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Abstract—In many applications of WSNs, the events occur
infrequently but once they occur, the corresponding informa-
tion needs to be sent to the sink node in a short period of time
for the necessary reactions. Detection of rare events in a fast
and energy-efficient manner is an important issue in WSNs. In
this paper, based on the optimal solution for the Best-choice
Problem with Bounded Random Observation Number, we
propose an Energy-efficient Online Decision Scheme (EODS)
to handle this problem. Combining with the design of nodes’
duty cycle, the EODS avoids the redundant transmissions and
achieves the tradeoff between delay and energy efficiency.
Simulation results reveal that the EODS achieves a good
balance between delay and energy efficiency.

Keywords-duty-cycled WSNs; rare-event detection; energy-
efficient; online decision

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used
in many applications such as environmental monitoring,
medical system and scientific exploration [1]. In most of
these applications, sensor networks are expected to be oper-
ated for a long period of time (months or years). To extend
the lifetime of wireless sensor nodes, a widely adopted
approach is to put them in a duty-cycled mode. Sensor
nodes in the duty-cycled mode can significantly decrease
the energy waste caused by idle listening, which consumes
50%-100% of the energy required for receiving and is the
major source of energy waste [2].

Many events, although occurring infrequently, once occur,
need to be reported to the sink node in a short period of time
since corresponding actions usually need to be taken prompt-
ly based on the received detection information. For example,
a prompt action to extinguish the fire is needed once the
detection information of forest fires received. Therefore, how
to report the sensed information to the sink node as soon as
possible once an urgent event occurs becomes an important
issue for such applications. Detecting rare but urgent events
using sensor networks working in a low-duty-cycle mode
is a challenging task. Considering the sleep latency for the
multihop transmissions in duty cycled WSNs, it is preferable
for senor nodes which detect the events to transmit the
sensed information to the sink within single hop. Moreover,
[3] shows that single hop routing is normally more energy

efficient in total energy consumption compared with the
multi-hop routing under realistic circumstances due to the
drain efficiencies of the power amplifiers of current sensor
node devices are actually always less than 100%. For such
applications, therefore, transmitting to the sink by single hop
is preferred for the nodes that can reach the sink within their
maximal transmitting powers in terms of both delay and
total energy consumption. However, in a randomly deployed
duty-cycled sensor network, the occurrence of an event may
be sensed by multiple nodes in sequence if it is located
in the intersection region of their sensing ranges. If all the
sensor nodes which detect the event transmit the packet to
the sink, redundant energy consumption is generated since
the same sensed event information is reported to the sink by
multiple times. Especially for the peripheral region of the
network which becomes the ’hot spot’ due to the single-hop
communication is adopted, the redundant transmissions with
relatively larger power level would further deteriorate the
network lifetime. In many applications, it is enough for the
sensed information to be delivered to the sink by only one of
the sensing nodes. In order to reduce the redundant energy
consumption for such kind of applications, our objective
is to select one sensing node with good tradeoff between
node-to-sink delay and energy efficiency to be responsible
for delivering the event information to the sink node. In this
paper, we come up with an Energy-efficient On-line Decision
Scheme (EODS), which is combined with the design of
nodes’ duty cycle, to achieve the objective mentioned above
for the event-driven sensor networks in which the events are
rare but urgent.

The rest of the paper is organized as follows: Section
II illustrates the network model and states the problem.
Detailed description and analysis of our scheme is presented
in Section III. Followed by the simulation results in Section
IV. The paper concludes our findings in Section V.

II. PRELIMINARIES

A. Network Model and Assumptions

We assume sensor nodes are all randomly deployed in the
network and operated in a duty-cycled Low Power Listening
(LPL) mode, where each node wakes up once every a fixed
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LPL checking interval. Further, we assume all nodes have
the identical LPL checking interval 𝐿 and they can set their
wakeup schedules independently, also, they do not share
their own schedules with their neighbors, which means no
clock synchronization overhead is required in our model.

In our model, when being ready to report the event to
the sink, each node should properly increase its transmitting
power to surely reach the sink by one hop according to the
distance to the sink. Here, we associate each node with a
Performance Index (𝑃𝐼) value to indicate how good it is in
terms of the energy efficiency. The performance index value
𝑃𝐼(𝑖) for any node 𝑖 is defined as follows:

𝑃𝐼(𝑖) = 𝐸𝑖 − 𝑒𝑖𝑠 (1)

where 𝐸𝑖 denotes the current residual energy of node 𝑖, and
𝑒𝑖𝑠 denotes the least required energy consumed by node
𝑖 in transmitting one packet to the sink by single hop.
Apparently, to choose the node with higher 𝑃𝐼 value as
the event-reporter would bring higher energy efficiency of
the network.

Before stating the problem, we make several basic as-
sumptions used in this work as follows:

(1) We make use of disk model as the sensing model of
nodes, and the communication range is initially set twice the
sensing range for each node, which can ensure that the full
coverage of the sensory field implies connectivity [7].

(2) Each node is aware of the location information of
itself and its local neighbors, which is reasonable since in
event-driven sensor networks, nodes are desirable to report
their locations along with the sensed event information to
the sink node so that any prompt reactions could be taken
at the given location area.

(3) We assume each sensor node can communicate with
the sink directly within its maximal transmitting power, in
other words, each node can increase its transmitting power
according to the distance to the sink so that the sink is just
within its communication range, and this assumption will be
relaxed in section III.

(4) An event occurs at one point in the sensory filed,
and once an event occurs, it is sensed sequentially by the
nearby duty-cycled sensing nodes with a random ordering
in terms of relative ranks of nodes’ PI values, and each
of the orderings is equally likely. Also, the events in our
target applications are assumed rarely happened, that is, the
expected period between successive events occurred in any
local area of the sensory field is relatively long.

(5) We consider the delay is dominated by the sleep laten-
cy since the transmission delay can be neglected compared
with the sleep latency in terms of the order of magnitude.

B. Problem Statement

Here, we will take Fig.1 as an example to illustrate the
problem. We assume node 𝐴 is the first one to wake up
and sense the event overall. Once an event arises inside
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Figure 1: An Example with n=5.

the sensing range of node 𝐴, it could be sensed by 𝑁
different nodes according to their wakeup sequences, in
which 𝑁 = 1, 2, . . . , 5. As stated in Section I, it may
result in redundant transmission and only one sensing node
is enough as the candidate to report the event. Besides, an
event can be detected as long as its lifespan intersects any of
the waking periods of neighboring sensing nodes [4]. Here,
we define the lifespan of any event is at least 𝑇𝑒, and thus
the checking interval 𝐿 of each node should be set at most
𝑇𝑒 in order to make sure that all events could be detected
even if in the worst case, where the event is only sensed
by one sensing node (e.g. the event occurs in region 1 as
Fig.1 shows). It also requires that the perceived surveillance
delay, which refers to the time elapsed from the occurrence
of an event to the time the event is reported to the sink [4],
should be restricted within a given threshold.

Intuitively, we are inclined to choose the node with the
higher 𝑃𝐼 value as the candidate in order to achieve a
better load balance and prolong the network lifetime as much
as possible. Meanwhile, the shorter detection delay is also
desirable for delay-sensitive networks with urgent events.
How to make a good tradeoff between them is a challenging
problem, and thus we have the following objective.

Problem 1. Given a delay threshold 𝑇𝑑, how to set an
appropriate length of 𝐿 and design an on-line decision
scheme to select a sensing node with good tradeoff between
energy efficiency and delay, namely the sensing node with
higher 𝑃𝐼 value as well as shorter detection delay, as the
candidate to report the event on the basis of the perceived
surveillance delay of all events must be within 𝑇𝑑;

Seen from the Problem 1, when choosing the sensing
node, we only need to compare the 𝑃𝐼 values of neighboring
nodes. Specially, if all nodes are homogeneous, the value
𝑃𝐼(𝑖) for any node 𝑖 could be approximately represented
by 𝐸𝑖 in that the 𝑒𝑖𝑠 of neighboring nodes are quite similar
as a result of their contiguity in locations.
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III. EODS DETAILS

The design of our Energy-efficient On-line Decision
Scheme (EODS) which is proposed to address Problem 1
mainly consists of two portions: decision-maker selection
and on-line decision.

A. Decision-maker Selection

A crucial issue to address Problem 1 is that once an event
occurs, how to find the decision-maker, which is defined as
the first sensing node that has sensed the event. To solve this
issue, we propose the following distributed Decision-maker
Selection Algorithm(DSA).

Each node repeats the channel detection until the channel
is idle once it wakes up and has sensed a new event1,
and then broadcasts a short beacon packet by one hop,
which only contains its 𝐼𝐷 and 𝑃𝐼 value. Once a node
receives nothing during some short period after sending the
short beacon, which means it is the first node to wake up
and senses the new event, it can thus consider itself as
the decision-maker and then keep listening for a period of
checking interval 𝐿 which is also referred to as the decision
period so that it can surely hear the beacons from all the
nodes that have sensed the event. The main task of the
decision-maker is to make an on-line decision on receiving
the beacons in sequence. Once a node is determined as the
decision-maker, it should decide whether to choose itself as
the candidate according to an on-line decision method which
will be elaborated in next subsection, if yes, it should report
the sensed information to the sink immediately by increasing
its transmitting power so that the sink is just within its com-
munication range. Likewise, once a beacon from any other
node is received and the candidate has not been selected
yet, the decision-maker should decide whether to accept or
reject the node with the highest 𝑃𝐼 value among the nodes,
that have sent the beacons so far, as the candidate accord-
ing to the on-line decision method, if reject, it should at
once return a short 𝐶𝐴𝑁𝐷 𝑈𝑁𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 𝑅𝐸𝑃𝐿𝑌
packet attached with ID of the node with highest 𝑃𝐼 value
thus far; if accept, a 𝐶𝐴𝑁𝐷 𝑆𝐸𝐿𝐸𝐶𝑇𝐼𝑁𝐺 𝑅𝐸𝑃𝐿𝑌
packet, which is attached with the candidate’s 𝐼𝐷, should
be broadcasted in the neighboring region and the decision-
maker will report the event to the sink immediately if
it is the candidate. In our method, we let the decision-
maker return the 𝐶𝐴𝑁𝐷 𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 𝑅𝐸𝑃𝐿𝑌 packets
to those nodes whose beacons arrive after the candidate is
selected. Therefore, for any node that senses the event, if
it receives a 𝐶𝐴𝑁𝐷 𝑈𝑁𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 𝑅𝐸𝑃𝐿𝑌 shortly
after sending the short beacon, it will check whether it is
the sensing node with the highest 𝑃𝐼 value thus far, if yes,
it keeps awake until a 𝐶𝐴𝑁𝐷 𝑆𝐸𝐿𝐸𝐶𝑇𝐼𝑁𝐺 𝑅𝐸𝑃𝐿𝑌

1As the assumption (4) mentioned, an event which is sensed at some
active state of any sensing node is defined as new if and only if there is
no event is sensed at the last scheduled active state of this sensing node.

is received; if no, it goes to sleep right away and
goes on working in accordance with its wakeup sched-
ule. If it receives a 𝐶𝐴𝑁𝐷 𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 𝑅𝐸𝑃𝐿𝑌 , that
means the candidate has been selected till now, the n-
ode will thus go into sleeping state immediately. And if
a 𝐶𝐴𝑁𝐷 𝑆𝐸𝐿𝐸𝐶𝑇𝐼𝑁𝐺 𝑅𝐸𝑃𝐿𝑌 is received, it will
check whether it is the candidate, if yes, it reports the event
to the sink directly; otherwise, it goes to sleep immediately.
Finally, if the candidate has not yet been selected at the end
of the decision period, the decision-maker will choose the
node with the highest 𝑃𝐼 value overall as the candidate.

Here, we assume that the beacon and reply packets are
so small that energy overhead could be neglected compared
with the case of reporting the larger sensed data packets to
the sink directly, where the transmitting powers are much
higher especially for nodes in the peripheral region of the
network which is the bottleneck of the energy efficiency.
Also, DSA can make sure that once an event occurs, only
one sensing node is selected as the candidate to avoid the
redundant energy. And apparently seen from DSA, a sensing
node that has been rejected could later be recalled.

B. On-line Decision

As stated above, the decision-maker should perform an
on-line decision scheme such that the candidate could be
energy-efficiently determined as quickly as possible. Before
describing our proposed On-line Decision Algorithm(ODA),
we first demonstrate how to appropriately set the checking
interval length 𝐿 of each node in order to satisfy the delay
constraint. As stated in section II, 𝐿 should be no more
than 𝑇𝑒 and for any given delay threshold 𝑇𝑑, the choice
of 𝐿 should also make sure the perceived surveillance delay
be restricted within 𝑇𝑑. Seen from DSA, the decision-maker
can finish the candidate selection within 𝐿, which means 2𝐿
should be no more than 𝑇𝑑 in order to guarantee the delay
constraint even for the worst case where the event is sensed
by only one node. Normally, 𝐿 is expected to be as large
as possible in duty-cycled networks in terms of the energy
efficiency and thus is set in this paper as follows:

𝐿 = min{𝑇𝑒, 𝑇𝑑/2} (2)

Suppose that node 𝑖 is the decision-maker, of which
sensing range 𝑅𝑖 would be divided into 𝑀 non-overlapping
unit regions with each being impartible by the borders of its
neighbors’ sensing ranges. Here, we label these unit regions
with 𝑅𝑖(𝑚)(𝑚 = 1, 2, . . . ,𝑀), and for each 𝑅𝑖(𝑚), we let
𝑁𝑢𝑚(𝑅𝑖(𝑚)) denote the number of sensing nodes whose
sensing ranges cover region 𝑅𝑖(𝑚). These information can
be derived by node 𝑖 due to the awareness of its own and
neighbors’ locations. Once any node 𝑖 is determined as the
decision-maker, it means the event must occur within 𝑅𝑖.
We assume the event occurrence each time is uniformly
distributed in the field, node 𝑖 can thus figure out the random
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variable 𝑁𝑖, i.e. the number of sensing nodes that can sense
the event, meets the following distribution of probability:

𝑝𝑖(𝑗) = 𝑃{𝑁𝑖 = 𝑗}
=

∑
𝑁𝑢𝑚(𝑅𝑖(𝑚))=𝑗

𝑆(𝑅𝑖(𝑚))
𝑆(𝑅𝑖)

𝑗 = 1, 2, . . . , 𝑛 (3)

where 𝑆(𝑅𝑖(𝑚)) and 𝑆(𝑅𝑖) denote the area of region 𝑅𝑖(𝑚)
and region 𝑅𝑖 respectively, and

𝑛 = max
𝑚=1,...,𝑀

{𝑁𝑢𝑚(𝑅𝑖(𝑚))} (4)

Seen from Fig.1 in which 𝑀 = 16 and 𝑛 = 5, once being
determined as the decision-maker, node 𝐴 can be aware of
the distribution of probability 𝑝𝐴(𝑗)(𝑗 = 1, . . . , 5), which
can be calculated by equation (3).

Actually, Problem 1 equals to the following On-line
Decision Problem (ODP).

Problem 2 (ODP). Based on the Decision-maker Selection
Algorithm(DSA), how to design an on-line decision scheme
for the decision-maker to select a sensing node with good
tradeoff between energy efficiency and delay, as the candi-
date to be the event-reporter.

Before addressing ODP, we first consider the Simplified
On-line Decision Problem, which is abbreviated to SODP.

Problem 3 (SODP). Based on the Decision-maker Selection
Algorithm(DSA), how to design an on-line decision scheme
for the decision-maker to select the sensing node with
the highest PI value overall as the candidate to be the
event-reporter in the presence of the following additional
assumptions: (1) The short beacon packet in decision-maker
selection process contains no 𝐼𝐷 information while only the
𝑃𝐼 value; (2) Once receiving the beacon from any sensing
node 𝑗, the decision-maker must decide to either accept or
reject node 𝑗 as the candidate immediately, and a sensing
node once rejected cannot later be recalled.

In SODP, we use a sequence of variables, 𝑋𝑖(1), 𝑋𝑖(2),
. . . , 𝑋𝑖(𝑁𝑖), to denote the observations, i.e. relative ranks
of 𝑃𝐼 values that are sequentially received by the decision-
maker 𝑖, where 𝑋𝑖(𝑗) is the rank of the 𝑗th received 𝑃𝐼
value among the first 𝑗 received 𝑃𝐼 values at the decision-
maker 𝑖 by the ordering from the largest to the lowest, rank
1 being the best and the 1st value received by the decision-
maker 𝑖 is the 𝑃𝐼 value of itself, thus 𝑋𝑖(1) ≡ 1. Fur-
ther, a sequence of real-valued reward functions, 𝑦𝑖(1, 𝑁𝑖),
𝑦𝑖(2, 𝑁𝑖), . . . , 𝑦𝑖(𝑁𝑖, 𝑁𝑖), is defined as follows:

𝑦𝑖(j,N𝑖) =

⎧⎨
⎩
𝑃{the largest PI overall appears among
the first j received ones} if X𝑖(𝑗) = 1

0 otherwise
(5)

Where 1 ≤ 𝑗 ≤ 𝑁𝑖 and 0 ≤ 𝑦𝑖(𝑗,𝑁𝑖) ≤ 1. The decision-
maker 𝑖 observes the sequence 𝑋𝑖(1), 𝑋𝑖(2), . . . , 𝑋𝑖(𝑁𝑖)
during its decision period based on the sequentially received

𝑃𝐼 values from itself and its neighbors. For each stage 𝑗 =
1, 2, . . . , 𝑁𝑖, after observing 𝑋𝑖(1), 𝑋𝑖(2), . . . , 𝑋𝑖(𝑗), the
decision-maker 𝑖 may stop and receive the reward 𝑦𝑖(𝑗,𝑁𝑖)
which denotes the probability that the 𝑗th received 𝑃𝐼 value
is the largest over all 𝑁𝑖 values, or may continue to wait for
the arrival of next 𝑃𝐼 value and observe 𝑋𝑖(𝑗 + 1). The
objective for the decision-maker in SODP is thus to choose
a stage to stop as early as possible to maximize the expected
reward and determine the node, whose 𝑃𝐼 value is received
at the stopping stage, as the candidate. If the decision-maker
never stop at the 𝑗th stage where 𝑗 is from 1 to 𝑁𝑖, it has to
choose itself as the candidate to be responsible for reporting
at the end of its decision period.

As the assumption (4) mentioned in section II, we can
find that SODP is actually the Best-choice Problem with
Bounded Random Observation Number [5], which is a well-
known problem in Optimal Stopping Theory. The probability
distribution of the number of observations 𝑁𝑖 in SODP is
known as 𝑝𝑖(𝑗) (𝑗 = 1, . . . , 𝑛), where 𝑛 is the bound of 𝑁𝑖.

Definition 1 (𝑠(𝑟) rule). For any integer 𝑟 ∈ [1, 𝑛], the
decision-maker 𝑖 rejects the first 𝑟−1 𝑃𝐼 values and accepts
the next first relatively largest 𝑃𝐼 value, namely stops at the
ℎth stage in which ℎ = min{𝑟 ≤ ℎ ≤ 𝑁𝑖 : 𝑋𝑖(ℎ) = 1}. If
𝑋𝑖(ℎ) > 1 for all ℎ ∈ [𝑟,𝑁𝑖], accept the 𝑃𝐼 value of the
decision-maker 𝑖 at the end of its decision period.

As shown in [5], 𝑠(𝑟) rule is the optimal stopping policy
for the Best-choice Problem with Bounded Random Obser-
vation Number and thus can be used to solve SODP as an
optimal solution. Here, we employ 𝜙(𝑟,𝑁𝑖) to denote the
probability that the chosen 𝑃𝐼 value by using 𝑠(𝑟) rule is
the largest overall, and under assumption (4), it is obvious
that if 𝑟 = 1,

𝜙(𝑟,𝑁𝑖) =
𝑛∑

𝑚=1

𝑝𝑖(𝑚)
𝑚 (6)

if 𝑟 ≥ 2,

𝜙(𝑟,𝑁𝑖)
= 𝐸(𝑦𝑖(min{𝑙 ≥ 𝑟 : 𝑋𝑖(𝑙) = 1}, 𝑁𝑖))

=
𝑛∑

𝑚=𝑟
𝑝𝑖(𝑚)

𝑚∑
𝑘=𝑟

𝑃{min{𝑙 ≥ 𝑟 : 𝑋𝑖(𝑙) = 1} = 𝑘}
⋅ (𝑦𝑖(𝑘,𝑚)∣𝑋𝑖(𝑘) = 1)

= (𝑟 − 1)
𝑛∑

𝑚=𝑟

𝑝𝑖(𝑚)
𝑚

𝑚−1∑
𝑘=𝑟−1

1
𝑘

(7)

Therefore, we can see that the optimal rule is to reject
𝑟𝑜𝑝𝑡 − 1 𝑃𝐼 values and then accept the next first relatively
largest 𝑃𝐼 value, in which

𝑟𝑜𝑝𝑡 = arg max
1≤𝑟≤𝑛

{𝜙(𝑟,𝑁𝑖)} (8)

However, 𝑠(𝑟) rule may not be an efficient method when
being used in ODP, where node 𝐼𝐷 information are included
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in the short beacon packets which may result in the Infor-
mation Discordance Problem. Here, we will take Fig.1 as an
example to illustrate what the problem is.

In SODP, after receiving a new beacon from one of its
neighbors, the decision-maker 𝐴 is unaware of which node
the received beacon is from since no node 𝐼𝐷 information
is included in the short beacons, so the initially derived
probability distribution 𝑝𝐴(𝑗)(𝑗 = 1, . . . , 5) is always
available, which we call the Information Accordance of
the probability distributions at different stages. In ODP,
however, Information Discordance Problem may come out.
As shown in Fig.1, once receiving the beacon from node 𝐶,
the decision-maker 𝐴 will get the knowledge that the event
must occur within the intersection region of node 𝐴 and
node 𝐶’s sensing ranges due to node 𝐼𝐷 is included in the
received beacon, and the probability distribution as well as
the bound 𝑛 of 𝑁𝑖 is thus changed at this stage. For instance,
given that the decision-maker 𝐴 figures out the optimal 𝑟 is
4 by using 𝑠(𝑟) rule at the beginning of the decision period,
which means that it should reject the first 3 𝑃𝐼 values and
accept the next relatively largest one. But when receiving
the value from node 𝐶, 𝐴 finds that the bound of 𝑁𝑖 is now
refined to be 3 instead of the original value 5. Obviously, the
predetermined optimal policy in which 𝑟 = 4 is not valid any
more. Even the bound of 𝑁𝑖 is unchanged at some stage, the
probability distribution of 𝑁𝑖 has also been changed since
the possible range of the event occurrence has been restricted
into a more refined intersection region that determined by
the sequentially received 𝐼𝐷 information until current stage,
that means the probability distribution information of 𝑁𝑖

acquired at current stage is more precise compared with the
previous ones, which we call the Information Discordance
Problem. Therefore, 𝑠(𝑟) rule may be inefficient when being
directly used in ODP due to the Information Discordance
Problem. Next, we will introduce an efficient 𝑠(𝑟) rule-based
on-line decision scheme which is used in ODP.

First, we replace the equation (3) as follows:

𝑝𝑖(𝑗, 𝑘) = 𝑃{𝑁𝑖∣𝑘 = 𝑗}
=

∑
𝑁𝑢𝑚(𝑅𝑖(𝑚))=𝑗

𝑆(𝑅𝑖(𝑚)∩( ∩

𝑠∈𝐼(𝑘)

𝑅𝑠))

𝑆(
∩

𝑠∈𝐼(𝑘)

𝑅𝑠)

(9)

where 𝑗 = 𝑘, . . . , 𝑛𝑘; 𝑁𝑖∣𝑘 and 𝑝𝑖(𝑗, 𝑘) respectively denote
the number of sensing nodes that sense the event and
its probability distribution derived at the 𝑘th stage by the
decision-maker 𝑖; 𝐼(𝑘) denotes the set of {𝐼𝐷1, 𝐼𝐷2, . . . ,
𝐼𝐷𝑘} in which 𝐼𝐷𝑘 means the 𝐼𝐷 of the sensing node
which the received beacon at the 𝑘th stage is from and
obviously 𝐼𝐷1 = 𝑖; 𝑛𝑘 denotes the bound of 𝑁𝑖 derived
at the 𝑘th stage and

𝑛𝑘 = max
𝑅𝑖(𝑚)⊆ ∩

𝑠∈𝐼(𝑘)

𝑅𝑠 𝑓𝑜𝑟 𝑚=1,...,𝑀
{𝑁𝑢𝑚(𝑅𝑖(𝑚))}

(𝑘 ≤ 𝑛𝑘 ≤ 𝑛1 𝑎𝑛𝑑 𝑛𝑘 ≥ 𝑛𝑘+1)
(10)

In ODP, we therefore make use of the aforementioned
conditional probability distribution 𝑝𝑖(𝑗, 𝑘) at each stage
which is more precise than that used in SODP to make our
decision. Similar to 𝑠(𝑟) rule, we define the following 𝑠(𝑟∣𝑘)
rule at the 𝑘th stage here.

Definition 2 (𝑠(𝑟∣𝑘) rule). When receiving the 𝑃𝐼 value
at the 𝑘th stage, the decision-maker 𝑖 stops and accepts the
largest 𝑃𝐼 value from the 1st stage to the 𝑘th stage for r=1,
and for any integer 𝑟 ∈ [2, 𝑛𝑘 − 𝑘 + 1], the decision-maker
𝑖 rejects the first 𝑟− 1 𝑃𝐼 values from the 𝑘th stage on and
then accepts the next first relatively largest 𝑃𝐼 value from
the 1st stage on, namely stops at the ℎth stage in which
ℎ = min{𝑘 + 𝑟 − 1 ⩽ ℎ ⩽ 𝑁𝑖∣𝑘 : 𝑋𝑖(ℎ) = 1}.

Here, we employ 𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘) to denote the probability
that the chosen 𝑃𝐼 value by using 𝑠(𝑟∣𝑘) rule at the 𝑘th
stage is the largest overall, and based on the assumption
(4), 𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘) can similarly be figured out as follows: if
𝑟 = 1,

𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘) =
𝑛𝑘∑

𝑚=𝑘

𝑝𝑖(𝑚, 𝑘)

𝑚
⋅ 𝑘 (11)

if 2 ≤ 𝑟 ≤ 𝑛𝑘 − 𝑘 + 1,

𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘)
= 𝐸(𝑦𝑖(min{𝑙 ⩾ 𝑘 + 𝑟 − 1 : 𝑋𝑖(𝑙) = 1}, 𝑁𝑖∣𝑘))
= (𝑘 + 𝑟 − 2)

𝑛𝑘∑
𝑚=𝑘+𝑟−1

𝑝𝑖(𝑚,𝑘)
𝑚

𝑚−1∑
𝑡=𝑘+𝑟−2

1
𝑡

=
𝑛𝑘∑

𝑚=𝑘+𝑟−1

𝑝𝑖(𝑚,𝑘)
𝑚

𝑚−1∑
𝑡=𝑘+𝑟−2

𝑘+𝑟−2
𝑡

(12)

With the existence of Information Discordance Problem,
we prefer to make decision at each stage based on the up-
to-date probability distribution information. Also, ODP can
recall the past rejected node as the candidate, our policy for
ODP is therefore to greedily choose the stage 𝑠𝑜𝑝𝑡 to stop,
where

𝑠𝑜𝑝𝑡 = min{𝑘 ≥ 1 : arg max
1≤𝑟≤𝑛𝑘−𝑘+1

{𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘)} = 1}
(13)

and the following On-line Decision Algorithm(ODA) shows
the decision process.

At each stage 𝑘, the decision-maker 𝑖 judges that whether
𝜙(1∣𝑘,𝑁𝑖∣𝑘) is larger than any other 𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘) where 𝑟
is from 2 to 𝑛𝑗 − 𝑘 + 1 based on the currently available
probability distribution 𝑝𝑖(𝑗, 𝑘)(𝑗 = 𝑘, . . . , 𝑛𝑘). If no, it
sends a 𝐶𝐴𝑁𝐷 𝑈𝑁𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 𝑅𝐸𝑃𝐿𝑌 to its neigh-
bors and continues to wait for the next stage; If yes, that
means to choose the best node from nodes {𝐼𝐷1, . . . , 𝐼𝐷𝑘}
as the candidate is the optimal policy at current stage
and a 𝐶𝐴𝑁𝐷 𝑆𝐸𝐿𝐸𝐶𝑇𝐼𝑁𝐺 𝑅𝐸𝑃𝐿𝑌 packet with the
candidate 𝐼𝐷 should be sent, specially, if the candidate is
the decision-maker itself, it should report the sensed event
to the sink directly and immediately. Once the candidate
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Algorithm 1 On-line Decision Algorithm

Input: The decision-maker N(i)
Procedure: ODA(i)

1: candidateSelected=FALSE; k=1;
2: 𝐼𝐷1=i; 𝑃𝐼1=PI(i);
3: while N(i).currentTime<N(i).nextWakeupTime do
4: if k>1 then
5: N(i) keeps listening for a short time;
6: if no packet is received then
7: continue;
8: end if
9: if a BEACON packet b pkt is received then

10: 𝐼𝐷𝑘=b pkt.getID; 𝑃𝐼𝑘=b pkt.getPI;
11: if candidateSelected==TRUE then
12: send a CAND SELECTED REPLY packet;
13: k=k+1; continue;
14: end if
15: end if
16: end if
17: compute 𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘)(r=1, . . ., 𝑛𝑘-k+1);
18: opt=arg max

1⩽𝑗⩽𝑘
{𝑃𝐼𝑗};

19: if arg max
1⩽𝑟⩽𝑛𝑘−𝑘+1

{𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘)} == 1 then

20: select node N(𝐼𝐷𝑜𝑝𝑡) as the candidate;
21: if opt==1 then
22: send eventMSG(i) to sink directly;
23: end if
24: send a CAND SELECTING REPLY(𝐼𝐷𝑜𝑝𝑡);
25: candidateSelected=TRUE;
26: else
27: send a CAND UNSELECTED REPLY(𝐼𝐷𝑜𝑝𝑡);
28: end if
29: k=k+1;
30: end while
31: if candidateSelected==FALSE then
32: select node N(𝐼𝐷𝑜𝑝𝑡) as the candidate;
33: if opt==1 then
34: send eventMSG(i) to sink directly;
35: end if
36: send a CAND SELECTING REPLY(𝐼𝐷𝑜𝑝𝑡);
37: end if

is selected at some stage, the decision-maker 𝑖 will send
𝐶𝐴𝑁𝐷 𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝐷 𝑅𝐸𝑃𝐿𝑌 packets to those nodes
which send beacons after that stage so that the redundant
transmission is avoided. Besides, when the next scheduled
wakeup time is arriving, the decision-maker 𝑖 should check
whether the candidate has been selected during the decision
period before executing the Decision-maker Selection Al-
gorithm, if no, it will choose the best node overall as the
candidate by sending a 𝐶𝐴𝑁𝐷 𝑆𝐸𝐿𝐸𝐶𝑇𝐼𝑁𝐺 𝑅𝐸𝑃𝐿𝑌
packet with the candidate 𝐼𝐷. The detailed process is shown
in Algorithm 1.

Essentially, our On-line Decision Algorithm is a tradeoff
between two intuitive strategies, that is, the decision-maker
always chooses itself as the candidate at the beginning of
the decision period which is called Delay-first Strategy, and
it always chooses the best node overall as the candidate at
the end of the decision period, which is called Energy-first
Strategy. Our On-line Decision Algorithm which is a greedy-
like method is actually to balance the energy efficiency with
the delay.

Theorem 1. Applying the strategy with On-line Decision
Algorithm, the stopping stage 𝑠𝑜𝑝𝑡 will not exceed 1

2𝑛1.

Proof: According to equation (11) and (12), we
can obviously find that the sufficient condition of
arg max

1≤𝑟≤𝑛𝑘−𝑘+1
{𝜙(𝑟∣𝑘,𝑁𝑖∣𝑘)} = 1 is that for any 2 ≤ 𝑟 ≤

𝑛𝑘 − 𝑘 + 1,

𝑘 ≥ 𝑛𝑘 − 𝑘 ≥ 𝑛𝑘 − 𝑘 − 𝑟 + 2 ≥
𝑛𝑘−1∑

𝑡=𝑘+𝑟−2

𝑘 + 𝑟 − 2
𝑡

(14)

namely 𝑘 ≥ 1
2𝑛𝑘.

As we know, 𝑛1 ≥ 𝑛𝑘(𝑘 > 1), thus 1
2𝑛1 ≥ 1

2𝑛𝑘, which
means at stage 1

2𝑛1, the decision process must have stopped.
In other words, the stopping stage 𝑠𝑜𝑝𝑡 must not exceed 1

2𝑛1.

Theorem 2. If 𝑝𝑖(𝑗, 1) ≤ 𝑝𝑖(𝑗 +1, 1) for 𝑗 = 1, . . . , 𝑛1− 1
and 𝑝𝑖(1, 1) >

𝑛1∑
𝑚=3

𝑝𝑖(𝑚,1)
𝑚

𝑚−1∑
𝑘=2

1
𝑘 , the strategy with On-line

Decision Algorithm will turn to be Delay-first Strategy.

Proof: First, we proof the sufficient condition that
𝜙(𝑟∣1, 𝑁𝑖∣1) is a unimodal function of 𝑟 is 𝑝𝑖(𝑗, 1) ≤
𝑝𝑖(𝑗 + 1, 1) for 𝑗 = 1, . . . , 𝑛1 − 1. Suppose 𝜙(𝑟∣1, 𝑁𝑖∣1) is
not unimodal, that means there exists a 𝑟 so that 𝑓(𝑟) =
𝜙(𝑟∣1, 𝑁𝑖∣1) − 𝜙((𝑟 + 1)∣1, 𝑁𝑖∣1) ≥ 0 and 𝑓(𝑟 + 1) =
𝜙((𝑟 + 1)∣1, 𝑁𝑖∣1) − 𝜙((𝑟 + 2)∣1, 𝑁𝑖∣1) < 0. In fact,
𝜙(𝑟∣1, 𝑁𝑖∣1) equals to 𝜙(𝑟,𝑁𝑖) as shown in equation (6)
and (7). Therefore,

𝜙((𝑟 + 1)∣1, 𝑁𝑖∣1)− 𝜙((𝑟 + 2)∣1, 𝑁𝑖∣1)
=

𝑛1∑
𝑚=𝑟+1

𝑝𝑖(𝑚,1)
𝑚 (1−

𝑚−1∑
𝑘=𝑟+1

1
𝑘 )

(15)

and 𝜙((𝑟 + 1)∣1, 𝑁𝑖∣1) < 𝜙((𝑟 + 2)∣1, 𝑁𝑖∣1) implies that

1−
𝑛1∑

𝑘=𝑟+1

1

𝑘
< 0 (16)

since 𝑝𝑖(𝑗, 1) ≤ 𝑝𝑖(𝑗 + 1, 1) for 𝑗 = 1, . . . , 𝑛1 − 1, thus,
𝑛1∑

𝑚=𝑟+1

1

𝑚
≤

𝑛1∑
𝑚=𝑟+1

𝑝𝑖(𝑚, 1)

𝑚 ⋅ 𝑝𝑖(𝑟, 1) (17)

from equation (16) and equation (17) we can derive that

𝑝𝑖(𝑟, 1)−
𝑛1∑

𝑚=𝑟+1

𝑝𝑖(𝑚, 1)

𝑚
< 0 (18)
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Actually, we note that

𝑓(𝑟)−𝑓(𝑟+1) = (𝑝𝑖(𝑟, 1)−
𝑛1∑

𝑚=𝑟+1

𝑝𝑖(𝑚, 1)

𝑚
) ⋅ 1
𝑟
> 0 (19)

which contradicts with the equation (18), and thus if
𝑝𝑖(𝑗, 1) ≤ 𝑝𝑖(𝑗 + 1, 1) for 𝑗 = 1, . . . , 𝑛1 − 1, 𝜙(𝑟∣1, 𝑁𝑖∣1)
is a unimodal function of 𝑟.

Obviously, if 𝜙(𝑟∣1, 𝑁𝑖∣1) is a unimodal function of 𝑟
and meanwhile 𝑓(1) > 0, 𝜙(1∣1, 𝑁𝑖∣1) must be the largest
overall, and 𝑓(1) > 0 implies

𝑝𝑖(1, 1) >

𝑛1∑
𝑚=3

𝑝𝑖(𝑚, 1)

𝑚

𝑚−1∑
𝑘=2

1

𝑘
(20)

thus, the proof is completed.

C. Sink Augmentation Scheme

In practice, assumption (3) may not always hold especially
for the large-scale network and many nodes that are far away
from the sink node may not be able to reach the sink by one
hop. Thus, we employ a sink augmentation scheme which is
similar to that proposed in [6] to relax the assumption (3).
Essentially, our problem is to select a minimum subset of
nodes as the sink nodes such that any node can communicate
with at least one of the sinks directly within its maximal
transmitting power, which is a typically Set Cover Problem
and can be solved heuristically like shown in [6]. Compared
with the scheme proposed in [6] which adopts a completely
multi-hop mode, our sink augmentation scheme combined
with EODS design requires much less number of sinks
especially for tight delay requirement.

Clearly, the number of augmented sinks increases as the
maximal transmitting power decreases. In practice, we can
therefore properly decrease the allowable maximal trans-
mitting power to balance the energy cost and the sink
augmentation cost.

IV. SIMULATION

In this section, we evaluate the performance of EODS
via simulation experiments. For simplicity, we consider that
sensors are distributed uniformly in a 200m*200m sensory
field where the sensing range and the communication range
of each node are 25m and 50m respectively. In fact, EODS
can still work for the nonuniform distributed case. Unless
indicated explicitly, the LPL checking interval is set as
100 time units and each node independently and randomly
chooses a time to wakeup once every LPL checking interval.
Also, it is assumed that 1 unit energy is consumed when
delivering a data packet to the sink directly for all nodes.
All the results are derived from the average of results of 50
experiments.

In our simulation, we figure out the probability distribu-
tion 𝑝𝑖(𝑗, 𝑘) of random variable 𝑁𝑖∣𝑘 for any node 𝑖 by
sampling, that is, uniformly and randomly choosing 1000

sampling points within the sensing range of node 𝑖 and the
area of any region can be approximately represented by the
number of sampling points located in that region.

First, we compare the ODA strategy which is used in
our EODS with two aforementioned strategies: delay-first
strategy and energy-first strategy in terms of delay and
energy efficiency. As we know, the delay-first strategy and
the energy-first strategy can achieve the shortest and the
longest perceived surveillance delay respectively, and herein
we define the Delay Performance Index (DPI) of one strategy
as the ratio of the delay difference between this strategy
and the delay-first strategy to the maximal delay gap, which
refers to the delay difference 𝐿 between delay-first strategy
and energy-first strategy. Likewise, the Energy Performance
Index (EPI) of one strategy is defined as the ratio of the
lifetime difference between this strategy and the delay-first
strategy to the maximal lifetime gap which refers to the
lifetime difference between delay-first strategy and energy-
first strategy. Obviously, we are expected to find a strategy
with low DPI and high EPI as a tradeoff between delay-first
and energy-first strategies. Fig.2(a) shows the relationship
between the network density and the DPI of ODA strategy.
As shown in Fig.2(a), the DPI of ODA strategy is only about
30%-40% no matter what the network density is and how the
checking interval 𝐿 changes. We find that the DPI of ODA
strategy is relatively stable as the network density increases,
this is because the increase of the network density which
prolongs the stage to stop will also incur the reduction of
the expected time between successive stages.

Here, we define the network lifetime as the number of
events that have occurred in the sensory field when the
first node dies for simplicity consideration and actually
this definition can represent the energy efficiency to a
certain extent. Next, we compare the network lifetime when
applying ODA strategy with those when applying other two
strategies for the cases where the initial energies of nodes
are homogeneous and heterogeneous respectively. In our
setting, we set the Initial Energy(IE) as 50 units for all
nodes at the homogeneous case, and for the heterogeneous
case, we make each node set its Initial Energy (IE) as a
random value in the range of (30, 60), (20, 70) and (10, 80)
respectively. Seen from Fig.2(b) to Fig.2(e), the EPI of ODA
strategy is always over 50% no matter in the homogeneous
or the heterogeneous case, and it increases as the difference
between nodes’ initial energies or the network density in-
creases. Furthermore, compared with the delay-first strategy,
ODA strategy can acquire better advantage on lifetime as
the difference between nodes’ initial energies increases (i.e.
the range of each node’s initial energy increases). For the
network with high density, the lifetime of ODA strategy
achieves at least around 1.5, 2, and 4 times that of delay-
first strategy for the heterogeneous cases with the range of
(30, 60), (20, 70) and (10, 80) respectively as shown in
our simulation results. Therefore, we can conclude that our

313313313



2 3 4 5 6 7 8 9 10

x 10�3

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Network Density

D
el

ay
 P

er
fo

rm
an

ce
 In

de
x 

(D
P

I)

L=100
L=200
L=300

(a) DPI of ODA Strategy vs. Density

2 3 4 5 6 7 8 9 10

x 10�3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Network Density

N
et

w
or

k 
Li

fe
tim

e

Delay�first Strategy
ODA Strategy
Energy�first Strategy
Medium Line 

(b) Lifetime vs. Density with IE = 50
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(c) Lifetime vs. Density with IE = (30, 60)
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(d) Lifetime vs. Density with IE = (20, 70)
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Figure 2: Performance of Delay and Energy Efficiency.

proposed ODA strategy, whose DPI is always only 30%-
40% while EPI is always over 50%, achieves a good tradeoff
between delay and energy efficiency especially for the cases
with high network density and large difference between
initial energies of nodes.

V. CONCLUSION

In this paper, we propose an Energy-efficient On-line
Decision Scheme (EODS) which is combined with the
design of nodes’ duty cycle for the applications of the rare
but urgent events detection. We first introduce the Decision-
maker Selection Algorithm to find the decision-maker and
avoid the redundant transmissions once an event occurs,
and then the On-line Decision Algorithm is presented to
achieve the tradeoff between delay and energy efficiency.
Our simulation results demonstrate that EODS achieves a
good balance between delay and energy efficiency.
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