.e.,

τk = τkP + τkvac + Σvi∈Skτ
k
i (k ∈ [|M|]). (2)

Let U (U > pw) be the energy transfer rate of an MC during
charging. To ensure that each sensor node maintain continuous
work and the charging cost of an MC is minimized, the
following two conditions proposed by [2] should be satisfied.

τk · pw = τki · U (k ∈ [|M|], vi ∈ Sk) (3)

Emax − (τk − τki ) · pw ≥ Emin (k ∈ [|M|], vi ∈ Sk). (4)

The first equation indicates that the amount of energy charged
to node vi during τi must be equal to that consumed by vi
in a schedule period, and the second inequality is obtained by
considering the lowest energy level of the node.

Note that, on the contrary, the charging scheme in [8]
requires all MCs to have uniform schedule periods, which
means that the MCs that finish the charging tasks earlier have
to wait at BS for the returns of other MCs before starting
the next trip. Consequently, to compensate the inefficiency of
MCs caused by waiting, more MCs are needed compared with
our scheme. Besides, we stress that our scheme can be easily
extended to the case where uniform schedule periods for MCs
are mandatory. In fact, this case is much simpler to handle
than that we consider in this paper.

C. Energy Consumption Model for MCs

Suppose that each MC is energy-constrained and has a max-
imum energy capacity of B. Furthermore, denote by ηC and
ηT the working powers of each MC for travel and for charging,
respectively. For each MC, the movements and the charging
process share the same pool of battery energy. Clearly, the
overall energy an MC spends in travel and charging should
not exceed its maximum battery capacity B. That is,

ηT · τkP + ηC · Σvi∈Skτki ≤ B. (5)



In most cases, ηT is much bigger than ηC . But there are
exceptions. For instance, the helicopter in [4] which serves as
an MC might spend more energy when hovering for charging
sensor nodes than that when flying, i.e., ηC > ηT . We include
this case in the theoretical part.

D. Problem Description

Definition 3.1: Minimum Mobile Chargers Problem (Min-
MCP): Given a set of sensor nodes J with parameters pw,
Emax and Emin, the metric space W including the time cost
of an MC to travel between any pair of nodes, find a minimum
required number of MCs (with parameters ηC , ηT , U , B and
τ cvac) originating at the BS and collectively visiting all the
sensor nodes to charge them.

Combining Eqs. (1) (2) (3) (4) (5), and the fact that τk, τki >
0, we formulate our problem as follows.

Min |M|
s.t. τkP ≤ (α− τ cvac)− λ · α · |Sk| (k ∈ [|M|]) (6)

τkP ≤
B − λ · (B + ηC · τ cvac) · |Sk|
ηT + λ · (ηC − ηT ) · |Sk|

(k ∈ [|M|]) (7)

∪k∈[|M|] Sk = J ; |Sk| <
1

λ
; Si ∩ Sj = ∅

(i, j, k ∈ [|M|], i 6= j)

where α = U ·(Emax−Emin)
pw·(U−pw) and λ = pw

U .
Define f1(|Sk|) = (α− τ cvac)− λ · α · |Sk| and f2(|Sk|) =

B−λ·(B+ηC ·τcvac)·|Sk|
ηT+λ·(ηC−ηT )·|Sk| . For simplicity, we use f1(|Sk|) (or

f2(|Sk|)) to represent the constraint τkP ≤ f1(|Sk|) (or
τkP ≤ f2(|Sk|)), if there is no confusion. In addition, we
assume that 2 ·w(vBS , vi) ≤ f1(1) and 2 ·w(vBS , vi) ≤ f2(1)
for any node vi ∈ J , otherwise there is no feasible solution
for MinMCP.

IV. SOLVING MINMCP: THEORETICAL RESULTS AND
APPROXIMATION ALGORITHMS

In this section, we find that MinMCP is difficult to tackle
directly after examining the hardness of MinMCP. Then we
resort to solving its relaxed version MinMCP-R. Finally we
come up with an approximation algorithm for MinMCP based
on the solution to MinMCP-R.

A. Hardness of MinMCP

First, we review the following NP-complete problem.
Definition 4.1: Distance Constrained Vehicle Routing

Problem (DVRP) [16]: Given a set of vertices in a metric
space, a specified depot, and a distance bound D, find a
minimum cardinality set of tours originating at the depot that
covers all vertices, such that each tour has length at most D.

Theorem 4.1: For any ε > 0, there is no (2 − ε)-
approximation algorithm for DVRP unless P = NP .

Proof: We reduce from the traveling salesman problem
(TSP). It is well known that the decision version of the TSP
(where, given a length L, the task is to decide whether any tour
is shorter than L) belongs to the class of NP-hard problems.

Algorithm 1 Algorithm for MinMCP-R
Input: The metric spaceW , the constraint f2(|Sk|), parameters ηC ,

ηT , λ, B and τ cvac.
Output: The set of tours M, the relaxed constraint fR2 (|Sk|).

1: if ηC ≤ ηT then
2: Apply λ·(B+ηC ·τcvac)

ηT
-Constant Transformation on W . Run

the algorithm for DVRP [16] in the new metric space with
distance bound B

ηT
, and get the set of tours M.

3: fR2 (|Sk|) = B
ηT
− λ·(B+ηC ·τcvac)

ηT
· |Sk|.

4: else
5: Apply

λ·(B· ηC
ηT

+ηC ·τcvac)
ηT

-Constant Transformation on W .
Run the algorithm for DVRP in the new metric space with
distance bound B

ηT
, and get the set of tours M.

6: fR2 (|Sk|) = B
ηT
−

λ·(B· ηC
ηT

+ηC ·τcvac)
ηT

· |Sk|.
7: end if

Given an instance of the TSP decision problem with a given
length L, we construct an instance of DVRP by setting the
distance bound D = L. Apparently, for any ε > 0, if there
exists a (2 − ε)-approximation algorithm to DVRP, we can
use it to obtain a single tour traversing all nodes given that
the answer to the decision problem of the TSP is yes. In
other words, we can solve the decision problem of the TSP in
polynomial time by utilizing the approximation solution. This
is impossible unless P = NP .

We emphasize that this obtained inapproximability bound
is the best result for DVRP on a general metric space, which
improves the best existing bound 3/2 [17].

Theorem 4.2: MinMCP is NP-hard, and for any ε > 0,
there is no (2 − ε)-approximation algorithm for MinMCP
unless P = NP .

Proof: Suppose that B is sufficiently large and U � pw,
thus the constraint f2(|Sk|) can be relaxed and the constraint
f1(|Sk|) can be rewritten as τkP ≤ (α − τ cvac). Hence, for
any instance of DVRP, we can construct in polynomial time
an instance of MinMCP for this special case. Since DVRP is
NP-complete and thus is NP-hard, we conclude that MinMCP
is also NP-hard. Furthermore, as MinMCP is at least as hard
as DVRP, according to Theorem 4.1, for any ε > 0, there is no
(2− ε)-approximation solution to MinMCP unless P = NP .

B. Roadmap of Our Solution

Our roadmap to solve MinMCP is as follows. Due to
the difficulty of tackling MinMCP directly, we first consider
its relaxed version where the linear constraint f1(|Sk|) is
removed, which we call MinMCP-R.

For MinMCP-R, we first relax the nonlinear constraint
f2(|Sk|) into a linear one, and then reduce the problem to
DVRP by applying a simple transformation. This approach
allows us to propose an approximation algorithm.

Based on the solution to MinMCP-R, we can construct a
feasible solution to MinMCP by taking into account the con-
straint f1(|Sk|). An approximation algorithm is also provided
in this case.



C. Approximation Algorithm for MinMCP-R

First of all, we define γ-Constant Transformation in metric
space as follows.

Definition 4.2: γ-Constant Transformation: Given a met-
ric spaceW and a constant γ, the γ-Constant Transformation
for W is to revise the weight w(i, j) between any pair of
vertices i and j as w(i, j) + γ, and w(i, vBS) between any
vertex vi and the BS as w(i, vBS) + γ/2.

We denote by ∆ the maximum distance of any node from
the BS, and ∆(γ) the according one after the γ-Constant
Transformation. It is easy to verify the following lemma.

Lemma 4.1: The metric space after a γ-Constant Transfor-
mation is still metric.

We propose our algorithm for MinMCP-R in Algorithm 1 by
applying γ-Constant Transformation. One of the outputs of the
algorithm is the relaxed constraint of f2(|Sk|), i.e., fR2 (|Sk|),
a useful element in later sections.

D. Analysis of the Approximation Algorithm for MinMCP-R

We give performance bounds of Algorithm 1 for three cases
respectively, i.e., ηC = ηT , ηC < ηT and ηC > ηT .

Theorem 4.3: Given that ηC = ηT , Algorithm 1 for
MinMCP-R achieves 6 · (dlog2

B/ηT

B/ηT−2∆(
λ·(B+ηC ·τcvac)

ηT
)+2
e +

1)-approximation.
Proof: Given ηC = ηT , the constraint f2(|Sk|) can be

simplified as:

τkP ≤
B

ηT
− λ · (B + ηC · τ cvac)

ηT
· |Sk|. (8)

Note that τkP = Σ
|Sk|
i=0w(πi, πi+1). Moreover, the weight of

the same tour in the revised metric space after applying
λ·(B+ηC ·τcvac)

ηT
-Constant Transformation on W in Algorithm 1

is given by:

τk
′

P =(w(vBS , π1) +
1

2
· γ1) + (w(π|Sk|, vBS) +

1

2
· γ1)

+ Σ
|Sk|−1
i=1 (w(πi, πi+1) + γ1) (9)

where γ1 =
λ·(B+ηC ·τcvac)

ηT
. Combining Eqs. (8)(9) and follow-

ing the fact that τkP = Σ
|Sk|
i=0w(πi, πi+1), we have:

τk
′

P ≤
B

ηT
. (10)

Thus our problem is reduced to DVRP with distance bound
B
ηT

. According to Theorem 3 in [16], the result follows.
Theorem 4.4: Given that ηC < ηT , Algorithm

1 for MinMCP-R achieves 6 · (2 · B+ηC ·τcvac
B· ηCηT +ηC ·τcvac

+

1)(dlog2
B/ηT

B/ηT−2∆(
λ·(B+ηC ·τcvac)

ηT
)+2
e+ 1)-approximation.

Proof: We prove this theorem in the Appendix for a better
flow of the paper.

Theorem 4.5: Given that ηC > ηT , Algorithm

1 for MinMCP-R achieves 6 · (2 ·
B· ηCηT +ηC ·τcvac
B+ηC ·τcvac

+

1)(dlog2
B/ηT

B/ηT−2∆(
λ·(B· ηC

ηT
+ηC ·τcvac)

ηT
)+2

e+ 1)-approximation.

Algorithm 2 Algorithm for MinMCP
Input: The metric space W , the constraints f1(|Sk|) and f2(|Sk|),

parameters ηC , ηT , λ, α, B, τ cvac, |Sk|1, |Sk|R2 and |Sk|∩.
Output: The set of tours M.

1: if α− τ cvac ≤ B
ηT

and |Sk|1 ≤ |Sk|R2 then
2: Apply λ·α-Constant Transformation onW . Run the algorithm

for DVRP in the newly obtained metric space with distance
bound α− τ cvac, and get the set of tours M.

3: else if α − τ cvac ≥ B
ηT

and |Sk|1 > |Sk|R2 , or α − τ cvac > B
ηT

and |Sk|1 ≥ |Sk|R2 then
4: Call Algorithm 1 for MinMCP-R, and obtain the set of tours

M;
5: else if α− τ cvac < B

ηT
and |Sk|1 > |Sk|R2 then

6: Apply λ·α-Constant Transformation onW . Run the algorithm
for DVRP in the newly obtained metric space with distance
bound α− τ cvac, and get the set of tours M′.

7: for each tour Pk ∈M′ do
8: if |Sk| > |Sk|∩ then
9: Greedily partition the tour Pk (in the original matric

space W) into as few paths as possible, such that the
corresponding tour of each path, obtained by appending
both the end points of the path with edges from the BS,
complies with the constraint f2(|Sk|).

10: end if
11: end for
12: else
13: Call Algorithm 1 for MinMCP-R, and obtain the set of tours

M′;
14: for each tour Pk ∈M′ do
15: if |Sk| > |Sk|∩ then
16: Greedily partition the tour Pk (in the original matric

space W) into as few paths as possible, such that the
corresponding tour of each path, obtained by appending
both the end points of the path with edges from the BS,
complies with the constraint f1(|Sk|).

17: end if
18: end for
19: end if
20: Employ the Nearest Neighbor Algorithm for TSP to further

reduce the length of each obtained tour.

Proof: We prove this theorem in the Appendix for a better
flow of the paper.

E. Approximation Algorithm for MinMCP

The core idea of our solution is to use the output of
Algorithm 1, fR2 (|Sk|), to substitute the complicated constraint
f2(|Sk|). MinMCP is therefore reformulated as a minimization
problem subject to two linear constraints.

Define |Sk|1 =
α−τcvac
λ·α (f1(|Sk|1) = 0). If ηC ≤ ηT ,

define |Sk|R2 = B
λ·(B+ηC ·τcvac)

; otherwise, define |Sk|R2 =
B

λ·(B· ηCηT +ηC ·τcvac)
. Hence, the output of Algorithm 1 fR2 (|Sk|)

can be rewritten as fR2 (|Sk|) = B
ηT
− B
ηT
· 1
|Sk|R2

·|Sk|. Moreover,

define |Sk|∩ =
α−τcvac−B/ηT

(α−τcvac)/|Sk|1−(B/ηT )/|Sk|R2
.

The pseudo-codes of the algorithm for MinMCP can be
found in Algorithm 2. Note that at the final step we employ
the Nearest Neighbor Algorithm for TSP to further reduce the
length of each obtained tour.
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Fig. 1. A Solution to a MinMCP
Instance when B = 500KJ
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Fig. 2. A Solution to a MinMCP
Instance when B = 200KJ

F. Analysis of the Approximation Algorithm for MinMCP

We present the following two theorems without proofs to
save space. Notice that in the scenarios considered in these
theorems, the feasible region for f1(|Sk|) or fR2 (|Sk|) lies
entirely inside that of the other constraint, as shown in Fig.
10. Therefore the latter constraint can be safely relaxed and
thus MinMCP is subject to only one constraint.

Theorem 4.6: Given that α − τ cvac ≤ B
ηT

and
|Sk|1 ≤ |Sk|R2 , Algorithm 2 for MinMCP achieves
6 · (dlog2

α−τcvac
α−τcvac−2∆(λ·α)+2e+ 1)-approximation.

Theorem 4.7: Given that α−τ cvac ≥ B
ηT

and |Sk|1 > |Sk|R2 ,
or α−τ cvac > B

ηT
and |Sk|1 ≥ |Sk|R2 , Algorithm 2 for MinMCP

achieves ξ-approximation, where ξ is the approximation ratio
of the corresponding MinMCP-R.

Theorem 4.8: Given that α − τ cvac < B
ηT

and |Sk|1 >

|Sk|R2 , Algorithm 2 for MinMCP achieves 6 · (2 · |Sk|1|Sk|R2
+

1)(dlog2
α−τcvac

α−τcvac−2∆(λ·α)+2e+ 1)-approximation.
Proof: We prove this theorem in the Appendix for a better

flow of the paper.
As the proof of the following theorem is similar to that of

Theorem 4.8, we omit it here to save space.
Theorem 4.9: Given that α − τ cvac > B

ηT
and |Sk|1 <

|Sk|R2 , Algorithm 2 for MinMCP achieves 2 · ( |Sk|
R
2

|Sk|1 + 1) · ξ-
approximation, where ξ is the approximation ratio of the
corresponding MinMCP-R.

V. NUMERICAL RESULTS

In this section, we present simulation results to verify our
theoretical findings. It is noteworthy that in simulations, we
don’t compare our work to that of [8], which uses multiple
MCs to cover a 1-D sensor network, due to the fundamental
distinction between them. [8] assumes that MCs can inten-
tionally gather at a rendezvous point to recharge others or to
be recharged without energy loss. We think this assumption is
somewhat unpractical and therefore do not adopt it.

A. Evaluation Setup

We randomly distribute 50 sensor nodes in a 5 km × 5 km
2-D Euclidian region throughout the simulations. Any pair of
nodes can reach each other through a direct path. The base
station is assumed to be located at (2500, 2500) (in m). Unless
otherwise specified, we use the following parameter settings
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Fig. 3. Critical parameters of each MC when B = 200KJ

as in [2]: the traveling speed of MCs is V = 5 m/s; pw =
200 mW, Emax = 10.8 kJ, Emin = 540 J, U = 5 W, ηC =
10 W, ηT = 100 W, B = 200 KJ, τ cvac = 1 hour.

B. Performance Evaluation of MinMCP

1) Solutions to MinMCP Instances: Fig. 1 illustrates the
obtained 4 tours of MCs (marked in different colors and
different line styles) for a MinMCP instance, when we set
B = 500 KJ. However, if B = 200 KJ, the number of MCs
needed is doubled, as shown in Fig. 2. Note that, for each
tour, the Nearest Neighbor Algorithm for TSP is employed to
further reduce its length, as is elaborated in Algorithm 2.

For the case in which B = 200 KJ, we show the num-
ber of charged sensors nodes, total travel distance, energy
consumption and recharge period of each MC in Fig. 3.
Note that we set τkvac = τ cvac for each MC. It can be seen
that energy consumptions are roughly balanced among MCs,
and none of them exceeds the maximum battery capacity
B. Another important observation is that the recharge period
τk is determined jointly by the number of recharged sensor
nodes and the travel distance, rather than solely by one of
them. In general, large number of recharged nodes and long
travel distance result in large recharge period, such as MC 5.
Besides, throughout the recharge period, none of the energy
levels of sensor nodes would drop below Emin, which can be
confirmed by checking the conditions described in Equ. (3)
and Inequality (4).

2) Varying B of MCs: In this case, we vary the maximum
energy capacity B between [150 KJ, 850 KJ] to evaluate its
impact on the required number of MCs |M|. Particularly,
for each value of B, we perform Algorithm 2 under 100
randomly generated topologies, and get the average value of
|M|. In addition, the following three situations are evaluated
respectively: (i) ηC = 10 W, ηT = 100 W, (ii) ηC = 100 W,
ηT = 100 W and (iii) ηC = 110 W, ηT = 100 W. As shown
in Fig. 4(a), not surprisingly, it can be seen that the larger B
is chosen, the lower |M| is obtained. Moreover, the required
number of MCs |M| grows as ηC increases.

Let ζ be the performance bound given by the theoretical
analysis. Though the optimal number of MCs, |M∗|, can be
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hardly determined, it is certain that |M∗| ≥ 1, and therefore
the upper bound of the minimum required number of MCs is
at least ζ. We plot the ratio of ζ/|M| for the three cases in
Fig. 4(b). Each point on the curves stands for the average
ζ/|M| over the 100 randomly generated instances, while
the bars above and below the point represent the maximum
and minimum values of ζ/|M| among the 100 instances,
respectively. It can be seen that all the values of ζ/|M| for
the three cases, even those minimum values, are greater than
1. This observation corroborates our theoretical findings.

3) Varying Emax − Emin of Sensor Nodes: We proceed
to evaluate the impact of Emax − Emin of sensor nodes
on the minimum required number of MCs |M| under the
following three cases: (i) τ cvac = 0.5 hour, (ii) τ cvac = 1 hour
and (iii) τ cvac = 1.5 hour. Note that we set B = 1000 KJ and
ηC = ηT = 100 W. Fig. 5(a) shows that |M| drops with an
increasing Emax −Emin or a decreasing τ cvac. Moreover, the
fact that all values of ζ/|M| are never less than 1, as illustrated
in Fig. 5(b), is consistent with our theoretical results.

4) Varying U of MCs and Number of Sensor Nodes: We
study the impact of energy transfer rate U of an MC on the
number of required MCs. Fig. 6 shows that when U rises
from 3W to 10W , the number of required MCs drops from
9.93 to 7.96 given pw = 0.2W , and from 7.79 to 6.99 given
pw = 0.05W . Notice that this value is obtained by averaging
that of 100 randomly generated topologies.

On the other hand, we are also interested in investigating
the impact of different number of sensor nodes on the number
of MCs. As shown in Fig. 7, the required number of MCs
increases steadily from 5.25 to 21.8 while the number of
sensor nodes scales from 20 to 200. Accordingly, the average
number of recharge nodes of a MC increases significantly
(from 3.8 to 9.2). This is because the average length of tours
is shrunk.

VI. CONCLUSION

In this paper, we have studied the problem of minimiz-
ing the number of energy-constrained MCs to cover a 2-D
WSN. We formulate the problem, and show that by applying

appropriate transformations, it can be cast into the classical
problem–DVRP. We not only prove the NP-hardness and the
inapproximability bound of the problem, but also propose
approximation algorithms with proven performance bounds.
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APPENDIX

A. Proof of Theorem 4.4

Proof: First of all, it is easy to verify that f2(0) = B
ηT

,
f2(|Sk|2) = 0 where |Sk|2 = B

λ·(B+ηC ·τcvac)
, and f2(|Sk|) is

a decreasing and concave function given that ηC < ηT (we
don’t have to consider the case where |Sk| ≥ ηT

λ·(ηT−ηC) , since
|Sk| < 1

λ is required for a feasible solution in MinMCP), as
illustrated in Fig. 8. Also in Fig. 8, the line fR2 (|Sk|), one
of the outputs of Algorithm 1, connects the two points of
f2(|Sk|) at |Sk| = 0 and |Sk| = |Sk|2. The other line, g(|Sk|),
is tangent to f2(|Sk|) at point |Sk| = 0, and intersects the
horizontal axis at point |Sk|g2 = B

λ·(B· ηCηT +ηC ·τcvac)
.

A region in the first quadrant is said to be feasible if any
point τkP within it satisfies the constraint f2(|Sk|). In Fig.
8, both of the region I and the region II are feasible, while
the region III is not. Denote by MR∗, M∗ and Mg∗ the
optimal sets of tours with minimum cardinality constrained
by fR2 (|Sk|), f2(|Sk|) and g(|Sk|), respectively. Clearly, we
have:

|Mg∗| ≤ |M∗| ≤ |MR∗|. (11)

Using similar analysis in the proof of Theorem 4.3, we know
the output of Algorithm 1, M, is subject to:

|M| ≤ 6·(dlog2

B/ηT

B/ηT − 2∆(
λ·(B+ηC ·τcvac)

ηT
) + 2

e+1)·|MR∗|.

(12)
Next, we show how to construct a feasible solution M′

meeting constraint fR2 (|Sk|) from |Mg∗|. In general, we use
a partition method to achieve this goal. Suppose there is a tour
Pkr ∈ Mg∗ traversing a set of nodes |Skr | with travel time
τk

r

P located in the region I, II or III, namely:

τk
r

P ≤
B

ηT
− B/ηT
|Sk|g2

|Skr |. (13)

We then greedily partition Pkr into as few paths as possible,
such that each path contains at most b |Sk|2|Sk|g2

· |Skr |c nodes
(apparently, no operation is needed when τk

r

P is located in
region I). Subsequently, for each obtained path, we connect
its endpoints to the BS in order to form a new tour. Note that
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the travel time of each newly constructed tour is definitely
no more than that of Pkr , i.e., τk

r

P , as the weight space is
metric. To summarize, for any obtained tour Pkrj , we have

|Skrj | ≤ b
|Sk|2
|Sk|g2

· |Skr |c and τ
krj
P ≤ τk

r

P , Hence:

τ
krj
P ≤ τ

kr

P ≤
B

ηT
− B/ηT
|Sk|g2

|Skr | ≤
B

ηT
− B/ηT
|Sk|g2

|Sk|g2
|Sk|2

|Skrj |

≤ B

ηT
− B/ηT
|Sk|2

|Skrj |. (14)

Therefore we conclude that τ
krj
P must belong to the region

I. In this way, |Mg∗| tours can be finally converted into |M′|
tours meeting constraint fR2 (|Sk|), and is subject to:

|M′| ≤ d |Skr |
b |Sk|2|Sk|g2

· |Skr |c
e · |Mg∗|

≤ (2 · |Sk|
g
2

|Sk|2
+ 1) · |Mg∗|

≤ (2 · B + ηC · τ cvac
B · ηCηT + ηC · τ cvac

+ 1) · |M∗|. (15)

Note the last inequality is obtained by following Equ. (11).
Each tour in |M′| has a travel time feasible for region I.
Besides, it is clear that:

|MR∗| ≤ |M′| (16)

since MR∗ is optimal.
Combining Eqs. (12)(15)(16) will give the result.

B. Proof of Theorem 4.5

Proof: The proof is similar to that of Theorem 4.4, we
omit it to save space. Note that for this case, f2(|Sk|) is convex
as shown in Fig. 9. fR2 (|Sk|) is the line tangent to f2(|Sk|) at
point |Sk| = 0, and g(|Sk|) is the line connects the two end
points |Sk| = 0 and |Sk| = |Sk|2 of f2(|Sk|).

C. Proof of Theorem 4.8

Proof: We only sketch our proof here to save space. After
Step 6, the travel time of an obtained tour k (k ∈ [|M′|]), τkP ,
falls in the region I or II, as illustrated in Fig. 11. If |Sk| >
|Sk|∩, τkP may fall in the region II, which is infeasible for
fR2 (|Sx|). Therefore in Step 9, we use the partition technique
proposed in the proof of Theorem 4.4 for tour k to address
this problem. In the worst case, the number of newly created
tours is no more than d |Sk|

b |Sk|
R
2

|Sk|1
·|Sk|c

e ≤ (2· |Sk|1|Sk|R2
+1). By using

similar analysis in Theorem 4.4, the result follows.


