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Traditional wireless sensor networks (WSNs) are constrained by limited battery energy that powers the
sensor nodes, which impedes the large-scale deployment of WSNs. Wireless power transfer technology
provides a promising way to solve this problem. With such novel technology, recent works propose to
use a single mobile charger (MC) traveling through the network fields to replenish energy to every sensor
node so that none of the nodes will run out of energy. These algorithms work well in small-scale net-
works. In large-scale networks, these algorithms, however, do not work efficiently, especially when the
amount of energy the MC can provide is limited. To address this issue, multiple MCs can be used. In this
paper, we investigate the minimum MCs problem (MinMCP) for two-dimensional (2D) wireless recharge-
able sensor networks (WRSNs), i.e., how to find the minimum number of energy-constrained MCs and
design their recharging routes in a 2D WRSN such that each sensor node in the network maintains con-
tinuous work, assuming that the energy consumption rate for all sensor nodes are identical. By reduction
from the Distance Constrained Vehicle Routing Problem (DVRP), we prove that MinMCP is NP-hard. Then
we propose approximation algorithms for this problem. Finally, we conduct extensive simulations to val-
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idate the effectiveness of our algorithms.
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1. Introduction

Wireless sensor networks (WSNs) have been widely used for
structural health monitoring, scientific exploration, environmental
monitoring, target tracking, etc. As sensor nodes in traditional
WSNs are powered by batteries, the limited battery energy is con-
sidered as a major deployment barrier for large-scale WSNs. To
elongate the lifetime of WSNs, many approaches have been pro-
posed to harvest ambient energy from their surroundings such as
solar energy [2], vibration energy [3], and wind energy [4]. How-
ever, due to the time-varying nature of renewable energy re-
sources, the success of these methods remains very limited in
practice.

The recent breakthroughs in wireless power transfer technology
[5], which allow energy to be transferred from one storage device
to another via wireless with reasonable efficiency, has provided a
promising way to solve this problem. Since wireless recharging
can guarantee the continuous power supply and is insensitive to
the neighboring environment, it has found many applications
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including RFIDs [6], sensors [7], cell phones [8], laptops [9], vehi-
cles [10], smart grids [11] and civil structures monitoring [12].
With the novel technology, recent studies [12-18,1] propose to
employ a mobile charger (MC) to replenish energy to sensor nodes
in wireless rechargeable sensor networks (WRSNs) [19-21] so that
none of them in the network will run out of energy. Typically, the
MC periodically traverses every node in the network and stays near
every node for a short period to recharge it. Research results dem-
onstrate that this approach works well for small-scale networks.
For large-scale wireless sensor networks, a single mobile charger
may not be enough. This is because the MC may not carry sufficient
energy to recharge every node in a large-scale network on a single
tour. Therefore, the MC needs to return to the base station after
recharging a part of the network. As a result, single MC recharging
algorithms become invalid and continuous working of sensor
nodes can no longer be guaranteed.

To recharge a large-scale sensor network, it is necessary to use
multiple energy constrained mobile chargers. In this work, we
investigate the minimum mobile charger problem for wireless sen-
sor networks. That is, how to find the minimum number of energy-
constrained MCs as well as their routes to recharge a given WRSN
such that each sensor node in the WRSN can work continuously. In
our problem settings, the energy consumption rate for all sensor
nodes are identical, which is a practical assumption for many
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applications as will be elaborated. This problem is highly challeng-
ing as we should jointly consider the energy constraints of MCs and
the time-sensitive charging requirements of sensor nodes when
determining the routes of MCs. We prove the NP-hardness of this
problem and propose efficient approximation algorithms to solve
it. Zhang et al. [22] also employed multiple energy-constrained
MCs. However, their work focuses on only one-dimensional (1D)
sensor networks, and their goal is to maximize the ratio of the
amount of payload energy to the overhead energy. Our solution
is designed for two-dimensional (2D) sensor networks, and con-
centrates on an entirely different problem compared with [22].
The contributions of this work are as follows.

e We are the first to consider the minimum mobile chargers prob-
lem (MinMCP) in general 2D WRSNS, i.e., how to find the mini-
mum number of energy-constrained MCs and their recharging
routes given a 2D WRSN, so as to keep the network running
forever.

e We prove that MinMCP is NP-hard, and propose approximation
algorithms to address MinMCP. Particularly, we first consider
the relaxed version of MinMCP, which is named MinMCP-R,
and propose an approximation algorithm to address it. Further-
more, we present approximation algorithms to MinMCP based
on the results obtained for MinMCP-R.

e We conduct extensive simulations to verify our analytical find-
ings. The simulation results demonstrate the effectiveness of
our schemes.

The remainder of the paper is organized as follows. In Section 2, we
investigate some related works. We present preliminaries and back-
ground in Section 3. In Section 4, we first formulate the problem
and investigate its hardness. Then we propose approximation algo-
rithms and conduct performance analysis respectively. Section 5
discusses how to extend our work to general cases. Experimental
results are presented in Section 6 before we conclude the paper in
Section 7.

2. Related work

In this section, we review some related works in terms of mo-
bile charging problems where a single or multiple MCs are used.

There has emerged a considerable amount of work studying
how to use one single MC to enhance the performances of WRSNs.
In terms of data routing performance, Tong et al. [13] investigated
the impact of wireless charging technology on data routing and
deployment of sensor networks where a single MC is applied. A
more practical scheme jointly considering routing and charging
was reported in [15]. It aimed to maximize the network lifetime
under practical constraints such as dynamic and unreliable com-
munication environment, limited charging capability and hetero-
geneous node attributes. Other works were interested in the
impact of mobile charging on the efficiency of data gathering. Shi
et al. [14] employed an MC to periodically travel inside the sensor
network to charge sensor nodes, and tried to minimize the aggre-
gate charging time and travel time. By [23,24], a mobile charger
was used to serve not only as an energy transporter that charges
stationary sensors, but also as a data collector. In addition, Xie
et al. [25] studied the problem of co-locating the mobile base sta-
tion on the wireless charging vehicle to minimize energy consump-
tion of the entire system while guaranteeing that none of the
sensor nodes will run out of energy. Still others concentrated on
stochastic event capture issues. Dai et al. [18] considered two clo-
sely related subproblems of mobile charging for stochastic event
capture. One is how to choose the nodes for charging and decide
the charging time for each of them, and the other is how to best

schedule the nodes’ activation schedules according to their re-
ceived energy. Their goal is to maximize the overall quality of
monitoring.

Besides the above concerns on traditional performances of sen-
sor networks, some literature paid attention to practical issues re-
lated to the MC. Fu et al. [26] focused on minimizing the charging
delay of the MC, an RFID-reader, by planning its optimal movement
and charging strategy. While most existing works on the mobile
charging problem mainly concentrated on the optimal offline path
planning for the MC, He et al. [27] considered the on-demand mo-
bile charging problem, i.e., how to dynamically plan the path for
the MC where the charging requests from sensor nodes come ran-
domly. Li et al. [16] tried to maximize the number of sensor nodes
to be charged by using a single MC with limited energy, which is
different from the above schemes that assume the employed MC
has unbounded energy.

In order to charge a large-scale WRSN, multiple MCs are needed
considering their energy constraint. Zhang et al. [22] proposed the
only scheme employed multiple energy-constrained MCs to collab-
oratively charge a linear WSN. MCs are allowed to charge each
other. Their goal is to maximize the energy efficiency of charging,
which is totally different from ours.

3. Problem statement
3.1. Network model

We assume that there is a collection of rechargeable sensor
nodes distributed over a 2D region. A base station (BS) serves not
only as a data sink, but also as an energy source of the network
by periodically dispatching MCs to charge the sensor nodes, as
illustrated in Fig. 1. Let G = (V,E) represent the topology of sensor
nodes and the BS. Let vps € V denote the BS,and ] =V \ vgs (|J| = n)
be the set of sensor nodes. Denote by w(i,j) the time cost for MCs
traveling from a sensor node v; to another sensor node v;, which
we call the edge weight. Notice that w(i,j) includes neither the
charging time of MCs at the sensor node v; nor that at the sensor
node »;. We assume that G is complete, and the edge weights form
a metric space W, namely, they are symmetric and satisfy the tri-
angle inequality. To be specificc we have wf(i,j) = w(j,i) and
w(i,j) < w(i, k) + w(k,j) for arbitrary sensor nodes v;, ; and .
We emphasize that this assumption is without loss of generality
because an MC can always travel along the shortest path between
any two sensor nodes (e.g., if w(i,j) > w(i, k) + w(k,j), an MC will
prefer to travel from i to j by passing by k, which results in an
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=

Fig. 1. Illustration of the network model.
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equivalent edge weight between i and j, w/(i,j) = w(i, k) + w(k,j)),
which leads to inherent triangle inequality among nodes.

Every sensor node has a battery capacity of E,q, and needs a
minimum energy E.;, to be operational. We assume that the
energy consumption rate is constant and uniform for all sensor
nodes, and is denoted by p,,. This assumption holds for a number
of scenarios. For example, Jiang et al. [28] studied wireless power
transmission for sensor nodes buried inside concrete. These sensor
nodes collect valuable volumetric data related to the health of a
structure, and wirelessly transmit the data to a data collection
receiver directly [29]. As their transmitting power is uniform, the
energy consumptions of the sensor nodes are identical to each
other. In [12][30], a civil structure is instrumented with sensor
nodes capable of being charged wirelessly by a mobile helicopter,
which also serves as a data collector. Thus, hop-by-hop data trans-
missions are no longer needed, and the energy consumptions can
be conserved and balanced on sensor nodes. In addition, RFID sen-
sors in Wireless Identification and Sensing Platform (WISP)
[26,31,32] typically consume energy at the same rate, and they
can be wirelessly charged by a mobile charger [33].

A summary of the notations in this paper is given in Table 1.

3.2. Charging model

Suppose that a fully charged MC k starts from the BS and visits
every node of a subset of sensor nodes S, CJ exactly once and
charges them. The MC k spends t¥ units of time in charging a node
v;. Denote the tour of the MC k by Py = (7o, Ty, ..., s, |, s, j+1)
where 7y = 75,141 = vps and {7'5,-}‘,,5:’(1‘ = S. Consequently, the time
the MC k takes to travel along Py is given by t& = ™w(m;, ;).

Table 1

Notations used.
Symbol Meaning
w(i,j) Time cost for MCs traveling from node v; to v;
Emax Battery capacity for all sensor nodes
Enmin Minimum energy for sensor nodes to be operational
Dw Energy consumption rate for all sensor nodes
M Set of tours of all MCs
Tk Charging time allocated to node v; by the MC k
-;;g Travel time of the MC k
e Vacation time of the MC k
e Minimum required vacation time for MCs
Tk Time period of recharge schedule for the MC k
U Energy transfer rate of MCs
B Battery capacity of MCs
Ne Working Power of MCs for Traveling
nr Working Power of MCs for Charging
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Further, let M be the set of tours of all MCs, which means that
Py € M and k € [|[M]] for any MC k.

After finishing the charging, The MC k returns to the BS to be
serviced (e.g., replacing or recharging its battery) and gets ready
for the next trip. This period is called vacation time, and is denoted
as 7% . We demand that t¥__ for any MC k should not be smaller

vac* vac
than a given constant value 7¢_, i.e.,

vac’

k

vac = T

T vac

(k e [m])), (M
in order to meet the requirements of most applications. The MC k
repeats its recharge schedule every period of time ¥, which consists

of charging time, travel time and vacation time, i.e.,

=T + Tyge + Zues, T (k€ [M]). (2)
Let U (U > p,,) be the energy transfer rate of an MC during charging.
To ensure that each sensor node maintains continuous work and the
charging cost of an MC is minimized, the renewable energy cycle of
each sensor node should be guaranteed [14]. In particular, the en-
ergy level of a sensor node #; € ] exhibits a renewable energy cycle
if it satisfies the following two requirements: (i) it starts and ends
with the same energy level over a period of t; and (ii) it never falls
below E,,;;. Mathematically, the following two conditions should be
satisfied.

™py=7U (ke [M],vieS), (3)

Enax — (T = 7% - py, = Enin (k€ [[M]], vi € Si). 4)

The first equation indicates that the amount of energy charged to a
node z; during t; must be equal to that consumed by v; in a sche-
dule period, and the second inequality is obtained by considering
the lowest energy level of the node.

We take Fig. 2 as an example. The energy level of sensor node 1
during the first three renewable cycles (marked in the solid saw-
tooth graph) has only two slopes: one is —p,, when no MC charges
this node during this time period, and the other is U — p,, when an
MC is charging this node at a rate of U. Also shown in Fig. 2 is
another renewable energy cycle (marked in the dashed sawtooth
graph) of sensor node 2, where the battery energy is charged to
Emax during an MC’s visit and falls to the lowest energy level of
Enin in non-charging period. Note that the time period of node 1
differs from that of node 2. This is because they are charged by dif-
ferent MCs with different recharge schedules. For more details of
the renewable energy cycle, we refer the reader to [14].

Note that, on the contrary, the charging scheme in [22] requires
all MCs to have uniform schedule periods, which means that the
MCs finishing the charging tasks earlier have to wait at the BS
for the returns of other MCs before starting the next trip. Conse-
quently, to compensate the inefficiency of MCs caused by waiting,
more MCs are needed compared with our scheme. Besides, we
stress that our scheme can be easily extended to the case where

Second energy cycle for
sensor node 2

[ First energy cycle for
sensor node 1
E
max / ~
N

E, -
Ej

min

0

2
T

27!

Fig. 2. Illustration of renewable energy cycles.
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uniform schedule periods for MCs are mandatory. In fact, this case
is much simpler to handle.

3.3. Energy consumption model for MCs

Suppose that each MC is energy-constrained and has an energy
capacity of B. Furthermore, denote by 7. the working power of
each MC during traveling, and #; the working power of each MC
when it stops and charges sensor nodes. For each MC, its move-
ments and charging process share the same pool of battery energy.
Clearly, the overall energy an MC spends in traveling and charging
should not exceed its battery capacity B. That is,

Nr T+ Nc - Zoes, T <B. (5)

In most cases, #; is much bigger than 7., which means that the
power spent in charging sensor nodes for an MC is typically far less
than the power consumed in traveling. For example, the working
power of the off-shelf product-TX91501 transmitter produced by
Powercast is 3 W. When a vehicle (serves as an MC) equipped with
such a power transmitter stops to charge a sensor node, the work-
ing power of the transmitter can be accounted as the unique en-
ergy consumption source, which is much less than the vehicle’s
traveling power.

But there are exceptions. For instance, the helicopter in [12]
which serves as an MC might spend more energy when hovering
for charging sensor nodes than that when flying, i.e., 7. > ;. We
include this case in the theoretical part.

3.4. Problem description

Definition 1 (Minimum mobile chargers problem (MinMCP)). Given
a set of sensor nodes J with parameters p,,, Emax and E,;;;, the metric
space W including the time cost of an MC to travel between any
pair of nodes, find a minimum required number of MCs (with
parameters #¢, 7, U, B and 19,.) originating at the BS and collec-
tively visiting all the sensor nodes to charge them, such that none
of the sensor nodes will run out of energy.

Combining Eqgs. (1)(2)(3)(4), we can derive

< (0= To) — - [Si| (k€ [|IM]) 6)
and
k k
oo BT i 7
Ty (ke (M), @
__ U-(Emax—Emin) — Pw
where o = = "r—mi and 2 = Bo,

Due to the fact that t > 0, we can immediately derive the following
condition from Eq. (7)

1
Sil < 5. ®)

Meanwhile, combining Eqgs. (1)-(3) and (5), we have

o < B (Bt o) - IS
Ny + 2~ (e — Nr) - |Sk]
To sum up, the problem in this paper can be formulated as follows.
Min |IM|
st Th< (o —TS) — -0 |Sk]

(k € [[m]). 9)

(k < [IM]) (10)

T£<B*i-(3+nc-fiac)-\5k\

0y + 4 (Mc —Nr) - ISk (k 1M an

1 .. .
UkegmpSk =15 |Sk] <7 SinS =0 (ijke[M], i#])

_ U(Emax—Eniy) _Pw
where o = o and 2 =5

Define Fi(ISk]) = (00— T6ge) — 4 - ot |S] and £(ISk]) =
%W For simplicity, we use f;(|Sk|) (or f2(|Sk|)) to represent

the constraint & < fi(|Sk]) (or % < f>(Sk|)), if there is no confusion.
In addition, we assume that 2 - w(vgs, ;) < f1(1) and 2 - w(vgs, v;)
< fo(1) for any node v; € J, otherwise there is no feasible solution
for MinMCP.

4. Solving MinMCP: theoretical results and approximation
algorithms

In this section, we first find that MinMCP is difficult to tackle di-
rectly after examining the hardness of MinMCP. Then, we resort to
solve its relaxed version MinMCP-R. Finally, we come up with an
approximation algorithm for MinMCP based on the solution to
MinMCP-R.

4.1. Hardness of MinMCP
First, we review the following NP-complete problem.

Definition 2 (Distance Constrained Vehicle Routing Problem (DVRP)
[34]). Given a set of vertices in a metric space, a specified depot,
and a distance bound D, find a minimum cardinality set of tours
originating at the depot that covers all vertices, such that each tour
has length at most D.

The following theorem shows the hardness of MinMCP.
Theorem 4.1. MinMCP is NP-hard.

Proof. In general, we prove the NP-hardness of MinMCP by reduc-
ing from DVRP.

To begin with, let us consider a special case of MinMCP when
e = 1y and p,, is rather small such that 1 = B¢ ~ 0. Consequently,
the two constraints of MinMCP (10) and (11) can be rewritten as

TR < (00— T64.) and & < n_BT’ respectively. Meanwhile, the constraint

of Sy, ie, S| <1, can be safely removed. Further, let
n—’ig(cx—rgac) (this condition can be easily satisfied since

o= % is a very large number given that 2+ ~ 0), the two

constraints can thus be equivalently simplified as & < %. The
resulting problem is clearly in the form of DVRP.

Formally, given any instance of DVRP with distance bound D,
we can set ,% =D,nc=#ny as well as the values of the related
parameters such that {* ~ 0 and ,1—31 < (o0 — 154.), and thus obtain an
instance of MinMCP. Such construction process, apparently, can be
done in polynomial time. Since DVRP is NP-complete and thus is

NP-hard, we then conclude that MinMCP is also NP-hard. O
4.2. Roadmap of our solution

Our roadmap to solve MinMCP is as follows. Due to the diffi-
culty of tackling MinMCP directly, we first consider its relaxed ver-
sion where the linear constraint fi(|S,|) is removed, which we call
MinMCP-R.

For MinMCP-R, we first relax the nonlinear constraint f,(|Sk|)
into a linear one, and then reduce the problem to DVRP by applying
a simple transformation. This approach enables us to propose an
approximation algorithm.

Based on the solution to MinMCP-R, we can construct a feasi-
ble solution to MinMCP by taking into account the constraint
f1(|Sk]) again. An approximation algorithm is also provided for this
case.
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4.3. Approximation algorithm for MinMCP-R

First of all, we define y-Constant Transformation in metric space
as follows.

Definition 3 (y-Constant Transformation). Given a metric space
W and a constant y, the y-Constant Transformation for W is to
revise the weight w(i,j) between any pair of sensor nodes »; and v;
as w(i,j) + 7, and w(i, vgs) between any sensor node »; and the BS
as w(i, vgs) + /2.

We denote by A the maximum distance of any node from the
BS, and A(y) the corresponding one after the y-Constant Transfor-
mation. It is easy to verify the following lemma.

Lemma 4.1. The metric space after a y-Constant Transformation is
still metric.

Proof. Denote by w(i,j) the edge weight between nodes v; and v;
after the y-Constant Transformation. On one hand, we have

w(i,j) = w(ij) +7 < (W(ij) +w(i, k) +2-y
< WGk +7) + Wk j) +7) < Wi, k) + Wik.j). (12)
Note that the first inequality stems from the fact that the original
space is metric and thus w(i,j) < w(i,j) + w(j, k).
On the other hand, it is easy to see that
w(i,j) = w(j,i).
To sum up, the edge weights in the transformed space are

symmetric and satisfy the triangle inequality. In other words, the
transformed space is metric. This completes the proof. O

We propose our algorithm for MinMCP-R in Algorithm 1.
Particularly, Algorithm 1 has different treatments for the case
where 77 < #; and that where 1. > 7.

Algorithm 1. Algorithm for MinMCP-R

Input: The metric space W, the constraint f,(|Sy|), parameters
e, ’7ra; Band Tvac
Output: The set of tours M, the relaxed constraint fR(|Sy|)
1 begin
2 ifne <
3 Apply
4 Run the algorlthm for DVRP [34] in the new metric space
with distance bound %, and get the set of tours M;

5 Employ the Nearest Neighbor Algorithm for TSP on each
tour in M to further reduce its length;

nr then
M-Constant Transformation on W;

6 fR(SK) = £ - “EHcTal |, ;

7 else

8 Apply M Constant Transformation on W;

9 Run the algonthm for DVRP in the new metric space

with distance bound ,1—31, and get the set of tours M;
10 Employ the Nearest Neighbor Algorithm for TSP on
each tour in M to further reduce its length;
J+(B = HC Tac)

11 RS = & - e s,
12 end

In general, for each case, Algorithm 1 first applies a proper
y-Constant Transformation to construct a new metric space, and
then employs the algorithm for DVRP on this metric space to
obtain the set of tours. Briefly speaking, the algorithm for DVRP

proposed in [34] first divides the sensor nodes into several sets
according to their distance to the BS. Next, it conducts the
algorithm for unrooted DVRP [35] for each sensor node set and
thus get a number of paths. Finally, it appends both end points of
every path with edges from the BS to form tours.

After obtaining the tours, Algorithm 1 adopts the Nearest
Neighbor Algorithm on each tour to refine the results, which
repeatedly visits the nearest sensor node until all sensor nodes
have been visited. This optimization step distinguishes the
algorithm from Algorithm 1 proposed in [1].

One of the outputs of the algorithm is the relaxed constraint of
f(ISk), i-e., fR(|Sk|), a useful element in later sections. Note that at
Step 5 and at Step 10, we employ the Nearest Neighbor Algorithm
for TSP to further reduce the length of each obtained tour.

4.4, Analysis of the Approximation Algorithm for MinMCP-R

We give performance bounds of Algorithm 1 for three cases
respectively, i.e., §o = 1, Hc < 1y and ye > Y.

Theorem 4.2. Given that n.=ny, Algorithm 1 for MinMCP-R

achieves 6 - | |log, B/ +1

-approximation.
B/nr—2A (M) 42

nr

Proof. Given 1. = 1, the constraint f5(|Sx|) can be simplified as:

. . C
E_)” (B+7’C TUaC)"Sk'. (13)
Nr Nr

Note that 7§ = ™ w(m;, 7;,1). Moreover, the weight of the same
tour in the revised metric space after applying M Constant
Transformation on W in Algorithm 1 is given by:

K 1 1
= W(yBS’ TC]) * E )T W(TC‘SW Z)BS) + j "N

+ ZP N (W, ) + ) (14)

/3(3“1[ )

% <

where 7y, =
the fact that t

/B
h < —.
Ny
Thus, our problem is reduced to DVRP with distance bound nﬁ
According to Theorem 3 in [34], the result follows. O

. Combining Eqgs. (13) and (14) and following
Z‘S"‘w(n,, Tis1), we have:

(15)

Theorem 4.3. Given that n. <mn;, Algorithm 1 for MinMCP-R

achieves 6-(2- M+l> log,— Bmr | Lq]-
< BC1]C T 82 By ZA( (B+ 17CIWC>+2

approximation.

Proof. First of all, it is easy to verify that f,(0) = %,fz(\skb) =0
where |Si|, :m. and f5(|Sk|) is a decreasing and concave
function given that 7. < n; (we don’t have to consider the case
where [Si| > 515, since |Se| < 1is required for a feasible solution
in MinMCP), as illustrated in Fig. 3. Also in Fig. 3, the line fR(|S|),
one of the outputs of Algorithm 1, connects the two points of
f2(ISk|) at |Sk| = 0 and |Si| = |Sk|,- The other line, g(|S|), is tangent
to fo(|Sk|) at point |Si| =0, and intersects the horizontal axis at

oint |S;[5 #.
point [Sifz = ;7 eI Ta0)

A region in the first quadrant is said to be feasible if any point 7§
within it satisfies the constraint f5(|Sk|). In Fig. 3, both of the
regions I and II are feasible, while the region III is not. Denote by
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Fig. 3. Feasible region analysis for the case where 1. < #; in MinMCP-R.

MR M* and ME* the optimal sets of tours with minimum
cardinality constrained by fR(|Sk|).f>(|Sk|) and g(|Sk|), respectively.
Clearly, we have:

IME| < IM| < [MTL (16)

Using similar analysis in the proof of Theorem 4.2, we know the
output of Algorithm 1, M, is subject to:

M <6 { |log, 1] an)
B/”I 2A< C 1/ac>+2

Next, we show how to construct a feasible solution M’ meeting the
constraint f&(|S,|) from |M?*|. In general, we use a partition method
to achieve this goal. Suppose there is a tour P, € M#" traversing a
set of nodes |S,-| with travel time 7¥ located in the region I, II or
III, namely:

.Ekr B B/nT‘ r|,
TN

We then greedily partition P,r into as few paths as possible, such

that each path contains at most L%~ |S¢’|| nodes (apparently, no
2

(18)

operation is needed when ¥ is located in the region I). Subse-
quently, for each obtained path, we connect its endpoints to the
BS in order to form a new tour. Note that the travel time of each
newly constructed tour is definitely no more than that of Py, i.e.,

¥, as the weight space is metric. To summarize, for any obtained

tour P,;, we have [S,/| < {% \Skr\J and 7:P &, Hence:
il 7

ISkl5
kjr K E_B/’/,T| k"| E B/nT |S’<‘2 S ‘
PP T I8 Nr o ISkl5 1Skl
B _B/nr
<—-— Ser|- 19
Ny ‘Sk‘z ‘ l<]| ( )

Therefore we conclude that Tf," must belong to the region I. In this
way, |M?#"| tours can be finally converted into |M’| tours meeting
the constraint ff(|S|), and is subject to:

Sir S
|M/|< ‘ I<| IMg*‘ (2 | k|2 1)|Mg*|
5|5 Scl
IS fE ISe|
< 2. B+’7C ‘Evac
B ”C'H?c Tz/ac

Note the last inequality is obtained by following Eq. (16). Each tour
in |M’| has a travel time feasible for region I. Besides, it is clear that:

1) M. (20)

M| < M (21)

since M® is optimal.

Combining Eqgs. (17), (20) and (21) will give the result. O

Theorem 4.4. Given that n. > n;, Algorithm 1 for MinMCP-R

i B4l Thac
achieves 6 - <2 LI e 1) log, B/ng 1]-

BT i,
et
B/nr—2A (”Tif”“) 42

approximation.

Proof. For the case where 71 > 1, the curve f,(|S|) is convex as is
shown in Fig. 4. As a result, the intersection point |Sy|5 of the line
FR(ISk]), which is tangent to the horizontal axis at point |S;| = 0, is
smaller than |Si|,. Note that ff(|Sy|) is one of the outputs of Algo-
rithm 1. Moreover, the line g(|S¢|) connects the two end points
|Sk| =0 and |Si| = |Sk| = 0 of the curve f5(|S|). As is depicted in
Fig. 4, fr(1Sk|),fR(1S|) and g(|Sk|) result in three regions, namely, I,
I and IIl. Among there regions, I, II are feasible for f,(|Sk|) while
Il is not.

Denote by M®*, M* and M&* the optimal tours with minimum
cardinality constrained by fR(|Sk|),f>(ISk|) and g(|Sk|), respectively.
We apply similar techniques used in the proof of Theorem 4.3, and

therefore, transform each tour in g(|Sy|) into at most (2 Ek}g + 1)

ones, each of which is valid with respect to constraint fR(|S|).
Hence,

s
M| < ( | "'2+1) CME|

\5 3

"C ’7C vac
< |25t
B + "C Tvac

Recall that M, one of the outputs of Algorithm 1, is subject to

1) - M (22)

B/n;
| BIC Toac
B/n; —2A (W) 12

MR (23)
Combining Eqgs. (22) and (23) follows the result. O

M| <6-] |log, +1

4.5. Approximation algorithm for MinMCP

The core idea of our solution is to substitute the output of Algo-
rithm 1, fR(|S|) for the constraint f,(|Sk|). MinMCP is therefore
reformulated as a minimization problem subject to two linear
constraints.

Define  [S|, =%%=  (fi(|S],) =0). If #nc<n; define
ISi R = ﬁ otherwise, define |S;|5 = ——-& . Hence, the
¢ hac) 2 (B-',’,—?Hic-f‘m)
output of Algorithm 1 fR(|S¢]) can be rewritten as
sy =E-&- ﬁ Sk Moreover, define
k12

|Sk| %—T5ac—B/N1 -
(00=T5ac)/ISkl1 = (B/117)/ ISkl
The pseudo-codes of the algorithm for MinMCP can be found in
Algorithm 2. Note that at Step 8 and the final step, we employ the
Nearest Neighbor Algorithm for TSP to further reduce the length of
each obtained tour. This improvement leads to a better perfor-
mance than that of Algorithm 2 proposed in [1].

4.6. Analysis of the approximation algorithm for MinMCP

In this section, we mainly analyze the performance of the
approximation algorithm for MinMCP proposed in Algorithm 2.
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Generally speaking, we derive the approximation ratio for four dif-
ferent cases, and formally present the theoretical results in the fol-
lowing four theorems.

Theorem 4.5. Given that o — 75, < % and |Sy|; < |SkI¥, Algorithm 2
for MinMCP achieves 6 - ([logz m1 + 1)-approximation.

vac

Algorithm 2. Algorithm for MinMCP

Input: The metric space W, the constraints f; (|Sg|) and f>(|S|),
parameters #c, iy, 4, %, B, 75, |S,<|],|Sk\2R and |S;|"

Output The set of tours M

1 begin

2 if o -5, <£and |S]; <|Si; then

3 Apply 4 - a-Constant Transformation on W. Run the
algorithm for DVRP in the newly obtained metric space
with distance bound o — 7,., and get the set of tours M;

4

S5elseifa— 1, > % and [Sy|; > |Si/3, or o0 — 16, > % and

ISkl > [Sil5 then

6 Call Algorithm 1 for MinMCP-R, and obtain the set of
tours M;

7 elseif o — 75, < £ and |S|; > |Si|; then

8 Apply 7 - o-Constant Transformation on W. Run the
algorithm for DVRP in the newly obtained metric space
with distance bound « — 7¢,., and get the set of tours M';

9 Employ the Nearest Neighbor Algorithm for TSP on each
tour in M to further reduce its length;

10 for each tour P, € M’ do

11 if ‘Sk| > ‘Sk|m then

12 Greedily partition the tour Py (in the original
metric space W) into as few paths as possible, such that the
corresponding tour of each path, obtained by appending
both the end points of the path with edges from the BS,
complies with the constraint f5(|S¢|) 13 else

14 Call Algorithm 1 for MinMCP-R, and obtain the set of

tours M’;
15 for each tour P, € M’ do
16 if |S,| > |Sx|" then
17 Greedily partition the tour Py (in the original

metric space W) into as few paths as possible, such that the
corresponding tour of each path, obtained by appending
both the end points of the path with edges from the BS,
complies with the constraint fi (|Sg|);

18 Employ the Nearest Neighbor Algorithm for TSP on each
obtained tour to further reduce its length;

19 end

Proof. We illustrate the constraints f; (|S|) and fX(|S|) in Fig. 5. As

. B R 3
can be seen, given that o — 79, <;* and |Si|; < [Sy[3, the feasible

region for both constraints is precisely the region I formed by the
constraint f; (|Sg|). In other words, the MinMCP is reduced to the
problem under the single constraint f; (|Sg|) in this case. By analysis
similar to that in Theorem 4.2, we claim that Algorithm 2 achieves

6- ([logz #TA(’WW + 1)—approximation by further reducing

vac

the MinMCP to the DVRP. This completes the proof. O
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Fig. 4. Feasible region analysis for the case where 1. > #; in MinMCP-R.
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Fig. 5. Feasible region analysis for the case where o — 7¢,. < % and [S¢l; < [Sel5 in
MinMCP.

. R
Theorem 4.6. Given that o—75, > and |S¢; > [Skl, or

o — TS > % and |S|, = ISk}, Algorithm 2 for MinMCP achieves ¢-

approximation, where ¢ is the approximation ratio of the correspond-
ing problem MinMCP-R.

Proof. As the case here is similar to that of Theorem 4.5, we omit it
here to save space. O

Theorem 4.7. Given that o — 75, < % and |S|, > |Sk|5, Algorithm 2

for MinMCP achieves 6 - (2 : % + 1) ((log2 %} + 1)-

Sk! —2A(J-0
approximation.

Proof. Fig. 6 demonstrates the relationship between the con-
straints fX(|Sx|) and fi(|Sk|) under the given conditions. As we see,
the region I is the only region feasible for both constraints fX(|Sx|)
and f;(Sk])- In contrast, the region II is feasible for constraint
fi(IS|) but not for f&(|Sx|). Moreover, it is obvious that the obtained
tours recorded by the set M after Step 8 in Algorithm 2 fall in the
region I or II.

Let |Si|” be the crossing point of the lines fX(|S,|) and fi(|Sk|),
namely,

|m _ oc_Tuac_B/'/IT (24)

(0= T5e) /ISKI? — (B/ny)/ISkl5

Apparently, we have |S;|" < |S[% < |Si|;.

In order to make all the tours feasible for both constraints
fR(Sk]) and fi(|Sk|), the subsequent for loop checks each tour
P, € M to see whether |S;| is greater than |S|". If the answer is no,
it means that the tour P, has already met the constraint fR(|S]),
nothing needs to be done; otherwise, the tour P, may fall into
region II, thus we need to convert P, into multiple feasible tours, as

ISk
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Fig. 6. Feasible region analysis for the case where o — 79, < % and |Si|, > |St/s in
MinMCP.

is elaborated in Step 12. Denote by M’ the final set of tours
obtained by Algorithm 2, M* the optimal set of tours for MinMCP,
and M the optimal set of tours under the single constraint
f1(|Sx]). Following the spirit of the analysis in the proof of
Theorem 4.3, we claim that the number of created tours for k is

no more than [ﬁw < (2 By 1). Therefore, we have

S R
Ko (s, | Skl2

S
M < (254 ) g 25)
ISkl
Furthermore, it is easy to see
M| <6 |log %~ Thae +1) MY (26)
= 20— 16, — 2A(4- o) + 2 '

In addition, the optimal solution for MinMCP under both con-
straints fi(|S¢|) and fR(|Sk|),|M"|, should by no means be greater
than the optimal one for MinMCP under the single constraint
fi(Sel), M, de,,

M| < M (27)
Combining Eqs. (25)(26)(27) we have
IM|<6
. . ‘sk‘l o — Tilac
(2 ‘Sl<§+1 logza_fiaC_ZA()”'a)+2 1
M (28)

This completes the proof. O

Theorem 4.8. Given that o — T¢

Soc > £ and |S|; < |Skl3, Algorithm 2
for MinMCP achieves 2 - (%+ 1) - ¢-approximation, where & is the

approximation ratio of the corresponding MinMCP-R.

Proof. As the case concerned is similar to that of Theorem 4.7, we
omit the proof here to save space. [

4.7. Enhanced algorithm for MinMCP

In spite of its guaranteed approximation ratio, Algorithm 2 is
still not quite efficient. Specifically, we find that the consumed en-
ergy of each MC is usually noticeably less than its battery capacity
B. The root reason is that the DVRP algorithm, upon which our
approximation algorithm based, is mainly designed to facilitate
the derivation of approximation ratio and, therefore, sacrifices its

Algorithm 3. Enhanced Algorithm for MinMCP

Input: The threshold €, the metric space W, the constraints
fl (‘Sk‘) and f2(|sk‘)v parameters #c, 1r, 450, B, T?)acv |Sk‘17 ‘SI<|2R
and ‘Sklm

Output: The set of tours M

1 begin

2 B =B

3 while The maximum energy consumption of the MCs
does not exceed B do

4 B =2B;

5 Call Algorithm 2 for MinMCP with battery capacity B'
together with other related parameters, and obtain the set
of tours M;

6 Using binary search method to find the maximum battery
capacity B” that guarantees the maximum consumed
energy of each MC being less than B. The initial search
range is [B'/2,B'], and the search stops when the gap
between two successive values of B” is smaller than €B;

7 end

performance to some extent. This motivates us to further improve
the approximation algorithm for MinMCP.

We present the details of the enhanced algorithm in Algorithm
3. Basically, this algorithm attempts to minimize the number of
MCs by augmenting the input battery capacity as much as possible,
while guaranteeing that the maximum consumed energy of each
MC is less than the given battery capacity B.

It is easy to see that the output of the enhanced algorithm
should be at least as good as that of the original approximation
algorithm. We thus have the following theorem.

Theorem 4.9. Algorithm 3 achieves an approximation ratio no more
than that of Algorithm 2.

5. Discussion

In this paper, we assumes that the energy consumption rate of
each sensor node is constant and uniform. This assumption is,
however, still somewhat strict, and not general enough. In this sec-
tion, we discuss how to extend the proposed algorithms to more
general cases where sensor nodes have nonuniform energy con-
sumption rates.

Generally speaking, the nonuniformity of energy consumption
rates will result in the change of constraints in MinMCP, and there-
fore make the problem harder to be tackled. Suppose the energy
consumption rate for the sensor node ; is pi,, then it can be easily
derived that the two constraints in MinMCP now become

i
‘EIIgg (O(*T;ac)fa' Z%
v;€Sy
and
k B- (B ¢ chac) ’ Zu,-esk pﬁw
Tp < ;
nr+ (’7c - ”T) ’ Zuiesk i3

respectively, where o = min,,

U-Emax—Epi)
Sk TPl UR)

For the second constraint, we can first apply techniques similar
to that in the proof of Theorem 4.3 to approximate the constraint

; k P
by a new one in the form of 7§ < ¢y —¢; - Zyleskﬁw (c; and c, are
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Fig. 7. An instance to the enhanced approximation algorithm for MinMCP when
B =300K].
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Fig. 8. An instance to the enhanced approximation algorithm for MinMCP when
B=180K].

positive constants), then employ an extended transformation tech-
nique based on y-Constant Transformation to further convert the
constraint to the form of 7§ < c3, where c; is a constant. The origi-
nal constraint is thus transformed to the traditional constraint of
DVRP.

On the contrary, the first constraint is harder to be treated. This
is because « is not a constant but a variable relating to the energy
consumption rates of the nodes contained in the visiting set of sen-
sor nodes Sy of the MC k. In the future work, we will devise new
approximation approaches to deal with this problem, as well as
the original problem when considering both of the constraints.

6. Simulation results

In this section, we present simulation results to verify our the-
oretical findings. We first introduce the evaluation setup, followed
by the description of the baseline algorithm. Next, we illustrate an
instance of the enhanced MinMCP algorithm, and then evaluate the
performance of the proposed algorithms in terms of the battery
capacity B, Epnq — Enin for sensor nodes, energy transfer rate U,
charging power for MCs 7. and number of sensor nodes. For the
evaluation regarding these parameters, every point on the plotted
figures stands for the average value over that of 100 randomly gen-
erated topologies.
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Fig. 9. Critical parameters of each MC when B = 180 K].

6.1. Evaluation Setup

We randomly distribute 50 sensor nodes in a 5 km x 5 km 2D
Euclidian region throughout the simulations. Any pair of nodes can
reach each other through a direct path. The base station is assumed
to be located at (2500 m, 2500 m). Unless otherwise specified, we
use the following parameter settings as in [ 14]: the traveling speed
of MCs is V=5m/s,p, =200 mW,Eyq = 10.8 K], Epyin = 5407,
U=5W,n.=110W,5; = 100 W,B = 500 K] and 7¢,. = 1 hour.

vac

6.2. Baseline setup

Though the algorithm proposed in [22] is related to our work, it
is not appropriate to use it directly for comparison. On the one
hand, it is only suitable for 1D sensor networks. On the other hand,
it adopts a different assumption, namely, MCs can intentionally
gather at a rendezvous point to recharge others or to be recharged
without energy loss. This assumption finally leads to a completely
different scheme compared with ours. For this reason, we con-
struct the following baseline algorithm by borrowing ideas of
[22] for comparison. That is, all the MCs dictated by this algorithm
have uniform schedule periods, which means that the MCs that fin-
ish the charging tasks earlier have to wait at BS for the returns of
other MCs before starting the next trip. The chargers plan their
routes in sequence. For each charger, it consistently chooses the
nearest sensor node that is not chosen by the former chargers to
charge after its departure from the BS. At each step, the charger
checks whether its residual energy can sustain its next move to
the next node and returning back to the BS. If not, the charger goes
back to the BS immediately. The length of the schedule period of
each charger is set to be the average length of the schedule periods
determined by our algorithm for MinMCP, such that the renewable
energy cycle of each sensor node can be guaranteed.

6.3. Performance evaluation

6.3.1. An Instance to the enhanced approximation algorithm for
MinMCP

Fig. 7 illustrates the obtained 4 tours of MCs (marked in differ-
ent colors) for a MinMCP instance given B = 300 K]. However, for
B =180 K], the number of MCs needed increases to 9, as shown
in Fig. 8. Note that, the Nearest Neighbor Algorithm for TSP has
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been employed for each tour to further reduce its length, as shown
in Algorithm 2.

For the case where B = 180 K], we show the number of charged
sensor nodes, total travel distance, energy consumption and re-
charge period of each MC in Fig. 9. Note that we set %, =7,
for each MC, and sort the IDs of the MCs according to their energy
consumption in a descending order. It can be seen that energy con-
sumptions are roughly balanced among MCs, and none of them ex-
ceeds the maximum battery capacity, i.e., 180K]. Another
important observation is that the recharge period t* is jointly
determined by the number of recharged sensor nodes and the tra-
vel distance, rather than solely by one of them. In general, the tra-
vel distance plays a more important role than the number of
recharged nodes in the total energy consumption of MCs. For
example, the 5, MC, which has the largest energy consumption,
travels the longest distance but only recharges 3 sensor nodes. Be-
sides, throughout the recharge period, none of the energy levels of
sensor nodes drops below E;;, which can be confirmed by check-
ing the conditions described in Eq. (3) and Inequality (4).

6.3.2. Impact of battery capacity (B)

In this case, we vary the maximum energy capacity B between
[200 K], 600 KJ] to evaluate its impact on the required number of
MCs |M|. Particularly, for each value of B, we perform Algorithm
3 under 100 randomly generated topologies, and pick the average
value of |M].

As shown in Fig. 10, not surprisingly, the number of MCs | M|
drops with an increasing B for all three algorithms. Among these
algorithms, the number of MCs needed of the enhanced MinMCP

25|

MinMCP
—#— Enhanced MinMCP
—©—Baseline

20

Number of MCs |M|
o

5 ‘ ‘
200 300 400 500 600
B (KJ)

Fig. 10. Illustration of impact of B.
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Fig. 11. Verification of performance bound w.r.t. B.
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Fig. 12. Illustration of impact of Eyqx — Enin.

algorithm is on average 6.7% and 14.8% less than that of the base-
line algorithm and the MinMCP algorithm, respectively.

Let { be the approximation ratio given by the theoretical analy-
sis. Though the optimal number of MCs, |M?|, can be hardly deter-
mined, it is certain that |[M*| > 1. Therefore, { > |M| or,
equivalently, {/|M| > 1 can be viewed as a sufficient (but not nec-
essary) condition to check the correctness of our theoretical
analysis.

We plot the ratio of {/| M| for the three cases in Fig. 11. Note
that each point on the curves stands for the average (/| M| over
the 100 randomly generated instances, while the bars above and
below the point represent the maximum and minimum values of
{/IM| among the 100 instances, respectively. It can be seen that
all the values of {/|M]| for the three cases, even those minimum
values, are greater than 1. This observation corroborates our theo-
retical findings.

6.3.3. Impact of the difference between battery capacity and minimum
energy to be operational for sensor nodes (Ema — Emin)

We proceed to evaluate the impact of Eg — Emin Of sensor
nodes on the minimum required number of MCs | M|. Fig. 12 shows
the trend that |M| drops with an increasing Eq — Emin for each
algorithm. Furthermore, the gaps between the three algorithms
are pretty small for E;ox — Emin < 1.6. When Epg — Enin €Xceeds 2,
the outputs of three algorithms become nearly constant. This is be-
cause in this case, the battery capacity of each sensor node is large
enough to support its normal operation during a charging period

MinMCP
—6—Enhanced MinMCP
0 ; ; ; : :

1 15 2 25 3
E_-E _(KJ)

max — min

Fig. 13. Verification of performance bound w.r.t. Epqx — Epin.
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Fig. 16. Impact of number of sensor nodes.

and, therefore, the energy capacity of the MC serves as the sole
constraint.

Again, the fact that all values of {/| M| are never less than 1, as
illustrated in Fig. 13, is consistent with our theoretical results. An-
other important observation for this figure is that {/|M| experi-
ences a rapid growth when E;q — Epin is 1.6 for MinMCP and 1.8
for the enhanced MinMCP algorithm. This can be ascribed to the
switch from one of the four cases considered in the MinMCP algo-
rithm to another, together with the fact that different cases have
diverse approximation ratios.

6.3.4. Impact of energy transfer rate of MCs (U)

In this subsection, we study the impact of energy transfer rate U
of an MC on the number of required MCs. Fig. 14 shows that when
U rises from 1 W to 11 W, the number of MCs needed drops from
25.1 to 3.7 for the enhanced MinMCP algorithm, from 30.9 to 4.9
for the MinMCP algorithm and from 28.7 to 4 for the baseline algo-
rithm. Notice that we set E;;.x — Emin = 2 KJ. The explanation of this
phenomenon is straightforward. When the energy transfer rate U
arises, the charging energy for each sensor node will be reduced.
So does the charging time. As a result, the MCs can spare energy
and time to charge more nodes, and its number is thus reduced.

6.3.5. Impact of working power of MCs for traveling (3¢)

We investigate the influence of #. on the required number of
MCs in this subsection. Intuitively, a larger #. means an MC needs
more energy to replenish the same amount of energy into the sen-
sor node’s battery, and therefore, calls for more MCs. Fig. 15 vali-
dates such intuition. Furthermore, it can be seen that the
performance gaps between the three algorithms become more
and more conspicuous when 7. grows. The performance gains of
the enhanced MinMCP algorithm over the other two algorithms
achieve 45.3% and 20.1% respectively when 7. = 250 W.

6.3.6. Impact of number of sensor nodes

We are also interested in the impact of the number of sensor
nodes. As illustrated in Fig. 16, the required number of MCs for
three algorithm increases steadily when the number of sensor
nodes scales from 40 to 180. More precisely, the number of MCs
is nearly proportional to the number of nodes, which is consistent
with our intuition. Moreover, the enhanced MinMCP algorithm and
the baseline algorithm need almost the same number of MCs that
is roughly 14.4% less than that of the MinMCP algorithm.

7. Conclusion

In this paper, we have studied the problem of minimizing the
number of energy-constrained MCs to cover a 2D WSN. We formu-
late the problem, and show that by applying appropriate transfor-
mations, it can be cast into the classical problem-DVRP. We not
only prove the NP-hardness of the problem, but also propose
approximation algorithms with proven performance bounds. The
simulation results demonstrate the effectiveness of the algorithms
as well as the correctness of our theoretical analysis.

In future work, we will try to improve the approximation
bounds of the algorithms. Moreover, we will generalize the solu-
tion to the case in which sensor nodes have nonuniform energy
consumption rates.
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