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Abstract—For low-duty-cycle wireless sensor networks, multi-
hop broadcasting is a very challenging problem, since every node
has its own working schedules. Existing solutions usually use
unicast instead of broadcast to forward packets from a node
to its neighbors according to their working schedules. However,
using unicast to implement broadcasting is not efficient. The
broadcast nature of wireless communication offers opportunity
for further energy saving even for low-duty-cycle networks. Thus,
it is essential to design more efficient and robust broadcasting
algorithms for low-duty-cycle networks. In this paper, we design
a novel broadcasting algorithm to address this limitation for
such networks. The key idea is to let some early wake-up nodes
postpone their wake-up slots to overhear broadcasting message
from its neighbors. This design utilizes the spatiotemporal locality
of broadcasting to reduce the number of transmissions. We prove
that to find the schedule for minimal network broadcasting
latency and optimized total energy consumption is NP-hard, and
then design an approximation algorithm that can achieve an
approximation ratio of O(logN · log dmax) where N and dmax

denote the number of sensor nodes and the maximum node
degree respectively. Compared with the traditional solution, ex-
tensive experimental results show that our algorithm achieves the
minimal broadcasting latency while reducing energy consumption
significantly.

Index Terms—low-duty-cycle WSNs; broadcast scheduling;
energy efficient; minimal latency

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used
for various applications, such as environmental monitoring,
scientific exploration, and medical care systems. Many of
these applications require broadcasting to disseminate system
configurations and code updates to the whole network after
the system is deployed. Total energy consumption, as well
as the broadcasting latency which denotes the time that the
broadcasting message is received by the last uncovered node,
is normally the main metric to evaluate the performance of
any broadcasting schedule.

It is important and very challenging to minimize the latency
and the energy consumption of the broadcasting, especially
for low-duty-cycle WSNs, in which every sensor node has
its own working schedule to wake-up periodically to perform
sensing and communication tasks. Compared with the always-
awake networks, low-duty-cycle sensor networks usually yield

a notable increase on communication latency due to the
periodic sleeping, and thus latency is always taken as the
first consideration in such networks. In this work, we focus
on the following problem: how to design a broadcasting
schedule that can achieve the minimal latency while reducing
total energy consumption for low-duty-cycle WSNs. Existing
solutions [1]–[8] for broadcasting in low-duty-cycle WSNs
usually implement broadcast with multiple unicasts, which is
energy-inefficient especially for applications of large message
broadcasting, such as code updates. Actually, the broadcast na-
ture of wireless communication offers opportunities to reduce
the total number of transmissions in broadcasting, even for
duty-cycled networks where every node has its own schedule.
To improve the energy efficiency of broadcasting, nodes should
adjust their working schedules to maximize the number of
receivers for each forwarding packet.

To achieve the minimal broadcasting latency and reduce the
total energy consumption, we propose a novel broadcasting
algorithm based on broadcasting spatiotemporal locality. The
algorithm allows nodes to adjust their wake-up schedules to
overhear forwarding message sent by their neighbors, thus
improving the energy efficiency. Some nodes may postpone
their wake-up slots to receive broadcasting message, increasing
their latency. But these nodes can be carefully selected so that
they are not on latency-critical paths. Therefore, their schedule
changes do not affect the minimal broadcasting latency.

The contributions of this work are as follows:
• By capturing the spatiotemporal characteristic of multi-

hop broadcasting, we model our scheduling problem as
the Latency-optimal Group Steiner Tree Problem, which
is proved to be NP-hard.

• This work proposes a novel wake-up schedule to realize
broadcasting for low-duty-cycle networks by utilizing
spatiotemporal locality of the broadcasting, which sig-
nificantly improves energy efficiency without sacrificing
broadcasting latency. We also prove that this design
can achieve sub-linear approximation ratio for optimal
broadcasting latency.

• Extensive simulations results show that our solution
makes a significant improvement compared with the



traditional solution.
The rest of the paper is organized as follows: Section

II summarizes the related work. Section III illustrates the
network model and formally states the problem. Detailed
description of our proposed scheme and performance analysis
are presented in Section IV. Followed by the simulation results
in Section V, we conclude the paper in Section VI.

II. RELATED WORK

The broadcasting/multicasting problem in low-duty-cycle
WSNs has received lots of attentions by the research com-
munity in the past few years [1]–[9].

Guo et al. [1] propose Opportunistic Flooding to make
probabilistic forwarding decisions at the sender based on the
delay distribution of next-hop nodes. In [5], authors consider
link correlation and devise a novel flooding scheme to reduce
energy consumption of broadcasting by making nodes with
high correlation be assigned to a common sender. ADB [8],
which is designed to be integrated with the receiver-initiated
MAC protocol, reduces both redundant transmissions and
delivery latency of broadcasting by avoiding collisions and
transmissions over poor links. Lai et al. [9] propose a Hybrid-
cast protocol which adopts opportunistic forwarding with de-
livery deferring to shorten broadcast latency and transmission
number. However, all of these existing works either do not
utilize the spatiotemporal locality of broadcasting to improve
energy efficiency, or fail to provide provable approximation
ratio for their solutions.

To the best of our knowledge, this is the first work that
both considering the spatiotemporal locality of broadcasting
and proposing the solution with provable approximation ratio,
for the broadcast scheduling problem in low-duty-cycle WSNs.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model and Assumptions

In this paper, we assume that N sensor nodes are uniformly
deployed in a circular sensory field with a radius of R and
the sink node is located at the center of the sensory field.
Also, it is assumed that time is divided into a number of
equal time slots and each time slot is set long enough so
that it can accommodate the transmission of the potential
large broadcasting message. Each time slot is either in sleep
state where each node will turn its radio off, or in active
state, where each node will keep awake for a short duration
of listening interval to make the event sensing and channel
listening at the beginning. In our model, we assume all the
sensor nodes are operated at low-duty-cycle mode, where
each sensor node independently determines its own working
schedule. For simplicity, we assume the working schedule of
each node is periodic and alternates between one active state
and L− 1 sleep states. Fig. 1 explicitly illustrates an example
of the periodic working schedule, where L = 5 and the node
only stays in active state at time slot 3 for each period of
working schedule.

As the same with most of literature for low-duty-cycle
WSNs [1]–[6], we assume time synchronization is achieved,

0 1 2 3 4 0 1 2 3 4

Period 1

……

Period 2 …… 

Working Schedule

active state sleep state listening interval

Fig. 1: An example of working schedule with L = 5

and each node can transmit its packets at any time according
its neighbors working schedules while can only receive the
packets from its neighbors in active states. Specifically, each n-
ode i will wake up at the beginning of the active state and keep
listening for a period of listening interval, if any broadcasting
packet in which the target receiver ID is i is received, it will
keep receiving until all packets of the broadcasting message
are received and then go to sleep immediately; otherwise, it
will go to sleep immediately. If any sender wants to send the
broadcasting message to its receiver, it will set a timer to wake
up itself at the beginning of the receiver’s next active state to
finish the transmission, and then go to sleep immediately.

Besides, we also have the following basic assumptions:
(1) Each node is aware of the working schedules of all its
neighboring nodes within 2 hops, this can be realized via local
information exchange between neighboring nodes initially
after the network is deployed; (2) We do not consider the
packet collision problem here due to the fact that the low-duty-
cycle operation inherently reduces the probability of collision
to a great extent, which has been experimentally verified in
[2]; (3) We regard the broadcasting message transmission as
the main energy consumption source.

B. Problem Statement

Here, we take a simple example to illustrate our problem.
As shown in Fig. 2(a), the sink S wants to broadcast a message
to the whole network, the number labeled within the pair of
brackets denotes the scheduled wake-up time slot (i.e. active
state) and L is set as 10. For simplicity, we first assume that for
any node, the working schedules of its neighbors are different
for each other. This assumption will then be relaxed in the
next section.

Obviously, all nodes will receive the broadcasting message
at their scheduled wake-up time slots which could bring
the shortest broadcasting latency, however, draw much more
energy consumption since any one-hop broadcasting is actually
realized by a number of unicasts. Nevertheless, we find that
the transmission number of the broadcasting message could
be further reduced by considering broadcasting spatiotemporal
locality, i.e. deferring the receiving time of some nodes.
For any sender, here, we define two kinds of receivers:
DelayedReceiver and InstantReceiver. In our model, the sender
will send the broadcasting message to each InstantReceiver,
and also it will send a short Beacon packet that only contains
the ID of some InstantReceiver j, saying Beacon(j), to each
DelayedReceiver. Upon receiving the Beacon(j) from the
sender, any DelayedReceiver will go to sleep immediately and
defer its receiving time by setting a timer to wake up at the
active state of the InstantReceiver j. Due to assumption (1),
actually, the DelayedReceiver can be aware of the working
schedule of the InstantReceiver j.



Schedule 1: (Broadcast number:5, Latency:17)

M(S) = (1, <A, B>),  M(A) = (1, < C >)

M(B) = (1, <D, E>),  M(C) = (0, NULL)

M(D) = (0, NULL),  M(E) = (0, NULL)

Schedule 2: (Broadcast number:3, Latency:17)

M(S) = (1, <A, B> ),  M(A) = (1, < C >)  

M(B) = (1, <D, E>),  M(C) = (0, NULL)

M(D) = (0, NULL),  M(E) = (0, NULL)

S(0)

A(3) B(8)

C(5) E(7)
D(9)

(a) The original topology graph with two defined broadcasting schedules
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(b) Illustration of Schedule 1
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(c) Illustration of Schedule 2
Fig. 2: An example with different broadcasting schedules.

Definition 1 (Forwarding Sequence). For any forwarder i
of the broadcasting message, its Forwarding Sequence Sf (i)
is defined as a sequence of its receivers sorted based on the
scheduled wake-up time, namely
Sf (i) =< r11, . . . , r

k1
1 , r1, r

1
2, . . . , r

k2
2 , r2, . . . , r

1
j , . . . , r

kj
j , rj >

where rkj (k = 1, . . . , kj) and the underlined rj respectively
denote the DelayedReceivers and InstantReceivers of node
i. Specifically, the forwarder i will send the short control
packet Beacon(rj) to each DelayedReceiver rkj and send the
broadcasting message to each InstantReceiver rj .

Based on broadcasting spatiotemporal locality, here, we
present the definition of the broadcasting schedule in low-duty-
cycle WSNs as follows.

Definition 2 (Broadcasting Schedule). Given a communica-
tion graph G = (V,E) in which V is the set of N nodes
including the sink v0 and all sensing nodes I = {vi|i =
1, ..., N−1}, and E is the set of all communication edges, the
schedule strategy of any sensing node vi(i = 1, . . . , N −1) in
G, saying M(vi), can be defined as follows:

M(vi) = (α, β) (1)
where

α ∈ {0, 1}, β =

{
Sf (vi) α = 1

NULL α = 0
In Equ. (1), the binary variable α denotes whether node vi
be a forwarder after receiving the broadcasting message, and
if vi is the forwarder (i.e. M(vi).α = 1), β will denote
the Forwarding Sequence Sf (vi), which represents that once
receiving the broadcasting message, node vi will send the short
Beacon packet or the broadcasting message to each node in
Sf (vi) in sequence. Here, NULL denotes the omitted item
and it is obvious that M(vi).β = NULL for any node vi
with M(vi).α = 0.

Here, a broadcasting schedule M in the network can be
defined as the set of all nodes’ schedule strategies:

M = {M(vi)|i = 0, . . . , N − 1} (2)
so that 1) Iα is a connected vertices subset in G; 2)⋃
i∈Iα

M(vi).β = I; and 3)
⋂
i∈Iα

M(vi).β = ∅, where Iα =

{vi|i = 0, . . . , N − 1 and M(vi).α = 1}.

In the above definition, assumption (3) still holds since in
practice, the energy consumption for transmitting and receiv-
ing the short Beacon packet in our model is so small that
it can be neglected compared with that for transmitting the
broadcasting message, especially for the applications of large

message broadcasting such as code updates. Further, we take
two broadcasting schedules shown in Fig. 2 as an example.
There is no waiting for each node (i.e. no DelayedReceiver
but only InstantReceiver exists in the network) when adopting
Schedule 1, which achieves the minimum broadcasting latency
17 but the maximum broadcasting number 5. For Schedule
2, the broadcasting number can be reduced to 3 without
increasing the broadcasting latency as nodes A and D defer
their receiving time to the scheduled wake-up time slots of B
and E respectively. From the above example, we can find that
there could exist multiple broadcasting schedules which have
the same minimum broadcasting latency but different transmis-
sion numbers of the broadcasting message. Accordingly, our
objective is to address the following Latency-optimal Minimum
Energy Broadcast (L-MEB) Problem.

Problem 1 (L-MEB). Given a communication graph G =
(V,E), how to find an efficient broadcasting schedule M
to optimize the transmission number of the broadcasting

message, i.e. to minimize
N−1∑
i=0

M(vi).α, while guaranteeing

that the broadcasting latency is minimized.

C. Problem Formulation

Definition 3 (Coverage Set). The Coverage Set of any Sender-
InstantReceiver pair (vs, vr) at time slot t (0 ≤ t ≤ L − 1),
saying CS(vs, vr, t), is defined as follows:
if t < Ts(vr),
CS(vs, vr, t) = {x ∈ N(vs)− {v0}|t < Ts(x) 6 Ts(vr)}

(3)
otherwise,
CS(vs, vr, t) = {x ∈ N(vs)− {v0}|t < Ts(x) 6 L− 1 or

0 6 Ts(x) 6 Ts(vr)}
(4)

in which v0 denotes the sink node, N(vi) and Ts(vi) denote
the neighboring nodes set and the scheduled wake-up time slot
of node vi respectively.

Observation 1. Given a communication graph G = (V,E),
if any node vs decides to send the broadcasting message to
its neighbor vr, then an efficient broadcasting schedule must
make sure that when being received by vr, the broadcasting
message also has been received by all the nodes in the
coverage set CS(vs, vr, Tc(vs)) where Tc(vs) denotes the time
slot that the uncovered node vs receives the broadcasting
message.
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Fig. 3: (a) The original topology graph with one-hop case;
(b) The corresponding SRG of the topology in (a) (underlined
letters denote the InstantReceivers).

As an example, in Fig. 3(a), the sender v1 is assumed to
receive the broadcasting message at its scheduled wake-up
time slot, namely Tc(v1) = Ts(v1) = 3. If we make the sender
v1 transmit the broadcasting message to node v4, according
to Observation 1, all the nodes in CS(v1, v4, Ts(v1)) =
{v3, v5, v4} must be ensured to have been covered at the
coverage time of v4 (i.e. the time when the uncovered node
v4 receives the broadcasting message), this is because any
schedule which makes the coverage time of v3 or v5 be
preceded by that of v4 will never benefit from both the
transmission number and the broadcasting latency. In order to
better exhibit the spatiotemporal characteristic of broadcasting,
the example in Fig. 3(a) can be transformed into the Spatiotem-
poral Relationship Graph (SRG) as shown in Fig. 3(b), where
each edge represents one broadcasting message transmission
and its ending vertex represents the resulting coverage set after
this transmission, the number labeled within the vertex denotes
the time slot of the InstantReceiver in the coverage set that
represents this vertex. For convenience, each vertex in SRG is
represented by its coverage set.

The following Spatiotemporal Relationship Graph Construc-
tion Algorithm (SRGC-A) will introduce how to efficiently
construct a SRG in detail: Initially, SRG only contains a vertex
{v0}. Starting with considering the sink v0 as the sender,
we respectively regard each neighbor i of the sink as the
InstantReceiver and insert a directed edge from the vertex {v0}
to the newly added vertex CS(v0, i, Ts(v0)) (i ∈ N(v0)). For
each newly added vertex, saying CSnew, we in turn select
each node j ∈ CSnew as the sender, and then search all the
vertices in SRG to check whether the vertex CS(j, i, Ts(k))
(i ∈ N(j)−{v0}), where node k denotes the InstantReceiver
in CSnew, has existed1. If so, we just insert a directed
edge between the vertex CSnew and this existing vertex;
otherwise, we add the vertex CS(j, i, Ts(k)), as well as an
edge connecting CS(j, i, Ts(k)) with CSnew, into SRG. The
above process repeats until no further vertex insertion to SRG
is possible. Finally, we attach each vertex in SRG with the
time slot of the InstantReceiver in its corresponding coverage
set, and for each edge representing one message transmission,
we also mark it with its corresponding Sender-InstantReceiver
pair.

Theorem 1. The worst-case time complexity of SRGC-A is
O(N2d6max), where dmax denotes the maximum node degree

1We call a vertex A has existed in SRG iif the vertex which has the same
coverage set and the same InstantReceiver with A can be found in SRG.
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Fig. 4: (a) The corresponding SRG of the original topology
graph in Fig. 2(a) (underlined letters denote the InstantRe-
ceivers); (b) The simplified SRG (dashed edges constitute
LGT).

in the network.

Proof: Seeing from SRGC-A, we can find that the vertex
search operation actually dominates the whole construction
procedure of SRG. In SRGC-A, it can result in at most d2max
SRG vertices for any node in G where dmax denotes the
maximum node degree in G, thus, there are totally at most
N · d2max vertices in SRG. We assume there are finally x
vertices in SRG after executing SRGC-A (x ≤ N · d2max).
As we know, the size of any vertex’s coverage set is at most
dmax, which means any vertex will result in at most d2max
edges and the total number of edges in SRG is thus at most
x · d2max. Actually, we can divide all the edges in SRG into
two categories: (1) x−1 edges which are connected to the new
added vertices after the search operation; (2) x · d2max−x+ 1
edges which are connected to the existing vertices after the
search operation. The total search time for the first category is

at most
x−2∑
m=0

m = (x−2)(x−1)
2 , and that for the second category

is at most (x− 1)(x · d2max − x+ 1).
Due to x ≤ N · d2max, the total search time of SRGC-A is

therefore at most (x−2)(x−1)
2 + (x − 1)(x · d2max − x + 1) =

O(x2d2max) ≤ O(N2d6max).
As an example, Fig. 4(a) shows the resulting SRG by

performing SRGC-A on the original topology graph in Fig.
2(a). Specifically, we can find that SRG well captures the
spatiotemporal characteristic of broadcasting and one broad-
casting schedule can be implicitly represented by a subtree of
SRG which is rooted from the vertex {v0} and consists of
vertices that collectively cover all the nodes in the original
topology graph.

Next, we first define the Latency-optimal Group Steiner Tree
(L-GST) Problem and then show that our target problem can
be transformed into L-GST problem.

Definition 4 (Latency of Tree). The latency of any tree T ,
saying D(T ), can be defined as follows:

D(T ) = max
t∈leaf(T )

{DT (r, t)}

where r denotes the root of the tree, DT (i, j) and leaf(T )
denote the E2E latency from vertex i to vertex j on T and the
set of the leaves of T , respectively.



Problem 2 (L-GST). Given a directed graph G′ = (V ′, E′)
with weight we′ = 1 for each edge e′ ∈ E′ and a family of sub-
sets (groups) of vertices f = {g1, g2, . . . , gk}(gi ⊆ V ′), how
to find a minimum weight subtree Topt = (VT ⊆ V ′, ET ⊆ E′)
rooted from a specified vertex such that:
(1) VT ∩ gi 6= φ for all i ∈ {1, . . . , k};
(2) the latency of Topt is minimal over all the subtrees that
satisfy constraint (1).

Theorem 2. L-MEB problem on the original topology graph
is equivalent to L-GST problem on its corresponding SRG.

Proof: In SRG, we can partition all the vertices into N
groups according to the common members in their coverage
sets. For any node i in the original topology graph, we classify
all the SRG vertices whose coverage sets containing node i
into a group. Consequently, one broadcasting schedule can
be represented by a subtree of SRG which is rooted from
the vertex {v0} and connects at least one vertex in each
group of SRG. Besides, for any subtree of SRG containing
multiple edges that represent the same transmission (since
they are marked with the same Sender-InstantReceiver pair
and the same sending time), we can always find an equivalent
subtree in which all edges respectively represent different
transmissions. Here, two subtrees of SRG are called equivalent
if and only if their representative broadcasting schedules have
the same transmission number and broadcasting latency. Our
target problem, i.e. Problem 1, is therefore equivalent to
Problem 2 in which G′ is the corresponding SRG of the
original topology graph G.

Here, we define the Minimum Latency Path Tree (MLPT)
in any graph G as the spanning subset of G which consists of
the minimum latency paths from the root to all the vertices in
G. Further, we can derive the following conclusion.

Theorem 3. Under our model, the latency of MLPT in the
original topology graph is the optimal broadcasting latency.

Proof: Actually, MLPT in the original topology graph
can be regarded as a broadcasting schedule without waiting.
Assume that node vb is the leaf on MLPT of which sink-to-
node latency is the maximum overall, namely the E2E latency
from the sink v0 to node vb on MLPT, saying DT (v0, vb), just
equals to the latency of MLPT. Obviously, we cannot find a
broadcasting schedule whose latency is less than DT (v0, vb),
given that the schedule guarantees vb is covered. This is
because the E2E latency will not benefit from waiting in duty-
cycled WSNs which has been shown in [10]. Thus, the optimal
broadcasting latency must be DT (v0, vb).

Theorem 4. L-MEB problem on the original topology graph
is NP-hard.

Proof: By Theorem 2 and Theorem 3, L-MEB problem on
the original topology graph is virtually equivalent to Latency
Constrained Group Steiner Tree (LC-GST) Problem on the
corresponding SRG where the latency-constraint is the latency
of MLPT in the original topology graph. Clearly, LC-GST
problem is a generalization of Latency Constrained Steiner

Tree Problem which has been proved to be NP-hard in [11].
This completes the proof.

IV. APPROXIMATION ALGORITHM

In order to solve the aforementioned problem, in this
section, we propose an efficient approximation solution which
consists of the following steps: (1) Latency-optimality Guar-
anteed Tree (LGT) construction; (2) Edge selection on LGT;
(3) Broadcasting schedule construction.

A. LGT Construction

Given any original topology graph G and its corresponding
SRG G′, according to Theorem 3, we can derive the optimal
broadcasting latency Dopt(G) by figuring out the latency of
MLPT in G. In addition, we can further simplify SRG by
merely retaining the vertices in G′ whose minimum root-
to-vertex latencies in G′ are not more than Dopt(G). This
is because our expected subtree of G′ which represents the
latency-optimal broadcasting schedule, will absolutely not
include any vertex whose minimum root-to-vertex latency in
G′ is more than the optimal broadcasting latency. Here, we
take the topology graph in Fig. 2(a), of which latency of MLPT
equals to 17, as an example. By removing the vertices whose
the minimum root-to-vertex latency is more than 17 and the
associated edges in Fig. 4(a), we can obtain the simplified
SRG as shown in Fig. 4(b). Thus, our target problem can be
further reduced to L-GST problem on the simplified SRG.

We use OPTGST (T ) and OPTL−GST (G) to denote the
cost of the optimal solution for Group Steiner Tree (GST)
Problem on any tree T and that for L-GST problem on any
graph G, respectively, and the following conclusion holds.

Theorem 5. For any latency-optimal spanning subtree T+ of
the simplified SRG G+, we have OPTGST (T+) ≤ h(T+) ·
OPTL−GST (G+), where h(T+) denotes the height of tree T+

and is bounded by a constant ξ.

Proof: We denote by Topt = (VT , ET ) the optimal
solution of our target problem. Given any latency-optimal
spanning subtree T+, it is easy to see that the subtree of
T+ whose leaves are all the vertices in VT − {r}, saying
T̃ = (Ṽ , Ẽ), must be a broadcasting schedule solution. For
the worst case in which all the vertices in VT − {r} are
just the leaves of T+, we have OPTGST (T+) ≤ |Ẽ| ≤∑
i∈VT−{r}

|P (r, i)| ≤ h(T+) · |VT − {r}| = h(T+) · |ET | =

h(T+) · OPTL−GST (G+), where |P (r, i)| denotes the hop
count of the path from root r to vertex i and h(T+) denotes
the height of tree T+. Furthermore, we can find that under
our uniform deployment, the latency of MLPT in the original
topology graph, i.e. the optimal broadcasting latency according
to Theorem 3, is at most about R·Lrc time slots where rc denotes
the communication range of each node, and obviously each
hop in T+ will cost at least one time slot, which implies
h(T+) must be at most ξ = R·L

rc
, a constant independent of

N . As shown in our simulations, indeed, h(T+) is always a
small value that is far less than ξ in practice.
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Fig. 5: The example of tree transformation.

According to Theorem 5, we are expected to find a latency-
optimal spanning subtree of the simplified SRG G+, which we
call the Latency-optimality Guaranteed Tree (LGT), to provide
the performance guarantee. Obviously, the MLPT in G+ must
be a latency-optimal spanning subtree of G+ and therefore can
be directly taken as the LGT here. In Fig. 4(b), the dashed
edges show the LGT of the simplified SRG in Fig. 4(a). Here,
we use T+ = (V +, E+) to denote the LGT.

B. Edge Selection on LGT

Seeing from the above subsection, actually, we can ap-
proximate our problem as the GST problem on LGT which
has guaranteed the optimality of broadcasting latency. In
[12], authors propose an efficient method to address the GST
Problem on tree. However, [12] requires that the input tree
should be a binary one where each group is a subset of its
leaves and groups are pairwise disjoint, and it only gives a
probabilistic solution. Based on the solution in [12], we devise
a deterministic method, which consists of three steps:

(1) Tree Transformation
First, we convert the LGT into a binary tree in which each

group is a subset of its leaves and groups are pairwise disjoint
via the following operations:
• For any internal (i.e. non-root and non-leaf) vertex vi in

LGT, we insert a zero-weight edge from vertex vi to a
newly added vertex v′i which shares the same coverage
set as vi.

• For any leaf vertex vi in the tree, we insert m zero-weight
edges from vi to m newly added vertices sharing the same
coverage set as vi, in which m equals to the size of the
coverage set of vi.

• For any non-leaf vertex vi with more than two children
and its parent p(vi) (if any), we first add a new vertex v′i
with the same coverage set as vi into the tree, then we
replace vi with v′i to be the child of p(vi) and delete the
edge from vi to any child vj of vi, finally, we insert the
zero-weight edges from v′i to both vi and vj respectively.
This process repeats until a binary tree is fully built.

By partitioning all the non-root vertices in LGT into N − 1
groups (exclusive of the group that contains the sink), ap-
parently, we can safely draw the conclusion that the GST
Problem on LGT is equivalent to that on the transformed
binary LGT in which each group is a subset of its leaves
and groups are pairwise disjoint. Fig. 5 shows the example of

tree transformation in which the members in one group are
marked with the same color/dashed frame type.

(2) Randomized Rounding
Letting T ∗ = (V ∗, E∗) be the transformed binary LGT, as

shown in [12], the GST Problem on T ∗ can be formulated as
the following 0-1 Integer Programming:

(IP ) min
∑
e∗∈E∗

we∗xe∗

s.t.
∑
e∗∈∂S

e∗ > 1, ∀S ⊂ V ∗ so that r ∈ S

and S ∩ gi = φ for some i ∈ {1, . . . , N − 1}
we∗ ∈ {0, 1}, xe∗ ∈ {0, 1}, ∀e∗ ∈ E∗

(5)

where r denotes the root vertex of T ∗, and ∂S denotes the set
of edges with only the starting endpoint in S.

In the above formulation, the binary variable xe∗ indicates
whether to select the edge e∗ or not. Given a group gi,
apparently, it requires that at least one edge with only the
starting endpoint in S should be selected for any vertex set
S which separates the root from gi. Here, xe∗ can be relaxed
to the range of [0,1] and regarded as the capacity of edge
e∗, which implies that any cut that separates the root from
all the vertices in a given group has capacity of at least one.
According to the Max-flow Min-cut Theorem, the maximum
flow from the root to any group must be at least one. In other
words, there must exist a flow whose value is exactly one from
the root to any group. Thus, we can relax the above Integer
Programming to the following Linear Programming.

(LP ) min
∑

(u,v)∈E∗
w(u,v)x(u,v)

s.t.
∑

(u,v)∈Eg

fg(u, v) =
∑

(v,w)∈Eg

fg(v, w), v ∈ Vg − g − {r}∑
u∈g

∑
v∈Vg

fg(v, u) = 1

0 6 fg(u, v) 6 x(u,v) 6 1, w(u,v) ∈ {0, 1}, (u, v) ∈ Eg
g ∈ {g1, g2, . . . , gN−1}

(6)
where fg denotes the flow from the root to group g and Tg =
(Vg, Eg) denotes the subtree of T ∗ which consists of the paths
from the root r to each leaf vertex in group g.

Similar to [12], we adopt the following Randomized-
rounding based Edge Selection Algorithm (RES-A) to make
the edge selection: first, each edge e∗ is marked with probabil-
ity xe∗

xp(e∗)
in which xe∗ can be figured out from Equ. (6) and

p(e∗) denotes the parent edge of e∗. For any edge e∗ whose
starting endpoint is the root, specially, it is marked with xe∗ .
An edge is added into the Selected Edge Set which is initially
null only if the edges including itself and all its ancestors
are marked. Then, we check whether the GST is generated by
combining all the edges in the Selected Edge Set and the zero-
weight edges, if yes, the edge selection process is terminated;
otherwise, we repeat the above random experiment until the
edge selection is terminated or the random experiment has
been repeated for dη · log(N − 1) · log max

16i6N−1
|gi|e times

(rounds), where η is a constant.



The following Lemma, which has been proven in [12],
explicitly shows the performance of the aforementioned ran-
domized rounding based approach.

Lemma 1. [12]. For a binary tree in which each group is
a subset of its leaves and groups are pairwise disjoint, the
probability that its root fails to reach any group g after one
time random experiment is at most about 1− 1

64 log max
16i6N−1

|gi| .

(3) Edge Compensation and Reduction
Different from [12] which only gives a probabilistic solu-

tion, we will make sure our solution is deterministic by edge
compensation operation. If the root is not connected to some
group g after executing RES-A, specifically, we will establish
the minimum weight path from the root to group g and then
add the edges on this path which have not been selected by
RES-A into the Selected Edge Set. Finally, we further reduce
the transformed binary LGT to the original LGT by removing
all the zero-weight edges from the Selected Edge Set.

C. Broadcasting Schedule Construction

By adopting the above-mentioned solution, we can ap-
proximately obtain the minimum weight Group Steiner Tree
on LGT that consists of the edges in Selected Edge Set,
saying TG = (V G, EG), which implicitly represents an
energy efficient latency-optimal broadcasting schedule. Now,
we introduce how to transform TG into the corresponding
broadcasting schedule as defined in Definition 2.

For any vertex vGi ∈ V G, Ts(vGi ) is used to denote
the scheduled wake-up time slot of the InstantReceiver in
vGi (namely Ts(v

G
i ) = Ts(vj) where vj is the InstantRe-

ceiver of vertex vGi ). For any edge eGi = (vGs , v
G
r ) in

EG which represents one transmission, we use a four-tuple
(S(eGi ), tS(eGi ), Tc(S(eGi )), R(eGi )) to characterize it, in which
S(eGi ) and R(eGi ) respectively denote the Sender and the
InstantReceiver of the transmission; tS(eGi ) denotes the time
when the sender receives the broadcasting message before
the transmission eGi , and Tc(S(eGi )), which equals to Ts(vGs ),
denotes the corresponding time slot of tS(eGi ). In Fig. 5(a), for
example, the edge ({A,B}, {D,C}) can thus be represented
by the four-tuple (A, 8, 8, C). For any sensor node vi, we use
tminvi to denote the time when node vi is covered for the first
time in the schedule TG, specifically,

tmin
vi = min

k∈V G(vi)
DTG(rG, k) (7)

where rG is the root of TG, V G(vi) is the subset of V G

consisting of the vertices of which coverage sets contain node
vi. Further, for any forwarder vj , we define Tminc (vj) as
follows:

Tmin
c (vj) = Ts(arg min

k∈V Gs (vj)
DTG(rG, k)) (8)

where V Gs (vj) is the subset of V G(vj) consisting of the
vertices which have at least one output edge with the sender
vj in TG. Here, we use a ring as shown in Fig. 6 to represent
the periodical wake-up schedule of each node.

Observation 2. Given a broadcasting schedule M and for
any forwarding node vr, making vr receive the broadcasting

v1(3)

v2(5) v3(6) v4(2) v5(8)

……

……

e1
G:  (v1, 23, 3, v3)

e3
G:  (v1, 17, 7, v4)

e2
G:  (v1, 9, 9, v3)

1
0

2

3

4
5

6

7

8

9

Tc
min(v1)

Ts(v3)

Ts(v5)

M(v1).β=<v4, v2, v3, v5>

Fig. 6: An example of the initial build of M(vi).β.

message ahead of its coverage time in M will NOT defer its
neighbors’ coverage time in M and will NOT increase the
transmission number of vr in M as also.

Our Broadcasting Schedule Construction Algorithm (BSC-
A) includes two steps: Schedule Initialization and Schedule
Adjustment.

(1) Schedule Initialization
For any node vi, its schedule strategy M(vi) can be initially

generated from TG as follows: If there is no edge where the
sender is vi in EG, we set M(vi).α = 0 and M(vi).β =
NULL. If there exists at least one edge indicating the sender is
vi in EG, we set M(vi).α = 1 and M(vi).β which is initially
null can be built by the following way: For any edge eGi in
the set of edges where the sender is vi, we check that whether
CS(vi, R(eGi ), Tc(S(eGi ))) ⊆ CS(vi, R(eGi ), Tminc (vi)), if
yes, we add node R(eGi ) into M(vi).β if it is not in M(vi).β
and mark it as the InstantReceiver; otherwise, node v′i will be
added into M(vi).β if it is not in M(vi).β and be marked
as the InstantReceiver, where v′i is the neighboring node of
vi whose scheduled wake-up time slot is the furthest away
from the time slot Tminc (vi) in the wake-up schedule ring
along with the clockwise direction. Then, we sort M(vi).β as
< β1, β2, . . . , βm(vi) > according to the clockwise sequence
of their scheduled time slots in the wake-up schedule ring
with starting from the time slot Tminc (vi). Afterwards, we add
all the nodes in set CS(vi, βm(vi), T

min
c (vi))−M(vi).β into

M(vi).β and mark them as the DelayedReceivers, and then we
reorder M(vi).β according to the clockwise sequence of their
scheduled time slots in the wake-up schedule ring with starting
from the time slot Tminc (vi). According to Observation 2, the
above build process can ensure that the coverage time of each
node will not exceed that scheduled in TG, which implies the
performance of the broadcasting schedule that represented by
TG will not be degraded.

(2) Schedule Adjustment
Here, suppose we have any three forwarders vi, vj and vk,

of which Forwarding Sequences can be represented as follows:
M(vi).β =< v3, v5, v6, v7, v8, v10, v9 >
M(vj).β =< v2, v4, v6, v7, v12, v8 >
M(vk).β =< v5, v1, v6, v11, v8, v9 >

(9)

where the underlined nodes denote the InstantReceivers.

Definition 5 (Remove Back). Given any Forwarding Se-
quence M(vi).β that contains vj , the operation to Remove
Back vj in M(vi).β is defined as: (1) If vj is not the
InstantReceiver, to remove vj from M(vi).β; (2) Otherwise,
to replace vj with the previous node of vj in M(vi).β to be



the InstantReceiver and then remove vj from it, particularly,
if the previous node of vj is also the InstantReceiver or vj is
the first node in M(vi).β, just to remove vj from M(vi).β.

As the randomized approach is adopted in the building of
TG, the resulting broadcasting schedule could incur redundant
transmissions. In the example as shown in Equ. (9), if node v5,
which is the InstantReceiver of both vi and vk, is not selected
as a forwarder or receives the broadcasting message from vi
ahead of vk, the transmission from vk to v5 will be redundant
and thus can be removed from the schedule. In addition to the
redundant transmission, unnecessary collision could also be
inevitable for our derived schedule. For example, the collision
probability would rise when the time v6 takes to receive the
broadcasting message from vj is the same with that from vk.
If v6 receives the broadcasting message from vj no later than
that from vk, we can Remove Back v6 in M(vk).β to get an
equivalent Forwarding Sequence according to Observation 2.
In order to avoid the redundant transmission and reduce the
collision probability as greatly as possible, in this step, we
propose the following approach to further adjust M(vi).α and
M(vi).β values for each node vi.

For each non-sink node vi, we first find the edge eGi =
(vGs , v

G
r ) in EG such that vi ∈ vGr and DTG(rG, vGr ) = tminvi ,

and node S(eGi ) is thus selected to be the candidate sender
for vi. Then, we check the Forwarding Sequence of each
forwarder vj where vj 6= S(eGi ), if vi ∈M(vj).β, to Remove
Back vi in M(vj).β. After the above process, if the new
resulting Forwarding Sequence of any forwarder vj is empty,
we will set M(vj).α = 0 and M(vj).β = NULL.

Obviously, the aforementioned approach can ensure each
node appears in only one forwarder’s Forwarding Sequence
which essentially avoids the redundant transmission and un-
necessary collision that exist in the schedule TG. Accordingly,
we can easily have the following proposition.

Proposition 1. The broadcasting schedule resulted from BSC-
A will keep the latency-optimality and must be no worse
than the schedule that represented by TG in terms of the
transmission number.

Theorem 6. When η ≥ 64, the approximation ratio of
the broadcasting schedule resulted from BSC-A is O(logN ·
log dmax).

Proof: As Equ. (6), of which the optimal solution equals
to the expected cost (i.e. the expected number of selected
edges) E[cost/round] after each round of RES-A, is the LP-
relaxation of Equ. (5) of which the optimal solution equals
to OPTGST (T ∗), we have E[cost/round] ≤ OPTGST (T ∗).
Also, we observe that for any group g, the number of the
added edges in the Edge Compensation step after executing
RES-A, saying Ng , will not exceed OPTGST (T ∗) since the
minimum weight path from the root to group g in the Edge
Compensation step must be no longer than the path from the
root to g that belongs to optimal GST on T ∗. Further, we use
A to denote the event that the root fails to reach any group g

after executing RES-A. According to Lemma 1, we have

Pr[A] ≤ (1− 1
64 log max

16i6N−1
|gi| )

dη·log(N−1)·log max
16i6N−1

|gi|e

≈ (1− 1
64 log max

16i6N−1
|gi| )

(64 log max
16i6N−1

|gi|)· η·log(N−1)
64

(10)
Due to lim

x→∞
(1− 1

x )x = e−1 and log max
16i6N−1

|gi| ≥ 1, we

can find that if η ≥ 64, then
Pr[A] ≤ e−

η·log(N−1)
64 ≤ e− log(N−1) ≤ elog

1
N−1 ≤ 1

N−1
(11)

Let Ñ denote the number of the groups that fail to reach
the root after executing RES-A, thus, we have E[Ñ ] = (N −
1)Pr[A] ≤ 1 since the N − 1 groups in T ∗ are disjoint and
independent. Letting ∆ = dη · log(N − 1) · log max

16i6N−1
|gi|e,

according to Theorem 5, the expected cost of the solution TG,
namely E[|EG|], is thus at most

∆ ·E[cost/round] + E[Ñ ] ·Ng
≤ (∆ + 1) ·OPTGST (T ∗) = (∆ + 1) ·OPTGST (T+)
≤ h(T+) · (∆ + 1) ·OPTL−GST (G+)
≤ ξ · (∆ + 1) ·OPTL−GST (G+)

(12)
For the final solution M resulted from BSC-A, accord-

ing to Proposition 1 and the conclusion log max
16i6N−1

|gi| ≤
O(log dmax) which can be easily seen from SRGC-A, we

have E[
N−1∑
i=0

M(vi).α] ≤ E[|EG|] ≤ O(logN · log dmax) ·

OPTL−GST (G+)
A straightforward observation from Theorem 6 is that we

can set the parameter η as 64 in the RES-A so as to guarantee
the approximation ratio of O(logN · log dmax).

Note that we assumed the working schedules of neighboring
nodes are different for each other previously. Nevertheless, our
solution can also be applied to the more practical case where
neighboring nodes could have the identical wake-up schedule
by simply regarding the set of neighbors having identical
wake-up time slot as one virtual node. In BSC-A, a virtual
node is Removed Back in the Forwarding Sequence of any
forwarder i only if node i is not the candidate sender for each
node in this virtual node. otherwise, we only need to remove
the nodes whose candidate senders are not i from the virtual
node.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our solution
via simulations. Here, we assume sensor nodes are uniformly
distributed in a circular sensory field with a radius of R = 50
and the sink node is located at the center of the sensory field.
Once the length of checking interval L is fixed, each node
independently and randomly chooses a time slot to wake up
in one period of L time slots and then repeat this working
schedule. All the results are obtained by averaging results of
10 experiments.

First, we evaluate the value of h(T+) where T+ is LGT,
namely the MLPT on the simplified SRG. We respectively
consider the following three cases of network configurations:



300 400 500 600 700
0

5

10

15

Number of Nodes

H
ei

gh
t o

f L
G

T
 (

h(
T

+ ))

(a) h(T+) vs. N with L=100 and rc=10

30 60 90 120 150
0

5

10

15

LPL Checking Interval

H
ei

gh
t o

f L
G

T
 (

h(
T

+ ))

(b) h(T+) vs. L with N=300 and rc=10

10 12 14 16 18
0

5

10

15

Communication Range

H
ei

gh
t o

f L
G

T
 (

h(
T

+ ))

(c) h(T+) vs. rc with N=300 and L=100

250 300 350 400 450 500 550 600 650 700 750

200

300

400

500

600

700

Number of Nodes

T
ra

ns
m

is
si

on
 N

um
be

r

 

 

traditional MLPT
RES−A
RES−A+BSC−A

(d) Energy vs. N with L=100 and rc=10

20 40 60 80 100 120 140 160
150

200

250

300

350

400

LPL Checking Interval

T
ra

ns
m

is
si

on
 N

um
be

r
 

 
traditional MLPT
RES−A
RES−A+BSC−A

(e) Energy vs. L with N=300 and rc=10

9 10 11 12 13 14 15 16 17 18 19
150

200

250

300

350

400

Communication Range

T
ra

ns
m

is
si

on
 N

um
be

r

 

 

traditional MLPT
RES−A
RES−A+BSC−A

(f) Energy vs. rc with N=300 and L=100

Fig. 7: The performance under different network configurations.

(L=100, rc=10), (N=300, rc=10) and (L=100, N=300). Fig.
7(a) and Fig. 7(b) exhibit the similar results, that is, the
value of h(T+) almost keeps stable, namely around 12, as
the number of nodes or the length of LPL checking interval
increases. As shown in Fig. 7(c), however, h(T+) drops as the
communication range of each node increases, which means it
is only related to the communication range of each node on
the condition that R is fixed. Intuitively, this is because the
value of h(T+) can be approximately considered as the ratio
of the latency of MLPT on the original topology graph, which
is generally determined by the height of MLPT and average
one-hop latency on MLPT, to the average one-hop latency on
LGT. Actually, average one-hop latency on MLPT and that
on LGT have the same order of magnitude once L is fixed,
and the height of MLPT is generally determined by R and rc.
According to the simulation result depicted in Fig. 7(a)-(c), we
can obviously find that the value of h(T+) is always a small
constant without being related with N and is far less than
its theoretical upper bound R·L

rc
under whatever the network

configuration, thus it can be approximately neglected in the
computation of the approximation ratio.

Next, we proceed to evaluate the performance of our
proposed approximation solution by comparing it with the
traditional MLPT-based latency-optimal strategy, in which no
deferring policy is employed and the sink broadcasts the
message directly along with the MLPT of the original topology
graph. As shown in Fig. 7(d)-(f), our solution using both RES-
A and BSC-A significantly reduces the total transmission num-
ber of the broadcasting message compared with the traditional
MLPT-based approach under various network configurations,
and achieves around 10%-25% improvement over the solution
where only RES-A is adopted, i.e. |EG|, which shows the
high-efficiency of our proposed BSC-A on the reduction of
redundant transmissions. Besides, seeing from Fig. 7(d)-(f), it
is clear that the network density and the transmission power
affect the performance of our solution to a greater extent
compared with the duty cycle given that R is fixed, and

specifically, our solution would perform better as the network
density or the transmission power rises.

VI. CONCLUSION

In this paper, we consider how to utilize broadcasting
spatiotemporal locality to address the broadcast scheduling
problem in low-duty-cycle WSNs. We first transform our target
problem into the Latency-optimal Group Steiner Tree Problem
on the Spatiotemporal Relationship Graph, which is shown to
be NP-hard, and then approximately solve this problem by
using a deterministic randomized-rounding based method. Al-
so, an efficient Broadcasting Schedule Construction Algorithm
is proposed to further avoid the redundant transmission and
reduce the collision probability as greatly as possible. Finally,
the high-efficiency of our solution has been evaluated through
theoretical analysis and simulations.
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