
Computer Communications 46 (2014) 54–65
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom
Minimizing the number of mobile chargers for large-scale wireless
rechargeable sensor networks q
http://dx.doi.org/10.1016/j.comcom.2014.03.001
0140-3664/� 2014 Elsevier B.V. All rights reserved.

q A preliminary version of this paper appeared in [1].
⇑ Corresponding author.

E-mail addresses: dhpphd2003@gmail.com (H. Dai), wuxb@nju.edu.cn (X. Wu),
gchen@nju.edu.cn (G. Chen), ljxu83@gmail.com (L. Xu), slin@temple.edu (S. Lin).
Haipeng Dai ⇑, Xiaobing Wu, Guihai Chen, Lijie Xu, Shan Lin
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 12 March 2014

Keywords:
Wireless rechargeable sensor networks
Mobile charging
Two-dimension
Traditional wireless sensor networks (WSNs) are constrained by limited battery energy that powers the
sensor nodes, which impedes the large-scale deployment of WSNs. Wireless power transfer technology
provides a promising way to solve this problem. With such novel technology, recent works propose to
use a single mobile charger (MC) traveling through the network fields to replenish energy to every sensor
node so that none of the nodes will run out of energy. These algorithms work well in small-scale net-
works. In large-scale networks, these algorithms, however, do not work efficiently, especially when the
amount of energy the MC can provide is limited. To address this issue, multiple MCs can be used. In this
paper, we investigate the minimum MCs problem (MinMCP) for two-dimensional (2D) wireless recharge-
able sensor networks (WRSNs), i.e., how to find the minimum number of energy-constrained MCs and
design their recharging routes in a 2D WRSN such that each sensor node in the network maintains con-
tinuous work, assuming that the energy consumption rate for all sensor nodes are identical. By reduction
from the Distance Constrained Vehicle Routing Problem (DVRP), we prove that MinMCP is NP-hard. Then
we propose approximation algorithms for this problem. Finally, we conduct extensive simulations to val-
idate the effectiveness of our algorithms.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) have been widely used for
structural health monitoring, scientific exploration, environmental
monitoring, target tracking, etc. As sensor nodes in traditional
WSNs are powered by batteries, the limited battery energy is con-
sidered as a major deployment barrier for large-scale WSNs. To
elongate the lifetime of WSNs, many approaches have been pro-
posed to harvest ambient energy from their surroundings such as
solar energy [2], vibration energy [3], and wind energy [4]. How-
ever, due to the time-varying nature of renewable energy re-
sources, the success of these methods remains very limited in
practice.

The recent breakthroughs in wireless power transfer technology
[5], which allow energy to be transferred from one storage device
to another via wireless with reasonable efficiency, has provided a
promising way to solve this problem. Since wireless recharging
can guarantee the continuous power supply and is insensitive to
the neighboring environment, it has found many applications
including RFIDs [6], sensors [7], cell phones [8], laptops [9], vehi-
cles [10], smart grids [11] and civil structures monitoring [12].
With the novel technology, recent studies [12–18,1] propose to
employ a mobile charger (MC) to replenish energy to sensor nodes
in wireless rechargeable sensor networks (WRSNs) [19–21] so that
none of them in the network will run out of energy. Typically, the
MC periodically traverses every node in the network and stays near
every node for a short period to recharge it. Research results dem-
onstrate that this approach works well for small-scale networks.
For large-scale wireless sensor networks, a single mobile charger
may not be enough. This is because the MC may not carry sufficient
energy to recharge every node in a large-scale network on a single
tour. Therefore, the MC needs to return to the base station after
recharging a part of the network. As a result, single MC recharging
algorithms become invalid and continuous working of sensor
nodes can no longer be guaranteed.

To recharge a large-scale sensor network, it is necessary to use
multiple energy constrained mobile chargers. In this work, we
investigate the minimum mobile charger problem for wireless sen-
sor networks. That is, how to find the minimum number of energy-
constrained MCs as well as their routes to recharge a given WRSN
such that each sensor node in the WRSN can work continuously. In
our problem settings, the energy consumption rate for all sensor
nodes are identical, which is a practical assumption for many
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applications as will be elaborated. This problem is highly challeng-
ing as we should jointly consider the energy constraints of MCs and
the time-sensitive charging requirements of sensor nodes when
determining the routes of MCs. We prove the NP-hardness of this
problem and propose efficient approximation algorithms to solve
it. Zhang et al. [22] also employed multiple energy-constrained
MCs. However, their work focuses on only one-dimensional (1D)
sensor networks, and their goal is to maximize the ratio of the
amount of payload energy to the overhead energy. Our solution
is designed for two-dimensional (2D) sensor networks, and con-
centrates on an entirely different problem compared with [22].

The contributions of this work are as follows.

� We are the first to consider the minimum mobile chargers prob-
lem (MinMCP) in general 2D WRSNs, i.e., how to find the mini-
mum number of energy-constrained MCs and their recharging
routes given a 2D WRSN, so as to keep the network running
forever.
� We prove that MinMCP is NP-hard, and propose approximation

algorithms to address MinMCP. Particularly, we first consider
the relaxed version of MinMCP, which is named MinMCP-R,
and propose an approximation algorithm to address it. Further-
more, we present approximation algorithms to MinMCP based
on the results obtained for MinMCP-R.
� We conduct extensive simulations to verify our analytical find-

ings. The simulation results demonstrate the effectiveness of
our schemes.

The remainder of the paper is organized as follows. In Section 2, we
investigate some related works. We present preliminaries and back-
ground in Section 3. In Section 4, we first formulate the problem
and investigate its hardness. Then we propose approximation algo-
rithms and conduct performance analysis respectively. Section 5
discusses how to extend our work to general cases. Experimental
results are presented in Section 6 before we conclude the paper in
Section 7.
Mobile Charger (MC) Sensor Node

Base Sta�on (BS)

Fig. 1. Illustration of the network model.
2. Related work

In this section, we review some related works in terms of mo-
bile charging problems where a single or multiple MCs are used.

There has emerged a considerable amount of work studying
how to use one single MC to enhance the performances of WRSNs.
In terms of data routing performance, Tong et al. [13] investigated
the impact of wireless charging technology on data routing and
deployment of sensor networks where a single MC is applied. A
more practical scheme jointly considering routing and charging
was reported in [15]. It aimed to maximize the network lifetime
under practical constraints such as dynamic and unreliable com-
munication environment, limited charging capability and hetero-
geneous node attributes. Other works were interested in the
impact of mobile charging on the efficiency of data gathering. Shi
et al. [14] employed an MC to periodically travel inside the sensor
network to charge sensor nodes, and tried to minimize the aggre-
gate charging time and travel time. By [23,24], a mobile charger
was used to serve not only as an energy transporter that charges
stationary sensors, but also as a data collector. In addition, Xie
et al. [25] studied the problem of co-locating the mobile base sta-
tion on the wireless charging vehicle to minimize energy consump-
tion of the entire system while guaranteeing that none of the
sensor nodes will run out of energy. Still others concentrated on
stochastic event capture issues. Dai et al. [18] considered two clo-
sely related subproblems of mobile charging for stochastic event
capture. One is how to choose the nodes for charging and decide
the charging time for each of them, and the other is how to best
schedule the nodes’ activation schedules according to their re-
ceived energy. Their goal is to maximize the overall quality of
monitoring.

Besides the above concerns on traditional performances of sen-
sor networks, some literature paid attention to practical issues re-
lated to the MC. Fu et al. [26] focused on minimizing the charging
delay of the MC, an RFID-reader, by planning its optimal movement
and charging strategy. While most existing works on the mobile
charging problem mainly concentrated on the optimal offline path
planning for the MC, He et al. [27] considered the on-demand mo-
bile charging problem, i.e., how to dynamically plan the path for
the MC where the charging requests from sensor nodes come ran-
domly. Li et al. [16] tried to maximize the number of sensor nodes
to be charged by using a single MC with limited energy, which is
different from the above schemes that assume the employed MC
has unbounded energy.

In order to charge a large-scale WRSN, multiple MCs are needed
considering their energy constraint. Zhang et al. [22] proposed the
only scheme employed multiple energy-constrained MCs to collab-
oratively charge a linear WSN. MCs are allowed to charge each
other. Their goal is to maximize the energy efficiency of charging,
which is totally different from ours.
3. Problem statement

3.1. Network model

We assume that there is a collection of rechargeable sensor
nodes distributed over a 2D region. A base station (BS) serves not
only as a data sink, but also as an energy source of the network
by periodically dispatching MCs to charge the sensor nodes, as
illustrated in Fig. 1. Let G ¼ ðV ; EÞ represent the topology of sensor
nodes and the BS. Let vBS 2 V denote the BS, and J ¼ V n vBS ðjJj ¼ nÞ
be the set of sensor nodes. Denote by wði; jÞ the time cost for MCs
traveling from a sensor node v i to another sensor node v j, which
we call the edge weight. Notice that wði; jÞ includes neither the
charging time of MCs at the sensor node v i nor that at the sensor
node v j. We assume that G is complete, and the edge weights form
a metric space W, namely, they are symmetric and satisfy the tri-
angle inequality. To be specific, we have wði; jÞ ¼ wðj; iÞ and
wði; jÞ 6 wði; kÞ þwðk; jÞ for arbitrary sensor nodes v i;v j and vk.
We emphasize that this assumption is without loss of generality
because an MC can always travel along the shortest path between
any two sensor nodes (e.g., if wði; jÞ > wði; kÞ þwðk; jÞ, an MC will
prefer to travel from i to j by passing by k, which results in an
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equivalent edge weight between i and j;w0ði; jÞ ¼ wði; kÞ þwðk; jÞ),
which leads to inherent triangle inequality among nodes.

Every sensor node has a battery capacity of Emax, and needs a
minimum energy Emin to be operational. We assume that the
energy consumption rate is constant and uniform for all sensor
nodes, and is denoted by pw. This assumption holds for a number
of scenarios. For example, Jiang et al. [28] studied wireless power
transmission for sensor nodes buried inside concrete. These sensor
nodes collect valuable volumetric data related to the health of a
structure, and wirelessly transmit the data to a data collection
receiver directly [29]. As their transmitting power is uniform, the
energy consumptions of the sensor nodes are identical to each
other. In [12][30], a civil structure is instrumented with sensor
nodes capable of being charged wirelessly by a mobile helicopter,
which also serves as a data collector. Thus, hop-by-hop data trans-
missions are no longer needed, and the energy consumptions can
be conserved and balanced on sensor nodes. In addition, RFID sen-
sors in Wireless Identification and Sensing Platform (WISP)
[26,31,32] typically consume energy at the same rate, and they
can be wirelessly charged by a mobile charger [33].

A summary of the notations in this paper is given in Table 1.
3.2. Charging model

Suppose that a fully charged MC k starts from the BS and visits
every node of a subset of sensor nodes Sk # J exactly once and
charges them. The MC k spends sk

i units of time in charging a node
v i. Denote the tour of the MC k by Pk ¼ ðp0;p1; . . . ;pjSk j;pjSk jþ1Þ
where p0 ¼ pjSk jþ1 ¼ vBS and fpigjSk j

i¼1 ¼ Sk. Consequently, the time
the MC k takes to travel along Pk is given by sk

P ¼ RjSk j
i¼0wðpi;piþ1Þ.
Table 1
Notations used.

Symbol Meaning

wði; jÞ Time cost for MCs traveling from node v i to v j

Emax Battery capacity for all sensor nodes
Emin Minimum energy for sensor nodes to be operational
pw Energy consumption rate for all sensor nodes
M Set of tours of all MCs
sk

i
Charging time allocated to node v i by the MC k

sk
P

Travel time of the MC k

sk
vac

Vacation time of the MC k

sc
vac Minimum required vacation time for MCs

sk Time period of recharge schedule for the MC k

U Energy transfer rate of MCs
B Battery capacity of MCs
gC Working Power of MCs for Traveling
gT Working Power of MCs for Charging

Fig. 2. Illustration of rene
Further, let M be the set of tours of all MCs, which means that
Pk 2M and k 2 ½jMj� for any MC k.

After finishing the charging, The MC k returns to the BS to be
serviced (e.g., replacing or recharging its battery) and gets ready
for the next trip. This period is called vacation time, and is denoted
as sk

vac. We demand that sk
vac for any MC k should not be smaller

than a given constant value sc
vac , i.e.,

sk
vac P sc

vac ðk 2 ½jMj�Þ; ð1Þ

in order to meet the requirements of most applications. The MC k
repeats its recharge schedule every period of time sk, which consists
of charging time, travel time and vacation time, i.e.,

sk ¼ sk
P þ sk

vac þ Rv i2Sk
sk

i ðk 2 ½jMj�Þ: ð2Þ

Let U ðU > pwÞ be the energy transfer rate of an MC during charging.
To ensure that each sensor node maintains continuous work and the
charging cost of an MC is minimized, the renewable energy cycle of
each sensor node should be guaranteed [14]. In particular, the en-
ergy level of a sensor node v i 2 J exhibits a renewable energy cycle
if it satisfies the following two requirements: (i) it starts and ends
with the same energy level over a period of sk; and (ii) it never falls
below Emin. Mathematically, the following two conditions should be
satisfied.

sk � pw ¼ sk
i � U ðk 2 ½jMj�;v i 2 SkÞ; ð3Þ

Emax � ðsk � sk
i Þ � pw P Emin ðk 2 ½jMj�; v i 2 SkÞ: ð4Þ

The first equation indicates that the amount of energy charged to a
node v i during si must be equal to that consumed by v i in a sche-
dule period, and the second inequality is obtained by considering
the lowest energy level of the node.

We take Fig. 2 as an example. The energy level of sensor node 1
during the first three renewable cycles (marked in the solid saw-
tooth graph) has only two slopes: one is �pw when no MC charges
this node during this time period, and the other is U � pw when an
MC is charging this node at a rate of U. Also shown in Fig. 2 is
another renewable energy cycle (marked in the dashed sawtooth
graph) of sensor node 2, where the battery energy is charged to
Emax during an MC’s visit and falls to the lowest energy level of
Emin in non-charging period. Note that the time period of node 1
differs from that of node 2. This is because they are charged by dif-
ferent MCs with different recharge schedules. For more details of
the renewable energy cycle, we refer the reader to [14].

Note that, on the contrary, the charging scheme in [22] requires
all MCs to have uniform schedule periods, which means that the
MCs finishing the charging tasks earlier have to wait at the BS
for the returns of other MCs before starting the next trip. Conse-
quently, to compensate the inefficiency of MCs caused by waiting,
more MCs are needed compared with our scheme. Besides, we
stress that our scheme can be easily extended to the case where
wable energy cycles.



H. Dai et al. / Computer Communications 46 (2014) 54–65 57
uniform schedule periods for MCs are mandatory. In fact, this case
is much simpler to handle.

3.3. Energy consumption model for MCs

Suppose that each MC is energy-constrained and has an energy
capacity of B. Furthermore, denote by gC the working power of
each MC during traveling, and gT the working power of each MC
when it stops and charges sensor nodes. For each MC, its move-
ments and charging process share the same pool of battery energy.
Clearly, the overall energy an MC spends in traveling and charging
should not exceed its battery capacity B. That is,

gT � sk
P þ gC � Rv i2Sk

sk
i 6 B: ð5Þ

In most cases, gT is much bigger than gC , which means that the
power spent in charging sensor nodes for an MC is typically far less
than the power consumed in traveling. For example, the working
power of the off-shelf product–TX91501 transmitter produced by
Powercast is 3 W. When a vehicle (serves as an MC) equipped with
such a power transmitter stops to charge a sensor node, the work-
ing power of the transmitter can be accounted as the unique en-
ergy consumption source, which is much less than the vehicle’s
traveling power.

But there are exceptions. For instance, the helicopter in [12]
which serves as an MC might spend more energy when hovering
for charging sensor nodes than that when flying, i.e., gC > gT . We
include this case in the theoretical part.

3.4. Problem description

Definition 1 (Minimum mobile chargers problem (MinMCP)). Given
a set of sensor nodes J with parameters pw; Emax and Emin, the metric
space W including the time cost of an MC to travel between any
pair of nodes, find a minimum required number of MCs (with
parameters gC ;gT ;U; B and sc

vac) originating at the BS and collec-
tively visiting all the sensor nodes to charge them, such that none
of the sensor nodes will run out of energy.

Combining Eqs. (1)(2)(3)(4), we can derive

sk
P 6 ða� sc

vacÞ � k � a � jSkj ðk 2 ½jMj�Þ ð6Þ

and

sk ¼ sk
P þ sk

vac

1� k � jSkj
ðk 2 ½jMj�Þ; ð7Þ

where a ¼ U�ðEmax�EminÞ
pw �ðU�pwÞ

and k ¼ pw
U .

Due to the fact that sk > 0, we can immediately derive the following
condition from Eq. (7)

jSkj <
1
k
: ð8Þ

Meanwhile, combining Eqs. (1)–(3) and (5), we have

sk
P 6

B� k � ðBþ gC � sc
vacÞ � jSkj

gT þ k � ðgC � gTÞ � jSkj
ðk 2 ½jMj�Þ: ð9Þ

To sum up, the problem in this paper can be formulated as follows.

Min jMj
s:t: sk

P 6 ða� sc
vacÞ � k � a � jSkj ðk 2 ½jMj�Þ

ð10Þ

sk
P 6

B� k � ðBþ gC � sc
vacÞ � jSkj

gT þ k � ðgC � gTÞ � jSkj
ðk 2 ½jMj�Þ ð11Þ

[k2½jMj�Sk ¼ J; jSkj <
1
k

; Si \ Sj ¼ ; ði; j; k 2 ½jMj�; i – jÞ
where a ¼ U�ðEmax�EminÞ
pw �ðU�pwÞ

and k ¼ pw
U .

Define f1ðjSkjÞ ¼ ða� sc
vacÞ � k � a � jSkj and f2ðjSkjÞ ¼

B�k�ðBþgC �sc
vacÞ�jSk j

gTþk�ðgC�gT Þ�jSk j
. For simplicity, we use f1ðjSkjÞ (or f2ðjSkjÞ) to represent

the constraint sk
P 6 f1ðjSkjÞ (or sk

P 6 f2ðjSkjÞ), if there is no confusion.
In addition, we assume that 2 �wðvBS;v iÞ 6 f1ð1Þ and 2 �wðvBS; v iÞ
6 f2ð1Þ for any node v i 2 J, otherwise there is no feasible solution
for MinMCP.

4. Solving MinMCP: theoretical results and approximation
algorithms

In this section, we first find that MinMCP is difficult to tackle di-
rectly after examining the hardness of MinMCP. Then, we resort to
solve its relaxed version MinMCP-R. Finally, we come up with an
approximation algorithm for MinMCP based on the solution to
MinMCP-R.

4.1. Hardness of MinMCP

First, we review the following NP-complete problem.

Definition 2 (Distance Constrained Vehicle Routing Problem (DVRP)
[34]). Given a set of vertices in a metric space, a specified depot,
and a distance bound D, find a minimum cardinality set of tours
originating at the depot that covers all vertices, such that each tour
has length at most D.

The following theorem shows the hardness of MinMCP.

Theorem 4.1. MinMCP is NP-hard.

Proof. In general, we prove the NP-hardness of MinMCP by reduc-
ing from DVRP.

To begin with, let us consider a special case of MinMCP when
gC ¼ gT and pw is rather small such that k ¼ pw

U � 0. Consequently,
the two constraints of MinMCP (10) and (11) can be rewritten as
sk

P 6 ða� sc
vacÞ and sk

P 6
B
gT

, respectively. Meanwhile, the constraint

of jSkj, i.e., jSkj < 1
k, can be safely removed. Further, let

B
gT
6 ða� sc

vacÞ (this condition can be easily satisfied since

a ¼ U�ðEmax�EminÞ
pw �ðU�pwÞ

is a very large number given that pw
U � 0), the two

constraints can thus be equivalently simplified as sk
P 6

B
gT

. The

resulting problem is clearly in the form of DVRP.

Formally, given any instance of DVRP with distance bound D,
we can set B

gT
¼ D;gC ¼ gT as well as the values of the related

parameters such that pw
U � 0 and B

gT
6 ða� sc

vacÞ, and thus obtain an
instance of MinMCP. Such construction process, apparently, can be
done in polynomial time. Since DVRP is NP-complete and thus is
NP-hard, we then conclude that MinMCP is also NP-hard. h

4.2. Roadmap of our solution

Our roadmap to solve MinMCP is as follows. Due to the diffi-
culty of tackling MinMCP directly, we first consider its relaxed ver-
sion where the linear constraint f1ðjSkjÞ is removed, which we call
MinMCP-R.

For MinMCP-R, we first relax the nonlinear constraint f2ðjSkjÞ
into a linear one, and then reduce the problem to DVRP by applying
a simple transformation. This approach enables us to propose an
approximation algorithm.

Based on the solution to MinMCP-R, we can construct a feasi-
ble solution to MinMCP by taking into account the constraint
f1ðjSkjÞ again. An approximation algorithm is also provided for this
case.
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4.3. Approximation algorithm for MinMCP-R

First of all, we define c-Constant Transformation in metric space
as follows.

Definition 3 (c-Constant Transformation). Given a metric space
W and a constant c, the c-Constant Transformation for W is to
revise the weight wði; jÞ between any pair of sensor nodes v i and v j

as wði; jÞ þ c, and wði;vBSÞ between any sensor node v i and the BS
as wði;vBSÞ þ c=2.

We denote by D the maximum distance of any node from the
BS, and DðcÞ the corresponding one after the c-Constant Transfor-
mation. It is easy to verify the following lemma.

Lemma 4.1. The metric space after a c-Constant Transformation is
still metric.
Proof. Denote by ewði; jÞ the edge weight between nodes v i and v j

after the c-Constant Transformation. On one hand, we haveewði; jÞ ¼ wði; jÞ þ c 6 ðwði; jÞ þwðj; kÞÞ þ 2 � c
6 ðwði; kÞ þ cÞ þ ðwðk; jÞ þ cÞ 6 ewði; kÞ þ ewðk; jÞ: ð12Þ

Note that the first inequality stems from the fact that the original
space is metric and thus wði; jÞ 6 wði; jÞ þwðj; kÞ.

On the other hand, it is easy to see thatewði; jÞ ¼ ewðj; iÞ:
To sum up, the edge weights in the transformed space are

symmetric and satisfy the triangle inequality. In other words, the
transformed space is metric. This completes the proof. h

We propose our algorithm for MinMCP-R in Algorithm 1.
Particularly, Algorithm 1 has different treatments for the case
where gC 6 gT and that where gC > gT .

Algorithm 1. Algorithm for MinMCP-R

Input: The metric spaceW, the constraint f2ðjSkjÞ, parameters
gC ;gT ; k;B and sc

vac

Output: The set of tours M, the relaxed constraint f R
2 ðjSkjÞ

1 begin
2 if gC 6 gT then

3 Apply k�ðBþgC �sc
vacÞ

gT
-Constant Transformation on W;

4 Run the algorithm for DVRP [34] in the new metric space
with distance bound B

gT
, and get the set of toursM;

5 Employ the Nearest Neighbor Algorithm for TSP on each
tour in M to further reduce its length;

6 f R
2 ðjSkjÞ ¼ B

gT
� k�ðBþgC �sc

vacÞ
gT

� jSkj;
7 else

8 Apply
k�ðB�gC

gT
þgC �sc

vacÞ
gT

-Constant Transformation on W;

9 Run the algorithm for DVRP in the new metric space
with distance bound B

gT
, and get the set of tours M;

10 Employ the Nearest Neighbor Algorithm for TSP on
each tour in M to further reduce its length;

11 f R
2 ðjSkjÞ ¼ B

gT
�

k�ðB�gC
gT
þgC �sc

vacÞ
gT

� jSkj;
12 end

In general, for each case, Algorithm 1 first applies a proper
c-Constant Transformation to construct a new metric space, and
then employs the algorithm for DVRP on this metric space to
obtain the set of tours. Briefly speaking, the algorithm for DVRP
proposed in [34] first divides the sensor nodes into several sets
according to their distance to the BS. Next, it conducts the
algorithm for unrooted DVRP [35] for each sensor node set and
thus get a number of paths. Finally, it appends both end points of
every path with edges from the BS to form tours.

After obtaining the tours, Algorithm 1 adopts the Nearest
Neighbor Algorithm on each tour to refine the results, which
repeatedly visits the nearest sensor node until all sensor nodes
have been visited. This optimization step distinguishes the
algorithm from Algorithm 1 proposed in [1].

One of the outputs of the algorithm is the relaxed constraint of
f2ðjSkjÞ, i.e., f R

2 ðjSkjÞ, a useful element in later sections. Note that at
Step 5 and at Step 10, we employ the Nearest Neighbor Algorithm
for TSP to further reduce the length of each obtained tour.

4.4. Analysis of the Approximation Algorithm for MinMCP-R

We give performance bounds of Algorithm 1 for three cases
respectively, i.e., gC ¼ gT ;gC < gT and gC > gT .

Theorem 4.2. Given that gC ¼ gT , Algorithm 1 for MinMCP-R

achieves 6 � log2
B=gT

B=gT�2D
k� BþgC �s

c
vacð Þ

gT

� �
þ2

2666
3777þ 1

0B@
1CA-approximation.

Proof. Given gC ¼ gT , the constraint f2ðjSkjÞ can be simplified as:

sk
P 6

B
gT
� k � ðBþ gC � sc

vacÞ
gT

� jSkj: ð13Þ

Note that sk
P ¼ RjSk j

i¼0wðpi;piþ1Þ. Moreover, the weight of the same

tour in the revised metric space after applying k�ðBþgC �sc
vacÞ

gT
-Constant

Transformation on W in Algorithm 1 is given by:

sk0

P ¼ wðvBS;p1Þ þ
1
2
� c1

� �
þ wðpjSk j; vBSÞ þ

1
2
� c1

� �
þ RjSk j�1

i¼1 ðwðpi;piþ1Þ þ c1Þ ð14Þ

where c1 ¼
k�ðBþgC �sc

vacÞ
gT

. Combining Eqs. (13) and (14) and following
the fact that sk

P ¼ RjSk j
i¼0wðpi;piþ1Þ, we have:

sk0

P 6
B
gT
: ð15Þ

Thus, our problem is reduced to DVRP with distance bound B
gT

.
According to Theorem 3 in [34], the result follows. h
Theorem 4.3. Given that gC < gT , Algorithm 1 for MinMCP-R

achieves 6 � 2 � BþgC �sc
vac

B�gC
gT
þgC �sc

vac
þ 1

� �
log2

B=gT

B=gT�2D
k�ðBþgC �s

c
vac Þ

gT

� �
þ2

2666
3777þ 1

0@ 1A-

approximation.
Proof. First of all, it is easy to verify that f2ð0Þ ¼ B
gT
; f2ðjSkj2Þ ¼ 0

where jSkj2 ¼ B
k�ðBþgC �sc

vacÞ
, and f2ðjSkjÞ is a decreasing and concave

function given that gC < gT (we don’t have to consider the case
where jSkjP gT

k�ðgT�gC Þ
, since jSkj < 1

k is required for a feasible solution

in MinMCP), as illustrated in Fig. 3. Also in Fig. 3, the line f R
2 ðjSkjÞ,

one of the outputs of Algorithm 1, connects the two points of
f2ðjSkjÞ at jSkj ¼ 0 and jSkj ¼ jSkj2. The other line, gðjSkjÞ, is tangent
to f2ðjSkjÞ at point jSkj ¼ 0, and intersects the horizontal axis at
point jSkjg2 ¼ B

k�ðB�gC
gT
þgC �sc

vacÞ
.

A region in the first quadrant is said to be feasible if any point sk
P

within it satisfies the constraint f2ðjSkjÞ. In Fig. 3, both of the
regions I and II are feasible, while the region III is not. Denote by



Fig. 3. Feasible region analysis for the case where gC < gT in MinMCP-R.
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MR�; M� and Mg� the optimal sets of tours with minimum
cardinality constrained by f R

2 ðjSkjÞ; f2ðjSkjÞ and gðjSkjÞ, respectively.
Clearly, we have:

jMg�j 6 jM�j 6 jMR�j: ð16Þ

Using similar analysis in the proof of Theorem 4.2, we know the
output of Algorithm 1, M, is subject to:
jMj 6 6 � log2
B=gT

B=gT � 2D k�ðBþgC �sc
vacÞ

gT

� �
þ 2

2666
3777þ 1

0@ 1A � jMR�j: ð17Þ

Next, we show how to construct a feasible solutionM0 meeting the
constraint f R

2 ðjSkjÞ from jMg�j. In general, we use a partition method
to achieve this goal. Suppose there is a tour Pkr 2Mg� traversing a
set of nodes jSkr j with travel time skr

P located in the region I, II or
III, namely:

skr

P 6
B
gT
� B=gT

jSkjg2
jSkr j: ð18Þ

We then greedily partition Pkr into as few paths as possible, such

that each path contains at most bjSk j2
jSk j

g
2
� jSkr jc nodes (apparently, no

operation is needed when skr

P is located in the region I). Subse-
quently, for each obtained path, we connect its endpoints to the
BS in order to form a new tour. Note that the travel time of each
newly constructed tour is definitely no more than that of Pkr , i.e.,
skr

P , as the weight space is metric. To summarize, for any obtained

tour Pkr
j
, we have jSkr

j
j 6 jSk j2

jSk j
g
2
� jSkr j

� �
and skr

j
P 6 skr

P , Hence:

skr
j

P 6 skr

P 6
B
gT
� B=gT

jSkjg2
jSkr j 6 B

gT
� B=gT

jSkjg2
jSkjg2
jSkj2

jSkr
j
j

6
B
gT
� B=gT

jSkj2
jSkr

j
j: ð19Þ

Therefore we conclude that skr
j

P must belong to the region I. In this
way, jMg�j tours can be finally converted into jM0j tours meeting
the constraint f R

2 ðjSkjÞ, and is subject to:

jM0j 6 jSkr j
jSk j2
jSk j

g
2
� jSkr j

� �
266666

377777 � jM
g�j 6 2 � jSkjg2

jSkj2
þ 1

� �
� jMg�j

6 2 � Bþ gC � sc
vac

B � gC
gT
þ gC � sc

vac

þ 1

 !
� jM�j: ð20Þ

Note the last inequality is obtained by following Eq. (16). Each tour
in jM0j has a travel time feasible for region I. Besides, it is clear that:

jMR�j 6 jM0j ð21Þ

since MR� is optimal.
Combining Eqs. (17), (20) and (21) will give the result. h

Theorem 4.4. Given that gC > gT , Algorithm 1 for MinMCP-R

achieves 6 � 2 �
B�gC

gT
þgC �sc

vac

BþgC �sc
vac
þ 1

� �
log2

B=gT

B=gT�2D
k� B�

gC
gT
þgC �s

c
vacð Þ

gT

� �
þ2

266666
377777þ 1

0BB@
1CCA-

approximation.

Proof. For the case where gC > gT , the curve f2ðjSkjÞ is convex as is
shown in Fig. 4. As a result, the intersection point jSkjg2 of the line
f R
2 ðjSkjÞ, which is tangent to the horizontal axis at point jSkj ¼ 0, is

smaller than jSkj2. Note that f R
2 ðjSkjÞ is one of the outputs of Algo-

rithm 1. Moreover, the line gðjSkjÞ connects the two end points
jSkj ¼ 0 and jSkj ¼ jSkj ¼ 0 of the curve f2ðjSkjÞ. As is depicted in
Fig. 4, f2ðjSkjÞ; f R

2 ðjSkjÞ and gðjSkjÞ result in three regions, namely, I,
II and III. Among there regions, I, II are feasible for f2ðjSkjÞ while
III is not.

Denote byMR�; M� andMg� the optimal tours with minimum
cardinality constrained by f R

2 ðjSkjÞ; f2ðjSkjÞ and gðjSkjÞ, respectively.
We apply similar techniques used in the proof of Theorem 4.3, and

therefore, transform each tour in gðjSkjÞ into at most 2 � jSk j2
jSk jg2
þ 1

� �
ones, each of which is valid with respect to constraint f R

2 ðjSkjÞ.
Hence,

jMR�j 6 2 � jSkj2
jSkjg2

þ 1
� �

� jMg�j

6 2 �
B � gC

gT
þ gC � sc

vac

Bþ gC � sc
vac

þ 1

 !
� jM�j: ð22Þ

Recall that M, one of the outputs of Algorithm 1, is subject to

jMj 6 6 � log2
B=gT

B=gT � 2D
k� B�gC

gT
þgC �sc

vac

� �
gT

0@ 1Aþ 2

2666666666

3777777777
þ 1

0BBBBBB@

1CCCCCCA
� jMR�j ð23Þ

Combining Eqs. (22) and (23) follows the result. h
4.5. Approximation algorithm for MinMCP

The core idea of our solution is to substitute the output of Algo-
rithm 1, f R

2 ðjSkjÞ for the constraint f2ðjSkjÞ. MinMCP is therefore
reformulated as a minimization problem subject to two linear
constraints.

Define jSkj1 ¼
a�sc

vac
k�a ðf1ðjSkj1Þ ¼ 0Þ. If gC 6 gT , define

jSkjR2 ¼ B
k�ðBþgC �sc

vacÞ
; otherwise, define jSkjR2 ¼ B

k� B�gC
gT
þgC �sc

vac

� �. Hence, the

output of Algorithm 1 f R
2 ðjSkjÞ can be rewritten as

f R
2 ðjSkjÞ ¼ B

gT
� B

gT
� 1
jSk jR2
� jSkj. Moreover, define

jSkj\ ¼ a�sc
vac�B=gT

ða�sc
vacÞ=jSk j1�ðB=gT Þ=jSk jR2

.

The pseudo-codes of the algorithm for MinMCP can be found in
Algorithm 2. Note that at Step 8 and the final step, we employ the
Nearest Neighbor Algorithm for TSP to further reduce the length of
each obtained tour. This improvement leads to a better perfor-
mance than that of Algorithm 2 proposed in [1].

4.6. Analysis of the approximation algorithm for MinMCP

In this section, we mainly analyze the performance of the
approximation algorithm for MinMCP proposed in Algorithm 2.



Fig. 4. Feasible region analysis for the case where gC > gT in MinMCP-R.

Fig. 5. Feasible region analysis for the case where a� sc
vac 6

B
gT

and jSkj1 6 jSkjR2 in
MinMCP.
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Generally speaking, we derive the approximation ratio for four dif-
ferent cases, and formally present the theoretical results in the fol-
lowing four theorems.

Theorem 4.5. Given that a� sc
vac 6

B
gT

and jSkj1 6 jSkjR2, Algorithm 2

for MinMCP achieves 6 � log2
a�sc

vac
a�sc

vac�2Dðk�aÞþ2

l m
þ 1

� �
-approximation.

Algorithm 2. Algorithm for MinMCP

Input: The metric spaceW, the constraints f1ðjSkjÞ and f2ðjSkjÞ,
parameters gC ;gT ; k;a;B; sc

vac; jSkj1; jSkjR2 and jSkj\

Output The set of tours M
1 begin

2 if a� sc
vac 6

B
gT

and jSkj1 6 jSkjR2 then

3 Apply k � a-Constant Transformation on W. Run the
algorithm for DVRP in the newly obtained metric space
with distance bound a� sc

vac , and get the set of tours M;
4

5 else if a� sc
vac P B

gT
and jSkj1 > jSkjR2, or a� sc

vac >
B
gT

and

jSkj1 P jSkjR2 then
6 Call Algorithm 1 for MinMCP-R, and obtain the set of

tours M;

7 else if a� sc
vac <

B
gT

and jSkj1 > jSkjR2 then

8 Apply k � a-Constant Transformation on W. Run the
algorithm for DVRP in the newly obtained metric space
with distance bound a� sc

vac , and get the set of tours M0;
9 Employ the Nearest Neighbor Algorithm for TSP on each

tour in M to further reduce its length;
10 for each tour Pk 2M0 do
11 if jSkj > jSkj\ then
12 Greedily partition the tour Pk (in the original

metric spaceW) into as few paths as possible, such that the
corresponding tour of each path, obtained by appending
both the end points of the path with edges from the BS,
complies with the constraint f2ðjSkjÞ 13 else

14 Call Algorithm 1 for MinMCP-R, and obtain the set of
tours M0;

15 for each tour Pk 2M0 do
16 if jSkj > jSkj\ then
17 Greedily partition the tour Pk (in the original

metric spaceW) into as few paths as possible, such that the
corresponding tour of each path, obtained by appending
both the end points of the path with edges from the BS,
complies with the constraint f1ðjSkjÞ;

18 Employ the Nearest Neighbor Algorithm for TSP on each
obtained tour to further reduce its length;

19 end
Proof. We illustrate the constraints f1ðjSkjÞ and f R
2 ðjSkjÞ in Fig. 5. As

can be seen, given that a� sc
vac 6

B
gT

and jSkj1 6 jSkjR2, the feasible

region for both constraints is precisely the region I formed by the
constraint f1ðjSkjÞ. In other words, the MinMCP is reduced to the
problem under the single constraint f1ðjSkjÞ in this case. By analysis
similar to that in Theorem 4.2, we claim that Algorithm 2 achieves

6 � log2
a�sc

vac
a�sc

vac�2Dðk�aÞþ2

l m
þ 1

� �
-approximation by further reducing

the MinMCP to the DVRP. This completes the proof. h
Theorem 4.6. Given that a� sc
vac P B

gT
and jSkj1 > jSkjR2, or

a� sc
vac >

B
gT

and jSkj1 P jSkjR2, Algorithm 2 for MinMCP achieves n-

approximation, where n is the approximation ratio of the correspond-
ing problem MinMCP-R.
Proof. As the case here is similar to that of Theorem 4.5, we omit it
here to save space. h
Theorem 4.7. Given that a� sc
vac <

B
gT

and jSkj1 > jSkjR2, Algorithm 2

for MinMCP achieves 6 � 2 � jSk j1
jSk jR2
þ 1

� �
log2

a�sc
vac

a�sc
vac�2Dðk�aÞþ2

l m
þ 1

� �
-

approximation.
Proof. Fig. 6 demonstrates the relationship between the con-
straints f R

2 ðjSkjÞ and f1ðjSkjÞ under the given conditions. As we see,
the region I is the only region feasible for both constraints f R

2 ðjSkjÞ
and f1ðjSkjÞ. In contrast, the region II is feasible for constraint
f1ðjSkjÞ but not for f R

2 ðjSkjÞ. Moreover, it is obvious that the obtained
tours recorded by the setM after Step 8 in Algorithm 2 fall in the
region I or II.

Let jSkj\ be the crossing point of the lines f R
2 ðjSkjÞ and f1ðjSkjÞ,

namely,

jSkj\ ¼
a� sc

vac � B=gT

ða� sc
vacÞ=jSkj/ � ðB=gTÞ=jSkjR2

: ð24Þ

Apparently, we have jSkj\ < jSkjR2 < jSkj1.
In order to make all the tours feasible for both constraints

f R
2 ðjSkjÞ and f1ðjSkjÞ, the subsequent for loop checks each tour

Pk 2M to see whether jSkj is greater than jSkj\. If the answer is no,
it means that the tour Pk has already met the constraint f R

2 ðjSkjÞ,
nothing needs to be done; otherwise, the tour Pk may fall into
region II, thus we need to convert Pk into multiple feasible tours, as



Fig. 6. Feasible region analysis for the case where a� sc
vac <

B
gT

and jSkj1 > jSkjR2 in
MinMCP.
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is elaborated in Step 12. Denote by M0 the final set of tours
obtained by Algorithm 2,M� the optimal set of tours for MinMCP,
and M1� the optimal set of tours under the single constraint
f1ðjSxjÞ. Following the spirit of the analysis in the proof of
Theorem 4.3, we claim that the number of created tours for k is

no more than jSk j
jSk j

R
2

jSk j1
�jSk j

j k2666
3777 6 2 � jSk j1

jSk jR2
þ 1

� �
. Therefore, we have
jM0j 6 2 � jSkj1
jSkjR2

þ 1

 !
� jMj: ð25Þ

Furthermore, it is easy to see

jMj 6 6 � log2
a� sc

vac

a� sc
vac � 2Dðk � aÞ þ 2

� 	
þ 1

� �
� jM1�j: ð26Þ

In addition, the optimal solution for MinMCP under both con-
straints f1ðjSkjÞ and f R

2 ðjSkjÞ; jM�j, should by no means be greater
than the optimal one for MinMCP under the single constraint
f1ðjSkjÞ; jM1�j, i.e.,

jM1�j 6 jM�j: ð27Þ

Combining Eqs. (25)(26)(27) we have

jM0j 6 6

� 2 � jSkj1
jSkjR2

þ 1

 !
log2

a� sc
vac

a� sc
vac � 2Dðk � aÞ þ 2

� 	
þ 1

� �
� jM�j: ð28Þ

This completes the proof. h
Theorem 4.8. Given that a� sc
vac >

B
gT

and jSkj1 < jSkjR2, Algorithm 2

for MinMCP achieves 2 � jSk jR2
jSk j1
þ 1

� �
� n-approximation, where n is the

approximation ratio of the corresponding MinMCP-R.
Proof. As the case concerned is similar to that of Theorem 4.7, we
omit the proof here to save space. h
4.7. Enhanced algorithm for MinMCP

In spite of its guaranteed approximation ratio, Algorithm 2 is
still not quite efficient. Specifically, we find that the consumed en-
ergy of each MC is usually noticeably less than its battery capacity
B. The root reason is that the DVRP algorithm, upon which our
approximation algorithm based, is mainly designed to facilitate
the derivation of approximation ratio and, therefore, sacrifices its
Algorithm 3. Enhanced Algorithm for MinMCP

Input: The threshold �, the metric space W, the constraints

f1ðjSkjÞ and f2ðjSkjÞ, parameters gC ;gT ; k;a;B; sc
vac; jSkj1; jSkjR2

and jSkj\
Output: The set of tours M
1 begin
2 B0 ¼ B;
3 while The maximum energy consumption of the MCs

does not exceed B do
4 B0 ¼ 2B0;
5 Call Algorithm 2 for MinMCP with battery capacity B0

together with other related parameters, and obtain the set
of tours M;

6 Using binary search method to find the maximum battery
capacity B00 that guarantees the maximum consumed
energy of each MC being less than B. The initial search
range is ½B0=2;B0�, and the search stops when the gap
between two successive values of B00 is smaller than �B;

7 end
performance to some extent. This motivates us to further improve
the approximation algorithm for MinMCP.

We present the details of the enhanced algorithm in Algorithm
3. Basically, this algorithm attempts to minimize the number of
MCs by augmenting the input battery capacity as much as possible,
while guaranteeing that the maximum consumed energy of each
MC is less than the given battery capacity B.

It is easy to see that the output of the enhanced algorithm
should be at least as good as that of the original approximation
algorithm. We thus have the following theorem.

Theorem 4.9. Algorithm 3 achieves an approximation ratio no more
than that of Algorithm 2.
5. Discussion

In this paper, we assumes that the energy consumption rate of
each sensor node is constant and uniform. This assumption is,
however, still somewhat strict, and not general enough. In this sec-
tion, we discuss how to extend the proposed algorithms to more
general cases where sensor nodes have nonuniform energy con-
sumption rates.

Generally speaking, the nonuniformity of energy consumption
rates will result in the change of constraints in MinMCP, and there-
fore make the problem harder to be tackled. Suppose the energy
consumption rate for the sensor node v i is pi

w, then it can be easily
derived that the two constraints in MinMCP now become

sk
P 6 ða� sc

vacÞ � a �
X
v i2Sk

pi
w

U

and

sk
P 6

B� ðBþ gC � sc
vacÞ �

P
v i2Sk

pi
w

U

gT þ ðgC � gTÞ �
P

v i2Sk

pi
w

U

respectively, where a ¼minv i2Sk

U�ðEmax�EminÞ
pi

w �ðU�pi
wÞ

.

For the second constraint, we can first apply techniques similar
to that in the proof of Theorem 4.3 to approximate the constraint

by a new one in the form of sk
P 6 c1 � c2 �

P
v i2Sk

pi
w

U (c1 and c2 are
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Fig. 9. Critical parameters of each MC when B ¼ 180 KJ.
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Fig. 7. An instance to the enhanced approximation algorithm for MinMCP when
B ¼ 300 KJ.
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Fig. 8. An instance to the enhanced approximation algorithm for MinMCP when
B ¼ 180 KJ.
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positive constants), then employ an extended transformation tech-
nique based on c-Constant Transformation to further convert the
constraint to the form of sk

P 6 c3, where c3 is a constant. The origi-
nal constraint is thus transformed to the traditional constraint of
DVRP.

On the contrary, the first constraint is harder to be treated. This
is because a is not a constant but a variable relating to the energy
consumption rates of the nodes contained in the visiting set of sen-
sor nodes Sk of the MC k. In the future work, we will devise new
approximation approaches to deal with this problem, as well as
the original problem when considering both of the constraints.
6. Simulation results

In this section, we present simulation results to verify our the-
oretical findings. We first introduce the evaluation setup, followed
by the description of the baseline algorithm. Next, we illustrate an
instance of the enhanced MinMCP algorithm, and then evaluate the
performance of the proposed algorithms in terms of the battery
capacity B; Emax � Emin for sensor nodes, energy transfer rate U,
charging power for MCs gC and number of sensor nodes. For the
evaluation regarding these parameters, every point on the plotted
figures stands for the average value over that of 100 randomly gen-
erated topologies.
6.1. Evaluation Setup

We randomly distribute 50 sensor nodes in a 5 km� 5 km 2D
Euclidian region throughout the simulations. Any pair of nodes can
reach each other through a direct path. The base station is assumed
to be located at ð2500 m;2500 mÞ. Unless otherwise specified, we
use the following parameter settings as in [14]: the traveling speed
of MCs is V ¼ 5 m=s; pw ¼ 200 mW; Emax ¼ 10:8 kJ; Emin ¼ 540 J;
U ¼ 5 W;gC ¼ 110 W;gT ¼ 100 W;B ¼ 500 KJ and sc

vac ¼ 1 hour.
6.2. Baseline setup

Though the algorithm proposed in [22] is related to our work, it
is not appropriate to use it directly for comparison. On the one
hand, it is only suitable for 1D sensor networks. On the other hand,
it adopts a different assumption, namely, MCs can intentionally
gather at a rendezvous point to recharge others or to be recharged
without energy loss. This assumption finally leads to a completely
different scheme compared with ours. For this reason, we con-
struct the following baseline algorithm by borrowing ideas of
[22] for comparison. That is, all the MCs dictated by this algorithm
have uniform schedule periods, which means that the MCs that fin-
ish the charging tasks earlier have to wait at BS for the returns of
other MCs before starting the next trip. The chargers plan their
routes in sequence. For each charger, it consistently chooses the
nearest sensor node that is not chosen by the former chargers to
charge after its departure from the BS. At each step, the charger
checks whether its residual energy can sustain its next move to
the next node and returning back to the BS. If not, the charger goes
back to the BS immediately. The length of the schedule period of
each charger is set to be the average length of the schedule periods
determined by our algorithm for MinMCP, such that the renewable
energy cycle of each sensor node can be guaranteed.
6.3. Performance evaluation

6.3.1. An Instance to the enhanced approximation algorithm for
MinMCP

Fig. 7 illustrates the obtained 4 tours of MCs (marked in differ-
ent colors) for a MinMCP instance given B ¼ 300 KJ. However, for
B ¼ 180 KJ, the number of MCs needed increases to 9, as shown
in Fig. 8. Note that, the Nearest Neighbor Algorithm for TSP has
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been employed for each tour to further reduce its length, as shown
in Algorithm 2.

For the case where B ¼ 180 KJ, we show the number of charged
sensor nodes, total travel distance, energy consumption and re-
charge period of each MC in Fig. 9. Note that we set sk

vac ¼ sc
vac

for each MC, and sort the IDs of the MCs according to their energy
consumption in a descending order. It can be seen that energy con-
sumptions are roughly balanced among MCs, and none of them ex-
ceeds the maximum battery capacity, i.e., 180 KJ. Another
important observation is that the recharge period sk is jointly
determined by the number of recharged sensor nodes and the tra-
vel distance, rather than solely by one of them. In general, the tra-
vel distance plays a more important role than the number of
recharged nodes in the total energy consumption of MCs. For
example, the 5th MC, which has the largest energy consumption,
travels the longest distance but only recharges 3 sensor nodes. Be-
sides, throughout the recharge period, none of the energy levels of
sensor nodes drops below Emin, which can be confirmed by check-
ing the conditions described in Eq. (3) and Inequality (4).

6.3.2. Impact of battery capacity (B)
In this case, we vary the maximum energy capacity B between

½200 KJ, 600 KJ� to evaluate its impact on the required number of
MCs jMj. Particularly, for each value of B, we perform Algorithm
3 under 100 randomly generated topologies, and pick the average
value of jMj.

As shown in Fig. 10, not surprisingly, the number of MCs jMj
drops with an increasing B for all three algorithms. Among these
algorithms, the number of MCs needed of the enhanced MinMCP
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Fig. 11. Verification of performance bound w.r.t. B.
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Fig. 10. Illustration of impact of B.
algorithm is on average 6:7% and 14:8% less than that of the base-
line algorithm and the MinMCP algorithm, respectively.

Let f be the approximation ratio given by the theoretical analy-
sis. Though the optimal number of MCs, jM�j, can be hardly deter-
mined, it is certain that jM�jP 1. Therefore, f P jMj or,
equivalently, f=jMjP 1 can be viewed as a sufficient (but not nec-
essary) condition to check the correctness of our theoretical
analysis.

We plot the ratio of f=jMj for the three cases in Fig. 11. Note
that each point on the curves stands for the average f=jMj over
the 100 randomly generated instances, while the bars above and
below the point represent the maximum and minimum values of
f=jMj among the 100 instances, respectively. It can be seen that
all the values of f=jMj for the three cases, even those minimum
values, are greater than 1. This observation corroborates our theo-
retical findings.
6.3.3. Impact of the difference between battery capacity and minimum
energy to be operational for sensor nodes (Emax � Emin)

We proceed to evaluate the impact of Emax � Emin of sensor
nodes on the minimum required number of MCs jMj. Fig. 12 shows
the trend that jMj drops with an increasing Emax � Emin for each
algorithm. Furthermore, the gaps between the three algorithms
are pretty small for Emax � Emin 6 1:6. When Emax � Emin exceeds 2,
the outputs of three algorithms become nearly constant. This is be-
cause in this case, the battery capacity of each sensor node is large
enough to support its normal operation during a charging period
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Fig. 13. Verification of performance bound w.r.t. Emax � Emin .
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and, therefore, the energy capacity of the MC serves as the sole
constraint.

Again, the fact that all values of f=jMj are never less than 1, as
illustrated in Fig. 13, is consistent with our theoretical results. An-
other important observation for this figure is that f=jMj experi-
ences a rapid growth when Emax � Emin is 1.6 for MinMCP and 1.8
for the enhanced MinMCP algorithm. This can be ascribed to the
switch from one of the four cases considered in the MinMCP algo-
rithm to another, together with the fact that different cases have
diverse approximation ratios.
6.3.4. Impact of energy transfer rate of MCs (U)
In this subsection, we study the impact of energy transfer rate U

of an MC on the number of required MCs. Fig. 14 shows that when
U rises from 1 W to 11 W, the number of MCs needed drops from
25:1 to 3:7 for the enhanced MinMCP algorithm, from 30:9 to 4:9
for the MinMCP algorithm and from 28:7 to 4 for the baseline algo-
rithm. Notice that we set Emax � Emin ¼ 2 KJ. The explanation of this
phenomenon is straightforward. When the energy transfer rate U
arises, the charging energy for each sensor node will be reduced.
So does the charging time. As a result, the MCs can spare energy
and time to charge more nodes, and its number is thus reduced.
6.3.5. Impact of working power of MCs for traveling (gC)
We investigate the influence of gC on the required number of

MCs in this subsection. Intuitively, a larger gC means an MC needs
more energy to replenish the same amount of energy into the sen-
sor node’s battery, and therefore, calls for more MCs. Fig. 15 vali-
dates such intuition. Furthermore, it can be seen that the
performance gaps between the three algorithms become more
and more conspicuous when gC grows. The performance gains of
the enhanced MinMCP algorithm over the other two algorithms
achieve 45:3% and 20:1% respectively when gC ¼ 250 W.
6.3.6. Impact of number of sensor nodes
We are also interested in the impact of the number of sensor

nodes. As illustrated in Fig. 16, the required number of MCs for
three algorithm increases steadily when the number of sensor
nodes scales from 40 to 180. More precisely, the number of MCs
is nearly proportional to the number of nodes, which is consistent
with our intuition. Moreover, the enhanced MinMCP algorithm and
the baseline algorithm need almost the same number of MCs that
is roughly 14:4% less than that of the MinMCP algorithm.
7. Conclusion

In this paper, we have studied the problem of minimizing the
number of energy-constrained MCs to cover a 2D WSN. We formu-
late the problem, and show that by applying appropriate transfor-
mations, it can be cast into the classical problem–DVRP. We not
only prove the NP-hardness of the problem, but also propose
approximation algorithms with proven performance bounds. The
simulation results demonstrate the effectiveness of the algorithms
as well as the correctness of our theoretical analysis.

In future work, we will try to improve the approximation
bounds of the algorithms. Moreover, we will generalize the solu-
tion to the case in which sensor nodes have nonuniform energy
consumption rates.
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