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Abstract—Though much existing work exploits wireless power
charging to enhance sensor network performance such as routing
and data aggregation, few efforts focus on issues of stochastic
event capture. In this paper, we consider the scenario in which a
mobile charger (MC) periodically travels within a sensor network
to recharge the sensors wirelessly, to maximize the Quality of
Monitoring (QoM) for stochastic events. Towards this goal, two
closely related research issues need to be addressed. One is how
to choose the sensors for charging and decide the charging time
for each of them; the other is how to best schedule the sensors’
activation schedules according to their received energy. In this
paper, we jointly design the charging scheme and sensor schedules
to maximize the QoM. We formulate our problem formally as
the maximum QoM charging and scheduling problem (MQCSP).

Obtaining an exact solution of MQCSP is challenging. Thus
we first ignore the MC’s travel time and study the resulting
relaxed version of MQCSP, R-MQCSP. We show both MQCSP
and R-MQCSP are NP-hard. For R-MQCSP, however, under
a special condition, we prove that it can be formulated as a
submodular function maximization problem. This formulation
allows a 1/6-approximation algorithm for the general case, and
a unified algorithm with a series of approximation factors (up
to 1-1/e) for a special case. Then, for MQCSP, we propose
approximation algorithms by extending our R-MQCSP results.
Finally, we conduct extensive trace-driven simulations to validate
our algorithm design. The empirical results corroborate our
theoretical analysis.

I. INTRODUCTION

Traditional wireless sensor networks (WSNs) are con-
strained by limited battery energy that powers the sensors.
Their limited network lifetime is considered a major deploy-
ment barrier. To extend the network lifetime, many approaches
have been proposed to harvest environmental energy such as
solar [1], vibration [2], and wind [3]. However, a limitation
of existing energy-harvesting techniques is that it is highly
dependent on the ambient environment, which makes the
harvesting rate highly unpredictable. The problem can be
overcome by recent breakthroughs in wireless power charging
technologies [4], which allow energy to be transferred from
one storage device to another wirelessly with reasonable
efficiency. Since wireless recharging may guarantee the power
supply, independent of the ambient environment, it has found
many applications including Smart Grids [5], body sensor
networks [6] and civil structures monitoring [7].

Since power chargers are expensive, it is not cost-effective

to deploy a large number of these chargers statically for
the energy provisioning [8]. Instead, existing practical ap-
proaches focus on using one single or multiple mobile chargers
(MCs) [9] to move around the sensors and charge them in turn
during the travel schedule, for applications such as routing [10]
[11] [12], and data gathering [13]. None of these efforts solve
the problem of stochastic event capture. But the problem is a
fundamental problem in wireless sensor network design, which
concerns the scheduling of sensors’ duty cycles to maximize
their ability to capture interesting events of a probabilistic
nature. The problem has received attention for both traditional
WSNs [14] [15] [16] and wireless ambient-energy harvesting
sensor networks [17] [18].

Moreover, there have emerged a number of applications
employing wireless power charging technology to enhance
event monitoring performance, such as Wireless Identifica-
tion and Sensing Platform (WISP) applied in fields rang-
ing from individual activity recognition to large-scale urban
sensing [19] [20], and structural health monitoring (SHM)
applications [7] where a civil structure is instrumented with
sensor nodes capable of being powered solely on energy
transmitted to the sensor node wirelessly by a mobile he-
licopter. Jiang et al. [21] are the first to exploit wireless
power charging by MCs for efficient stochastic event capture,
motivated by these applications. Their objective is to jointly
determine the MC’s movement and sensor activation schedules
to maximize the Quality of Monitoring (QoM), defined as
the average information gained per event by the network.
They make simplifying assumptions that each sensor can only
monitor one Point of Interest (PoI), the charging time for each
sensor is identical, the event staying time follows exponential
distribution, and all sensors follow a simple periodic schedule
(q, p), i.e., sensors monitor PoIs for q time of every p time.
We relax these assumptions in this paper.

In this paper, we consider the scenario in which an MC
periodically travels within the sensor network and recharges a
selected group of sensors wirelessly to enable them for the task
of stochastic event capture. We assume that the MC repeats its
recharge schedule every period of time τ , and that the schedule
(counting both the charging time and travel time of the MC)
must complete within time τw (τw < τ ). For example, the
MC is carried by a human operator and the operator’s daily



shift is from 9am to 11am only (here, τw = 2 hour and
τ = 24 hour; typically, τ can be a few weeks or even longer
in most cases), or the MC must be withdrawn for maintenance
for some amount of time between recharge schedules.

In this paper, we address two closely related issues in the
wireless recharging and event monitoring. The first is how
to choose the sensors for recharge and further decide the
charging time for each of them, constrained by the MC’s
working time τw. The second is how to best schedule the
sensors’ activations based on their received energy, considering
that close-together sensors may cover overlapping PoIs. Our
goal is to jointly design a charging scheme for the MC and
the sensors’ activation schedules to maximize the QoM of
the stochastic event capture. We define our problem formally
as the maximum QoM charging and scheduling problem
(MQCSP). The coupling between the MC’s travel time and the
sensor charging time makes our problem highly challenging.
Hence, we first ignore the travel time and study the resulting
relaxed version of MQCSP, which we call R-MQCSP. Then,
based on our results for R-MQCSP, we develop solutions for
the general MQCSP problem.

The main contributions of this paper are as follows:

• We analyze the QoM of stochastic event capture, which
considers the possibility that the same PoI may be moni-
tored by multiple sensors. We formulate the MQCSP and
R-MQCSP problems, and show that both of them are NP-
hard.

• We reformulate R-MQCSP as a monotone submodular
function maximization problem under a special suffi-
cient condition. This reformulation of R-MQCSP allows
an algorithm which achieves 1/6-approximation for the
QoM maximization. Most importantly, all of our solutions
based on this reformulation, including following ones,
are generic to accommodate general activation schedules,
event utility functions, and probability distributions of the
event staying times.

• We also discuss a special case where the active time slots
constraint, which refers to the constraint on the number
of active time slots in a sensor’s schedule caused by
small battery capacity or long period of charging process,
can be lifted. It allows a better and unified algorithm
achieving a series of approximation factors (up to 1−1/e)
under different parameter settings.

• On the basis of our R-MQCSP results, we propose an
approximation algorithm for MQCSP, which considers
the MC’s travel time. Besides, we also propose an ap-
proximation algorithm for the special case without the
active time slots constraint.

• We conduct trace-driven extensive simulations to verify
our analytical findings. Simulation results show that our
schemes outperform the existing one.

The remainder of the paper is organized as follows. In
Section II, we give preliminaries and a formal definition of the
MQCSP problem as well as its relaxed version of R-MQCSP.
In Section III, we analyze the complexity of the problems

TABLE I
NOTATIONS USED

Symbol Meaning
oi Target i
vi Sensor i
Oi Subset of PoIs covered by sensor vi
Vi Subset of sensors covering PoI oi
L The length of sensor schedule
Si Activation schedule of sensor vi
Ŝi Equivalent monitoring schedule for PoI oi
wi Weight of PoI oi
τw Maximum working time in one charging period
τ Period of charging process
τi Charging time allocated to sensor vi in one charging

period
Pc Working power of MC
pi Working power of sensor vi
Ei Battery capacity of sensor vi
ηi MC’s charging efficiency to sensor vi
ci Charging time factor for sensor vi
li Active time slot budget of sensor vi

and reformulate a special case of the relaxed problem as a
monotone submodular function optimization problem. Then,
we present approximation algorithms for the relaxed problem
and the original problem. Section IV presents extensive simu-
lations to verify our theoretical results. Section V concludes.

II. PROBLEM STATEMENT

A. Network Model

We assume that there are m sensors V = {v1, v2, . . . , vm}
distributed over a two-dimensional region, which cover n PoIs
denoted by O = {o1, o2, . . . , on}. Let Oi represent the set of
PoIs covered by sensor vi. In a dense sensor network, typically
close-by sensors may cover some common PoIs. Hence, in
general, target oi is covered by a subset of the sensors Vi.

To prolong the lifetime of the sensors, an MC periodically
starts from a base station (BS) and visits each of a selected
subset of the static sensors Vs ⊆ V exactly once, in order
to charge the sensors wirelessly. At the end of the charging
schedule, the MC returns to the BS. The total working time of
the charging schedule, including the travel overhead and the
charging time for all the selected sensors, must not exceed
τw. Furthermore, we assume that the charging schedule is
repeated every fixed period of time τ . Hence, the off-duty
time for the MC at the BS is at least τ − τw. Note that under
such a charging scheme, some sensors failed to be chosen for
charging are doomed to die out. It is reasonable since our
primary concern is to maximize the overall QoM under the
constraint of limited charging time, rather than the fairness of
charging time allocation. We will consider issues related to
fairness in further work.

We denote the path of the MC by P =
(π0, π1, . . . , π|Vs|, π|Vs|+1) where π0 = π|Vs|+1 = BS
and {πi}|Vs|

i=1 = Vs. Denote by tij the time required for the
MC to move between sensor vi and vj . To use time for



charging as much as possible, the MC should travel on a
shortest path P , given by argminP

∑|Vs|+1
i=0 tπiπi+1

, that
completes a circuit of the sensors. For simplicity, we assume
that such a path always exists. Finding such a path can be
formulated as a Traveling Salesman Problem (TSP). Since
TSP is NP-hard, we assume that some good approximation
algorithm is used, and the approximate solution is given by
τTSP (Vs). Moreover, we assume that the MC spends τi time
for recharging the battery of vi. Then we have:

τTSP (Vs) +
∑
vi∈Vs

τi ≤ τw. (1)

The above inequality gives the MC’s working time con-
straint. In this paper, we assume a discrete time model for
a sensor’s activation schedule, where the duration of a time
slot is fixed and given. Specifically, every sensor follows a
periodic schedule of identical length L (in time slots). In each
time slot, a sensor can schedule itself to be active or inactive.
Hence, we can express the schedule of sensor vi by a vector
Si = (ai1, ai2, . . . , aiL), where component aij = 1 indicates
that the sensor is active in slot j and aij = 0 indicates the
opposite. We assume that the duration of a time slot is long
enough such that the energy cost for turning the sensor on/off
can be ignored.

Denote by Pc the working power of the MC, ηi the charging
efficiency for sensor vi, and pi the working power of sensor
vi. We define the charging time factor ci as the charging time
required for the MC to give sufficient energy for vi to be
active for one time slot, i.e., ci = pi

ηiPcLτ . We assume that the
leakage power of each sensor is negligible, and each sensor
will have used up its energy by the time of its next recharge
(this can be guaranteed by properly allocating the recharging
time of the MC). Hence we have:

ci · ||Si||1 = τi. (2)

Further denote by Ei the battery capacity of sensor vi, and
li the maximum number of active time slots sensor vi can
sustain because of its limited battery capacity, which we call
active time slot budget. We have li = Ei

piτ
L. Furthermore, we

have:

||Si||1 ≤ li (3)

which we call the active time slots constraint. If li ≥ L for any
sensor vi, then we can ignore the active time slots constraint.
This situation occurs when the battery capacity is much larger
compared to the working power of the sensor (such as ultra-
capacitors [22]) or we apply the charging process frequently.
Nevertheless, we argue that it is still necessary to consider the
general case where active time slots constraint takes effect,
since in most applications sensors are equipped with cheap
batteries of small capacity, and we may not afford the labor
costs of frequent charging processes.

A summary of the notations in this paper is given in Table
I.

B. Event Monitoring Model

In this section, we first present a set of assumptions on the
event dynamics and the properties of the sensors. Then we
propose a general paradigm to compute the QoM for a PoI
when it is monitored by one or more sensors.

For the event dynamics, we assume that the events at a PoI
occur one after another, and the events at the same PoI or
different PoIs are spatially and temporally independent [14]
[15] [21] [23]. After its occurrence, an event stays for some
random time before it disappears. We denote by X the event
staying time. Similarly, the time duration before the next event
occurs, which we call the event inter-arrival time, is random
and denoted by Y . Hence the sequence of event arrivals and
departures forms a stochastic process. By renewable theory,
the expected number of event arrivals in a time interval dt
equals µidt, where µi = 1/E(Y ). As for the event staying
time X , we assume that the pdf of X is f(x).

We use a binary sensing model for the sensors [24]. Assume
that the j-th occurring event at PoI i is denoted as eij , which
is within range of a sensor for a total (but not necessarily
contiguous) amount of time tij(t

i
j ≥ 0). We assume that

the sensor will, as a result, gain an amount of information
U ij(t

i
j) about eij , where U ij(x) is the utility function of eij . For

simplicity, we assume that U ij(x) = U(x) for all the events
at all the PoIs. We assume that the utility function has the
following property.

Observation 2.1: The utility function U(x) increases
monotonically from zero to one as a function of the total
observation time, i.e., U(x) ≥ 0 and U(y) − U(x) ≥ 0 for
any y ≥ x ≥ 0.

Another important assumption is that the events are iden-
tifiable [14]. (Please see [14] for a justification of the as-
sumption.) That is, when more than one sensor detects the
same simultaneously, they will know that it is the same event.
Furthermore, if more than one sensors observe the same event
simultaneously, they learn exactly the same information.

Prior QoM analysis either considers that a PoI is covered
by only one sensor [14], or considers only special cases of
the event utility function and event dynamics [15] [17] (for
example, only the step utility function is considered in [15]).
We generalize the prior analysis to cover other types of the
events also.

Definition 2.1: (Periodic Extension Function) Given a
schedule Si of sensor vi, the periodic extension function
Si(x) (Si : [0,+∞] 7→ {0, 1}) of Si is defined as:

Si(x) =

{
1, (x ∈ [kL+ j − 1, kL+ j], k ∈ N , Si(j) = 1)

0, otherwise
.

(4)

We first present the following lemma, which is similar to
Theorem 7 in [14].

Lemma 2.1: The QoM of a PoI, say oi, covered by a single
sensor vj (vj ∈ Vi, |Vi| = 1) with schedule Sj , whose periodic
extension function is Sj(x), is given by:



Q(i|Sj) =
1

L

∫ L
0

∫ +∞

t

U(

∫ y

t

Sj(x)dx)f(y − t)dydt. (5)

Proof: The above formula follows from the fact that the
overall utility available for any particular event, which starts at
time t (t ∈ [0,L]) and ends at time y (y ∈ [t,+∞)), depends
on the total length of the intersecting region

∫ y
t

Sj(x)dx.
Suppose Si = (ai1, . . . , aiL) and Sj = (aj1, . . . , ajL) are

two different vectors, we define “OR” operation of vectors as
Si ∨ Sj = (ai1 ∨ aj1, . . . , aiL ∨ ajL).

Lemma 2.2: The QoM of PoI oi covered by multiple
sensors Vi = {v1′ , v2′ , . . . , vm′}, each of which has schedule
Sj (j = 1′, 2′, . . . ,m′), is given by:

Q(i) = Q(i|S1′ , S2′ , . . . , Sm′) = Q(i|
∨

vj∈Vi

Sj). (6)

Hence, the QoM achieved by the multiple sensors can be
equivalently viewed as that by one single sensor with schedule∨
vj∈Vi

Sj .
Proof: This follows directly from the identifiable assump-

tion. We omit the details to save space.
For simplicity of exposition, we call Ŝi =

∨
vj∈Vi

Sj
the equivalent monitoring schedule for PoI oi. We stress
that our analysis can compute the QoM of a PoI in the
presence of both single and multiple monitoring sensors. It can
also accommodate general activation schedules, event utility
functions, and probability distributions of the event staying
times f(x).

C. Problem Formulation

Summarizing all the objective and constraints in previous
chapters, we formulate our problem MQCSP as follows.

Max
n∑
i=1

wiQ(i)

s.t. (1), (2), (3).

Note that wi is a normalized weight associated with the PoI oi,
which can be interpreted as the frequency of event occurrence
of oi or the importance of oi. The decision variables are the
subset of sensors Vs selected for charging, the MC travel
time τTSP (Vs), the charging time for each sensor τi, and the
activation schedule Si of each sensor. The quantities τw, ci,
pi, τ , ηi, Pc, L, Ei, li, and wi are given constants.

D. Roadmap of Our Solution

As we can see from the above formulation, the selection of
candidate charging sensors set Vs, the coupling relationship
between travel time and charging time allocations for candi-
date sensors, the active time slots constraint, along with the
sophisticated computation of QoM, make the problem highly
challenging. Among these factors, we emphasize that the travel
time plays an important role in problem hardness. For this
reason, to start analyze this problem under a simple setting, we
first consider a relaxed version of MQCSP, which is called R-
MQCSP and ignores the travel time, i.e., τTSP (V ) = 0. Apart
from its benefits to theoretical analysis, we emphasize that the

consideration of R-MQCSP is also meaningful in practice, as
we typically have τw being much bigger than τTSP (V ) due to
the time-consuming charging processes resulted from the low
charging efficiencies of MCs. For example, according to [25],
the charging time for voltage to reach 1.8 V to power a WISP
equipped with a 100 uF capacitor can be as large as 155
seconds, when the RFID reader is 10.0 meters away.

Based on our results for R-MQCSP, we develop solutions
for MQCSP by reconsidering the MC’s travel time.

III. THEORETICAL ANALYSIS

In this section, we will show that the problems stated above
are NP-hard. After that, we reformulate these problems and
present approximation algorithms for each of them respec-
tively.

A. Problem Hardness

We now show that both R-MQCSP and MQCSP are NP-
hard, and that they cannot be approximated within a factor
better than (1 − 1/e). First of all, we present the following
well-known NP-hard problem and a relevant lemma.

Definition 3.1: (Maximum Coverage Problem) [26]
Given a collection of subsets S = {S1, S2, . . . , Sm} of the
universal set U = {e1, e2, . . . , en}, and a positive integer k,
find a subset S′ ⊆ S such that |S′| ≤ k and the number of
covered elements | ∪Si∈S′ Si| is maximized.

Lemma 3.1: [27] For any ε > 0, the Maximum Coverage
Problem (MCP) cannot be approximated within a factor (1−
1/e+ ε) unless P = NP .

The following theorem shows the complexities of our prob-
lems.

Theorem 3.1: Both R-MQCSP and MQCSP are NP-hard.
For any ε > 0, there is no (1−1/e+ε) approximation solution
to R-MQCSP or MQCSP unless P = NP .

Proof: We can restrict the R-MQCSP problem to the MCP
problem by setting L = 1, wi = 1/n and ci = c where c is a
constant, and assuming li ≥ L for any sensor vi such that the
active time slots constraint can be removed. Thus we conclude
R-MQCSP is at least as hard as MCP. We omit the details to
save space. As for MQCSP, we set τw/c = k + 1/2 (k is an
integer) and τTSP (V ) < 1/2 c. Using similar techniques of
R-MQCSP analysis, we can also prove that MQCSP is at least
as hard as MCP.

B. Reformulation of R-MQCSP

Because both R-MQCSP and MQCSP are NP-hard, we can
only seek an approximation algorithm to solve R-MQCSP.
In the following, we reformulate R-MQCSP as a monotone
submodular function maximization problem subject to some
constraints. Before going to the detail of the reformulation,
we first present some necessary definitions.

Definition 3.2: [28] Let S be a finite ground set. A real-
valued set function f : 2S 7→ R is normalized, monotonic and
submodular if and only if it satisfies the following conditions:
(i) f(∅) = 0; (ii) f(A ∪ {e})− f(A) ≥ 0 for any A ⊆ S and
e ∈ S\A; and (iii) f(A∪ {e})− f(A) ≥ f(B ∪ {e})− f(B)
for any A ⊆ B ⊆ S and e ∈ S\B.



For simplicity, we use fA(e) = f(A+ e)− f(A) to denote
the marginal value of element e with respect to A. Note that
here we use A+ e instead of A ∪ {e}.

Definition 3.3: [28] Given S =
⋃k
i=1 S

′
i is the disjoint

union of k sets, l1, l2, . . . , lk are positive integers, a partition
matroid M = (S, I) is a matroid where I = {X ∈ S :
|X ∩ S′i| ≤ li for i = 1, 2, . . . , k}.

We will show that R-MQCSP fits perfectly well in the realm
of a monotone submodular function maximization problem
subject to constraints including a partition matroid constraint.
We start with a definition of ground set S. Denote by aij the
activating time slot aij of sensor vi, then S is given by:

S = {a11, a12, . . . , a1L, . . . , am1, am2, . . . , amL}. (7)

We equivalently define the sensor schedule Si as a subset
of S, namely Si = {ai1′ , ai2′ , . . . , aiL′} if and only if
aij′ = 1 (j′ = 1′, 2′, . . . ,L′). Further, S can be partitioned
into m disjoint sets, S′1, S

′
2, . . . , S

′
m, which is given by S′i =

{ai1, ai2, . . . , aiL}. We say S′i is the candidate activation
schedule of sensor vi, as any feasible schedule Si is a subset
of S′i. It is obvious that any scheduling policy X consisting
of all sensor schedule Si, namely X = {S1, S2, . . . , Sm}, is
subject to |X∩S′i| = |Si| ≤ li. Then we write the independent
sets as:

I = {X ⊆ S : |X ∩ S′i| ≤ li for i = 1, 2, . . . ,m}. (8)

On the other hand, it can be easily proved that M = {S, I}
is a matroid.

Moreover, if we define cij = ci as the charging time factor
for time slot aij , then the working time constraint can be
rewritten as

∑
aij∈X cij ≤ τw, which is exactly a knapsack

constraint. Hence we have the following lemma.
Lemma 3.2: The working time constraint in R-MQCSP can

be written as a knapsack constraint on the ground set S, while
the active time slots constraint can be written as a partition
matroid constraint.

As a consequence, we can rewrite the optimization problem
R-MQCSP as follows:

Max f(X) =

n∑
i=1

wiQ(i|
∨
vj∈Vi

Sj)

s.t. X ∈ I,
Si = X ∩ S′i ∀i = 1, 2, . . . ,m,∑
aij∈X

cij ≤ τw.

Next, we show that the optimization function f(X) exhibits a
desirable property as is stated in the following lemma.

Lemma 3.3: If the utility function U(x) is concave, then
the objective function f(X) in the optimization problem R-
MQCSP is a monotone submodular function.

Proof: Its complete proof is available in [29], [30].
It is easy to see that the step utility function, exponential

utility function and linear utility function are concave, while

Algorithm 1 Algorithm for R-MQCSP with active time slots
constraint
Input: The objective function f(·), the ground set S, the partition

matroid M, the knapsack constraint, the candidate activation
schedules S′1, . . . , S′m.

Output: Solution X and the sensor schedules S1, . . . , Sm.
1: Reduce knapsack constraint by applying Lemma 3.4 with 0 <
ε < 0.5, let {Pt}Tt=1 denote the resulting partition matroids;

2: for each t ∈ [T ] do
3: Run the greedy algorithm from [31] under 2 partition matroids

M and Pt to obtain solution Xt;
4: end for
5: t∗ ← argmaxT

t=1 f(Xt);
6: Starting with the trivial partition of Xt∗ into single elements,

greedily merge parts as long as each part satisfies the knapsack
constraint, until no further merge is possible. Consequently, Xt∗

can be partitioned into k parts {Xj
t∗}

k
j=1;

7: X ← argmaxk
j=1 f(X

j
t∗), Si ← X ∩ S′i for i = 1, . . . ,m;

the S-shaped utility function and delayed step utility function
are not [14]. To make the problem amenable, we assume that
the utility function U(x) is concave hereafter. Nevertheless,
since in most of cases utility function is concave [14]–[18],
such treatment will not reduce our contribution significantly.

C. Approximation Algorithms for R-MQCSP

Having proved that the objective function of our problem is
submodular, now we attempt to find approximation algorithms
with and without active time slots constraint for R-MQCSP.
We will show that the presence of active time slots constraint
makes a huge difference in problem complexity.

1) Approximation Algorithm with Active Timeslots Con-
straint: For this case, we tailor the approach proposed by
Gupta et al. [32] to our scenarios, and obtain an improved
approximation. Their work targets p-system and q-knapsack
in max-min optimization, where a p-system is similar to,
but more general than, the intersection of p matroids. At
a high level, their approach extends ideas from Chekuri
and Khanna [33] reducing knapsack constraints to partition
matroids by an enumeration method. We list the main result
of this reduction as follows.

Lemma 3.4: Given any knapsack constraint
∑n
i=1 wi ·xi ≤

B and fixed 0 < ε < 1, there is a polynomial-time computable
collection P1, . . . ,PT of T = nO(1/ε2) partition matroids such
that:
1. For every X ∈

⋃T
t=1 Pt, we have

∑
i∈X wi ≤ (1 + ε) ·B.

2. {X ⊆ [n]|
∑
i∈X wi ≤ B} ⊆

⋃T
t=1 Pt.

We propose an algorithm as shown in Algorithm 1, which
is devised based on the algorithm proposed in [32]. Note that
we use notation similar to [32] for consistency.

Theorem 3.2: Algorithm 1 for R-MQCSP with active time
slots constraint can achieve 1/6-approximation, and its time
complexity is O((mL)2nT ).

Proof: Its complete proof is available in [29], [30].
We emphasize that we improves the approximation factor

from 1
(p+2)(3q+1) = 1/12, obtained by [32] for p-system and

q-knapsack constraints, to 1/6. This is because we give a
tighter bound for the number of partitioned parts k at step 6 in



Algorithm 2 Unified Algorithm for R-MQCSP without active
time slots constraint
Input: The objective function f(·), the ground set S, the knapsack

constraint, the candidate activation schedules S′1, . . . , S′m.
Output: Solution X and the sensor schedules S1, . . . , Sm.

1: X = ∅, X1 = ∅, X2 = ∅, Si = ∅ for i = 1, . . . ,m;
2: If k = 0, then k′ = 1; else k′ = k − 1;
3: X1 = argmax f(D), ∀D ∈ S, |D| ≤ k′,

∑
a′i∈D

c′i ≤ τw;
4: for all D ∈ S (|D| = k and

∑
a′i∈D

c′i ≤ τw) do
5: I = S;
6: while I\D 6= ∅ do
7: a′t = argmaxa′i∈I\D

fD(a′i)
c′i

;
8: if fD(a′t) ≤ 0 then
9: break;

10: end if
11: if

∑
a′i∈D

c′i + c′t ≤ τw then
12: D ← D ∪ {a′t};
13: else
14: I = I\{a′t};
15: end if
16: end while
17: if f(X2) ≤ f(D) then
18: X2 = D;
19: end if
20: end for
21: X ← argmax{f(X1), f(X2)}, Si = X∩S′i for i = 1, . . . ,m;

Algorithm 1, than that in [32]. Besides, although the algorithm
proposed in [34] for 1 matroid and k knapsack constraints
can achieve an (1 − 1/e − ε)-approximation, it requires that
all sets of at most 1012 items should be enumerated to form a
feasible solution at the first stage, and thus makes itself purely
theoretical.

Moreover, we employ pruning techniques when implement-
ing this algorithm to speed up the computation, since the
number T = (mL)O(1/ε2) of produced partition matroids is
still large. We omit the details to save space.

2) Approximation Algorithm without Active Timeslots Con-
straint: If li ≥ L for any sensor vi, then the active time slots
constraint can be safely relaxed. This situation occurs when
the battery capacity is much larger compared to the working
power of the sensor (such as ultra-capacitors [22]) or we apply
the charging process frequently. Thus we can resort to a unified
greedy algorithm, namely Algorithm 2, to find an optimized
QoM. Note that in this algorithm c′i refers to the corresponding
charging time factor for time slot a′i.

This algorithm includes two parts. The first part enumerates
all possible subsets of S with cardinality less than or equal to
k′, so as to find the best feasible solution achieves the highest
QoM. The second part starts from every feasible subset D with
cardinality k, and search greedily in S to find a best possible
solution. Finally, the algorithm outputs the best observable
solution based on the results of the above two parts.

We propose the following theorem based on the results
obtained by [35].

Theorem 3.3: Algorithm 2 for R-MQCSP without active
time slots constraint achieves approximation factor 1−1/e

2 ≈
0.3161, 1−1/e

2−1/e ≈ 0.3873, 1−1/e
3/2−1/e ≈ 0.5584, 1 − 1/e ≈

Algorithm 3 Algorithm for MQCSP
Input: The sensors set V = {v1, . . . , vm}, the PoIs set O =
{o1, . . . , on}, the objective function f(·), the ground set S,
the partition matroid M, the knapsack constraint, the candidate
activation schedules S′1, . . . , S′m.

Output: The sensor schedules S1, . . . , Sm.
1: Call Algorithm 1 to obtain the solution XR for R-MQCSP;
2: Sort XR = {a′1, . . . , a′K} such that a′t =

argmaxa′i∈XR\X
t−1
R

f
X

t−1
R

(a′i)

c′i
(Xt−1

R = {a′1, . . . , a′t−1});
3: X ← XR, t = K;
4: while τTSP (

⋃
|X∩S′i|>0 vi) > τw −

∑
a′i∈X

c′i do
5: X ← X\a′t;
6: t = t− 1;
7: end while
8: Si ← X ∩ S′i for i = 1, . . . ,m;

0.6321 for k = 0, 1, 2, 3, respectively. Its time complexity is
O((mL)k+2n).

Proof: Its complete proof is available in [29], [30].
According to Theorem 3.1, we claim that Algorithm 2 for

k = 3 is in fact the best possible for any polynomial-time
approach unless P = NP .

D. Approximation Algorithms for MQCSP

On the basis of the proposed constant approximation algo-
rithms for R-MQCSP, now we consider the original problem
MQCSP and propose approximation algorithms.

As shown in Algorithm 3, we call Algorithm 1 at the
first step to obtain a feasible solution XR for R-MQCSP.
Subsequently, we sort elements in XR in descending order
by their cost efficiency. We iteratively remove the element
with least cost efficiency in X (X is initialized as XR) until
τTSP (

⋃
|X∩S′i|>0 vi) ≤ τw −

∑
a′i∈X

c′i. Note that we employ
the nearest neighbor algorithm to solve the TSP problem.
Finally we obtain a feasible solution X for MQCSP.

Theorem 3.4: Algorithm 3 for MQCSP can achieve 1
6 (1−

τTSP (V )+max{ci}mi=1

τw
)-approximation. The time complexity of

this algorithm is O((mL)2nT ).
Proof: Its complete proof is available in [29], [30].

Further, if the active time slots constraint can be removed in
this case, we can modify Algorithm 3 by replacing Algorithm
1 called at step 1 with Algorithm 2. The following theorem
gives the performance guarantee of this revised algorithm.

Theorem 3.5: The revised algorithm for MQCSP without
active time slots constraint can achieves approximation factor
1−1/e

2 c, 1−1/e
2−1/ec,

1−1/e
3/2−1/ec, (1 − 1/e)c for k = 0, 1, 2, 3,

respectively, where c = 1 − τTSP (V )+max{ci}mi=1

τw
. Its time

complexity is O((mL)k+2n+m3L) for k = 0, 1, 2, 3.
Proof: We omit the details of proof to save space.

IV. PERFORMANCE EVALUATION

In this section, we first describe the traces collected by
our testbed. Then we present simulation results to verify our
theoretical findings.
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Fig. 1. Received Power with Varying Distance or Angle

A. Evaluation Setup

1) Trace Collection: For trace collection, we utilized the
energy harvesting development kit P2110-EVAL-01 for wire-
less sensors produced by Powercast [36]. The kit is mainly
composed of an RF transmitter, RF energy harvesting receiver
boards and antennas, and wireless sensor boards. In this kit,
the TX91501 transmitter is the source of energy. The wireless
sensor boards are powered by the P2110 Powerharvester
Receiver converting RF energy into DC power.

As illustrated in Fig. 1, we can see that the received power
of the wireless sensor board decreases dramatically with an
increasing distance between RF transmitter and wireless sensor
board when the sensor board is put right in the front of the
TX91501 transmitter. The situation is similar when the angle
from the line through the transmitter and sensor board to the
reference direction of the transmitter increases from 0◦ to 90◦.

2) Parameter Settings: Unless otherwise stated, we use
the following parameter settings. According to the collected
traces, we set the range of received power of sensor to
[15mW, 45mW ], which can be interpreted into a charging
efficiency ηi between [0.5%, 1.5%]. We randomly distribute
20 sensors and 50 PoIs in a 120m×120m region throughout
the simulations, with any PoI being covered by at least one
sensor. The working power pi of sensor vi is randomly selected
from [50µW, 100µW ], while that of MC is set to 3W . The
battery capacity of sensor is randomly selected from a range
[100 J, 1000 J ]. Furthermore, we set the sensing radius of
sensor to 20m, and the sensor schedule length L = 4. We
assume the considered event type has step utility function and
its event staying time follows f(x) = λe−λx where λ = 1.
We set τ = 2week, τw = 8.2hour, and the MC’s speed
νMC = 0.05m/s. Besides, the default value of duration of
time slot is set to be 1 s.

B. Performance Evaluation for Algorithms of R-MQCSP

In this section, we first investigate the cases without con-
sidering active time slots constraint. In particular, we evaluate
the performance of overall QoM under different event types or
control parameter k. Then we study the relationship between
the period of charging process τ and the overall QoM, which
actually reflects the impact of active time slots constraint.

1) Evaluation of Different Event Types: In this scenario,
we focus on the event types whose event staying time follows
f(x) = λe−λx (λ = 0.25, 0.5, 1, 2) as in [14], [21], while
its utility function U(x) either follows step utility function or
exponential utility function f(x) = Ae−Ax, where A = 5 as
in [14]. Note that we use Algorithm 2 with k = 3. It can be
seen in Figs. 2 and 3 that the overall QoM always increases

with an increasing τw. Nevertheless, the marginal gain of QoM
diminishes as τw increases. This is mainly due to the facts
that event capture utility function is concave and redundant
coverage of PoIs will occur when sensors have larger active
time slot budgets with larger τw.

Moreover, a smaller λ will lead to a larger overall QoM
under the same τw. This is because the expected staying time
of events grows as λ decreases, and therefore its probability
of being detected and capture utility will be enhanced.

Besides, by comparing Fig. 2 and 3, we conclude that the
achieved overall QoMs for events with step utility function al-
ways exceeds that for events with exponential utility function.
This can be explained by the difference in efficiency of event
capture. For events with step utility function, full information
about an event is obtained instantaneously on detection. On
the contrary, it needs a lot of time to obtain most information
of an event with exponential utility function, and infinite time
for full information, which is relatively inefficient.

2) Evaluation of Different Control Parameter k: We pro-
ceed to evaluate the impact of control parameter k on the
overall QoM in Algorithm 2, and plot all the results in Fig.
4. Not surprisingly, it can be seen that the larger k we
choose, the higher overall QoM we obtain. Nevertheless, the
distinction between the overall QoMs of different k is not
obvious. This observation also implies that we can choose a
small k to reduce the time complexity without incurring large
performance degradation.

In addition, it can be observed that the overall QoM exceeds
1− 1/e ≈ 0.63 in Fig. 4, which indeed corroborates Theorem
3.3 as the optimal overall QoM is absolutely no more than 1.

3) Varying Period of Charging Process: To see how the
period of charging process τ impacts the overall QoM, we set
Ei = 100 J and pi = 100µW , and let the received power of
each sensor randomly fluctuate in a relatively smaller range
[20mW, 35mW ] to ease the computation. Fig. 5 exhibits the
trend that the overall QoM decreases with an increasing τ . This
is because an increasing τ leads to higher charging time factors
ci and smaller active time slot budgets li, both of which finally
result in a reduced QoM. Moreover, the fact that the overall
QoM is larger than 1/6 ≈ 0.17 actually supports Theorem 3.2.

Again, we can see that the achieved overall QoM improves
with a larger τw.

C. Performance Evaluation for Algorithms of MQCSP

We proceed to verify the performance of algorithms of
MQCSP, which consider the travel time. We inherit the pa-
rameters defined in IV-B3.

1) Impact of MC’s Speed on Working Time Allocation and
QoM: Fig. 6 shows that if the speed of MC νMC increases,
the travel time will be reduced, leading to a larger charging
time. Note that both travel time and aggregate charging time
are normalized with respect to maximum working time τw. It
can be seem that the portion of the aggregate travel time is
below 10% when νMC grows to 0.1m/s, which is still quite
small. Another important finding about Fig. 6 is that the sum
of travel time and aggregate charging time is not necessarily
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Efficiency

equal to τw (the gap is up to 4% when νMC = 0.02). This
situation happens as we require the active time slot budget
li for each sensor must be integer. This requirement can be
relaxed, and we can assign remaining working time to charging
sensors. Consequently, overall QoM will be further improved.
We will discuss it in future work to save space.

Furthermore, the overall QoM is enhanced with a fast speed
of MC, as the red solid line shows in Fig. 7. Moreover, it
is always bigger than the “maximum” lower bound, which is
referred to as the green dotted line “MLB” in the figure, and is
given by 1

6 (1−
τTSP (V )+max{ci}mi=1

τw
). This finding corroborates

Theorem 3.4.
2) Varying Length of Sensor Schedule: Fig. 8 demonstrates

the trend of the overall QoM with the increasing length of
sensor schedule L with τw = 4.1hour and τw = 8.2hour
respectively. It is easy to find that for any L, the overall QoM
of its multiples always exceeds that of its own, such as L = 2,
L = 4 and L = 8. However, the overall QoM doesn’t increase
monotonically with L. We will investigate this phenomenon
thoroughly in the future.

D. Performance Comparison with Existing Works

In this section we compare our scheme to the scheme,
Joint Periodic Wake-up (JPW), proposed by [21]. To make
the comparison feasible, we first tailor JPW to our concerned
scenarios. That is, a MC dictated by JPW evenly distributes
its charging time to each sensor in the field, and only when
it arrives the position of a sensor can it charge this sensor

(this assumption is more practical since the received power
decreases dramatically with increased distance or angle as Fig.
1(a) and Fig. 1(b) indicate). Of course, the energy cost for
turning the sensor on/off is still ignored. In addition, we set
νMC = 0.1m/s, ηi = 1% for any sensor vi, and the time
duration of duty cycle in JPW is exactly equal to that of sensor
schedule. The travel power of the MC is set to 50W . For other
parameters, we use the same parameters as those in IV-B3.

1) Varying Length of Time Slot: Note that the default value
of duration of time slot is 1 s in above sections. Now we
vary the duration of time slot, and plot the overall QoMs
of both JPW and MQCSP in Fig. 9. As can be seen, our
algorithm MQCSP always outperforms JPW, especially with
a long duration of time slot. Moreover, the overall QoMs rises
with an decreasing duration of time slot for both schemes,
since events with the same staying time becomes more likely
to be detected (as time interval between non-consecutive active
time slots shrinks) and captured in its early phase with high
utility. This result is consistent with that of [14] and [21].

2) Varying Maximum Working Time: In Fig. 10, we observe
that the overall QoMs rise with an increasing maximum
working time τw for both JPW and MQCSP, and MQCSP is
more competitive than JPW due to its higher QoMs. Besides,
the performance improvement of MQCSP over JPW becomes
more significant as τw increases, and achieves about 50%
when τw = 9.4hour. Note that the duration of time slot here
is set to 1 s. For the case where duration of time slot is reduced
to 0.5 s, the overall QoMs of both schemes are substantially



enhanced, as illustrated in Fig. 11. On average, our algorithm
obtains a performance gain of about 24% over JPW.

Next, we compare our algorithm with JPW in terms of
energy for the second case. As a MC following JPW needs to
visit all sensor nodes under any circumstance, the energy over-
head for travel is huge. So does the overall energy consump-
tion. It can be seen in Fig. 12 that the energy consumption for
JPW is 11% ∼ 58% higher than that of MQCSP. On the other
hand, with a large τw, the MC dictated by MQCSP is able to
include more sensor nodes for charging, and thereby incurs
substantial energy increment, which is also indicated by Fig.
12. In addition, we attempt to evaluate the energy efficiency
of two schemes, which is define as (overall QoM)/(energy
consumption). Fig. 13 demonstrates that MQCSP enjoys a gain
of 38% ∼ 80% over JPW.
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V. CONCLUSION

In this paper, we have studied the maximum QoM charg-
ing and scheduling problem. This problem targets a general
event model with arbitrary utility function, staying time and
schedule. To pave the way to this problem, we studied its
relaxed version, and approximately solved it by transforming
this version into a submodular function maximization problem,
under the condition that event utility function is concave. Con-
sequently, the original problem has also been approximately
solved by considering the travel time of the MC.

Trace-driven simulation results confirm the correctness of
the theoretical analysis. In the future, we will pursue algo-
rithms providing better approximation factors. And we will
generalize our solution by taking into account the fairness of
charging time allocation.
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