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Abstract—Wireless Power Transfer (WPT) has emerged into
an inspiringly commercial and applicable era to charge devices.
Existing studies mainly focus on general charging patterns and
metrics while overlooking the collaborated task execution, which
incurs charging inefficiency among nodes. In this paper we
first advocate the collaborated tasks-driven mobile charging
and scheduling to respect the energy requirement diversity.
Specially, the mobile charging scheduling strategy is considered to
maximize the overall task utility which concerns sensor selection
and task cooperation. Unfortunately, solving this problem is
non-trivial, because it involves solving two coupling NP-hard
problems. In tackling with this difficulty, we construct a surrogate
function with specific theoretical analysis of its submodularity
and gap property. Then, we approximate the traveling cost to
transform the formulated problem into an essentially monotone
submodular function optimization subject to a general routing
constraint, where we propose a (1 − 1/e)/4-approximation al-
gorithm. Extensive simulations are conducted and the results
show that our algorithm can achieve a near-optimal solution
covering at least 84.9% of the optimal result achieved by the OPT
algorithm. Furthermore, field experiments in office room and
soccer field environment with 10 and 20 sensors are implemented
respectively to validate our proposed algorithm.

I. INTRODUCTION

Nowadays, wireless power transfer (WPT) has emerged into

an inspiringly commercial and applicable era to charge devices

due to the high reliability and efficiency of continuous power

supply. These breakthroughs help enhance the energy transfer

quality and encourage the application of wireless rechargeable

sensor networks (WRSNs) [1].

Usually, rechargeable devices such as WISP tags are de-

ployed in a certain area for executing a large number of

sensing, computing, and communication tasks [2]. As there

have been a large body of works on scheduling static chargers

[3]–[9], we employ mobile chargers for energy replenishment

due to the high mobility and flexibility for energy replenish-

ment. Recent studies have mainly focused on general charging

patterns and metrics to improve overall charging efficiency,

which include extending network lifetime [10] [11], optimiz-

ing vacation time [12] [13], meeting on-demand [14], spatial

and temporal charging requests [15] [16], minimizing charging

delay [17], maximizing charging reward [18], etc. However,

these schemes fall short in regarding charging effectiveness

for task execution and cannot cater to the task-level energy

requirement of sensors.
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Fig. 1: The scenario of collaborated tasks-driven mobile charging

Nevertheless, many applications in sensor networks rely

on the collaboration of tasks among nodes. a). In shared

sensor networks with multi-application deployment such as

urban sensing systems [19] and building automation [20],

nodes are allowed to allocate resources to contending appli-

cations. Thus sensor nodes can participate in multiple tasks

including temperature, humidity and radiation monitoring,

security alarms, and light control based on their Quality of
Monitoring of physical space [21]. b). In Software-Defined

Sensor Network (SDSNs) that equipped by several different

types of sensors [22], a sensor node is able to conduct multiple

tasks with different sensing targets simultaneously and a given

sensing task usually involves multiple sensors to achieve a

certain quality of sensing. c). Besides, in event/target detection

applications, spatially redundant or correlated data is generated

due to the random deployment and high density of nodes [23]

[24]. One sensor can detect multiple targets and one target is

covered by multiple sensors.

Therefore, in this paper we investigate Collaborated Tasks-

driven Mobile Charging (CTMC) problem. As shown in Fig. 1,

we employ a mobile charger to replenish energy for partial

energy-critical sensors to cooperate on specific tasks. One

sensor may participate in executing (denoted by the dotted

yellow line) multiple tasks and one task may be also ac-

complished by multiple sensors. Various sensors have various

power consumptions and utility weights for task execution.

Typically, the task can be the zone monitoring using directional

cameras where the task utility (e.g., the Quality of Monitoring)

is relevant to the distance, angle and allocated energy [25].

Thus we should devise a closed charging tour to maximize

the overall task utility.

Our problem yields two main technical challenges:



• The first challenge is that selecting sensors for charging

is a complex mixed integer programming mathematical-

ly, where the optimized objective function is nonlinear

including the product of both integer and fractional vari-

ables.

• The second challenge is to schedule the charging tour of

the mobile charger with constant energy budget, which

is similar to a variant of the classic Traveling Salesman

Problem (TSP) or the Orienteer Problem (OP). Generally,

we cannot address this challenge individually because

the two challenges are tightly coupled and make more

complicated.

To address this difficulty, we construct a surrogate function

to present the task cooperation for any selected sensors, which

involves a greedy energy allocation strategy. Then, we approx-

imate the charging tour using the nearest neighbour rule and

transform the initial problem into maximizing a submodular

function problem under a general routing constraint. We make

the following three key contributions.

• First, we propose a novel energy allocation scheme for

task cooperation. We prove the submodularity of the sur-

rogate function and bound its theoretical gap comparing

the optimal scheme.

• Second, we transform our initial problem and bound the

performance loss with a (1−1/e)/4-approximation ratio

by proposing an efficient Reward-Cost ratio (RC-ratio)

algorithm.

• Third, we conduct extensive simulations and implement

two field experiments using a TX91501 power transmitter

and up to 20 rechargeable sensors to evaluate the perfor-

mance of our algorithm. The results show that in terms

of charging task utility, our algorithm can achieve a near-

optimal solution covering at least 84.9% of the optimal

result achieved by the OPT algorithm.

The rest of our paper is organized as follows. In Section II,

we briefly survey related works. Then, we present our system

model and problem formulation in Section III. We describe

our solution in Section IV and theoretical analysis in Section

V. Extensive simulations and field experiments are conducted

in Section VI and VII, respectively. Finally, we conclude the

paper in Section VIII.

II. RELATED WORK

There are many research works on wireless charging using

mobile chargers. Most of them focuses on relatively general
charging patterns and metrics. For example, Peng et al. [10]

designed a wireless charging system with the optimal charging

sequence to maximize the network lifetime. Hou et al. [12]

constructed a renewable energy cycle for sensor nodes. He et
al. [14] considered the on-demand mobile charging and used

a simple but efficient Nearest-Job-Next with Preemption disci-

pline. Chi et al. [16] investigated the issue of multiple mobile

chargers and considered the temporal and spatial requirements

from charging requests. Fu et al. [17] proposed a proper

algorithm to identify the optimal reader stop locations and

corresponding stop durations to minimize the total charging

TABLE I: Definition of notations

Notation Definition
V Set of sensors
vj Stationary sensor or location
m Number of sensors
ej Battery capacity for sensor vj
erj Residual energy amount for sensor vj
c(vj) Charging cost for sensor vj
T Set of tasks
ti Task
n Number of tasks
pij Allocated energy to task ti from sensor vj
wij Utility weight between task ti and sensor vj
u(ti, vj) Task utility from task ti by sensor vj
Ui Utility threshold for each task ti
X Sensor subset of V
U(X, ti) Task utility for single task ti
E Mobile charger energy capacity
P Energy allocation strategy
U(X,P ) Overall task utility
C(.) Overall energy consumption

CTSP (.) Traveling energy consumption
c(vj) Charging cost for sensor vj
α, β Constants in the system model

delay. Zhao et al. [26] considered the design of joint energy

replenishment and data gathering. They provided a selection

algorithm to balance the energy replenishment amount and

data gathering latency. Liang et al. [18] focused on the

charging rewards maximization problem for full and partial

charging. Zhou et al. [27] considered target k coverage in

WRSNs and proposed a λ-GTSP charging algorithm after or-

ganizing sensors into load-balanced clusters. To the best of our

knowledge, only Dong et al. [28] explicitly considered the task

utility when introducing mobile charging. They considered a

feasible task assignment in WRSNs to maximize the charger’s

velocity when a mobile charger traveled along a fixed routing

to charge sensor nodes.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We use V = {v1, v2, ...vm} to denote the set of m stationary

rechargeable sensors distributed in a 2D plane. The set of

associated n tasks is denoted by T = {t1, t2, ...tn}. Each

sensor vj is powered by a rechargeable battery with capacity

ej . Once sensors are selected for mobile charging, they exploit

their harvested energy to execute tasks collaboratively. A

mobile charger starts at the service station v0, tries its best

to charging sensor nodes and returns to the depot. We list the

notations used as shown in Table I.

B. Energy Consumption Model
For the energy consumption model, there are mainly two

types of energy cost, the traveling energy cost and charging

energy cost. (x[vj ], y[vj ]) can be used to denote the location

coordinate of this rechargeable sensor vj . We consider the

distance as a metric and then the Euclidean distance d :
(V, V ) → R between two sensors can be calculated.

Binary variable hj is used to denote whether sensor vj is

selected for charging. For example, hj is 1 if vj is selected;

otherwise, it is 0. Thus, for selected sensor set X ⊆ V , we



have hj = 1 for each vj ∈ X and obtain the following

traveling energy cost

CTSP (X) =
∑

d∈LTSP (X)

α · d.

α is the energy consumption rate per unit length and LTSP (X)
is a closed tour that starts and ends at the depot v0, while all

sensors in X are visited only once.
When considering the charging energy cost, we assume

sensor vj with capacity ej has current residual energy erj , then

the amount of charging energy can be denoted by ej − erj .

When charging sensors, there is energy loss inevitably which

depends on the charging distances and angles. For simplicity,

the mobile charger would consume β amount of energy when

transferring one unit of energy to the sensor. Then, we denote

the charging energy cost for sensor vj as

c(vj) = β · (ej − erj).

Therefore, the overall charging energy cost for selected sensor

set X is∑

vj∈X

c(vj) =
∑

vj∈V

β(ej − erj) · hj , ∀vj ∈ X,hj = 1.

Combining the consumed two energy cost during the charg-

ing tour, the total cost for any subset set X can be expressed

as
C(X) = CTSP (X) +

∑
vj∈X

c(vj)

=
∑

d∈LTSP (X)

α · d+ ∑
vj∈V

β(ej − erj) · hj .

C. Task Utility Model
For the task utility model, we define the utility weight wij

which means the achieved utility of unit power that sensor vj
spends on executing task ti. Then, we have the task utility

u(ti, vj) from sensor vj to task ti as

u(ti, vj) = wijpij ,

where pij is the amount of energy allocated to execute task

ti from sensor vj . The utility of task contributed by multiple

sensors is additive. That is, given any sensor set X ⊂ V , the

total additive utility for task ti can be calculated by

uX(ti) =
∑

vj∈X

u(ti, vj) =
∑

vj∈V

wijpijhj .

hj shows that only sensor vj is selected by the mobile charger

for charging could it allocate its achieved energy.
The maximum utility value of task ti is represented by Ui.

If the additive utility uX(ti) is larger than this threshold, the

excessive utility i.e., uX(ti)−Ui would be useless. Therefore,

we have the final utility for task ti as

U(X, ti) = min{uX(ti), Ui}.
D. Problem Definition

Naturally, the overall task utility in the network is the sum

for n tasks which is given by

U(X,P )=
n∑

i=1

U(X, ti) =
n∑

i=1

min{uX(ti), Ui}

=
n∑

i=1

min{ ∑
vj∈V

wijpijhj , Ui}.
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Fig. 2: Two-level coupling optimization

We use matrix variable P = {pij |i = 1, ..., n; j = 1, ...,m}
to denote the energy allocation strategy for task cooperation.

Since each sensor cannot be overloaded, the sum of allocated

energy is no greater than the sensor capacity itself, then

ej −
∑

ti∈T

pijhj ≥ 0 , ∀vj ∈ V. (1)

Meanwhile, the energy capacity of the mobile charger is

limited and the total amount of energy consumption should

not exceed the energy capacity E. Thus we also have

C(X) ≤ E, ∀X ⊆ V. (2)

Based on above definitions and constraints, our object is to

select a sensor subset X of V to find a closed charing tour

with an energy allocation strategy P to maximize the overall

task utility in the network. Therefore we can formulate the

Collaborated Tasks-driven Mobile Charging (CTMC) problem

as a mixed integer nonlinear programming problem.

(CTMC) Max U(X,P )

s.t. ej −
∑
ti∈T

pijhj ≥ 0 , ∀vj ∈ V (1)

C(X) ≤ E, ∀X ⊆ V (2)

hj and pij are the variables that should be optimized to find

X and P , respectively.
IV. SOLUTION

A. Hardness Analysis

Based on the above problem definition, we can see that the

CTMC problem includes the two-level optimization as shown

in Fig. 2. The upper level optimization involves the sensor

selection with energy allocation while the lower level opti-

mization involves tour scheduling for these selected sensors.

While setting the traveling energy cost aside temporarily, the

upper level problem can be regarded as a simplified version

of the CTMC problem:

(CTMC-s) Max U(X,P )

s.t. ej −
∑
ti∈T

pijhj ≥ 0 , ∀vj ∈ V (1)
∑

vj∈V

β(ej − erj) · hj ≤ E, ∀vj ∈ V (2.a)

Lemma 1: The upper level CTMC-s problem is NP-hard.

The proof of Lemma 1 is based on the reduction from the

budget maximum coverage problem [29], which is omitted due

to the space limitation.

When considering the traveling energy cost, we can find

that even computing the cost function C(X) is quite difficult



in many settings, since it involves finding a closed TSP tour

LTSP (X), which is NP-hard [30]. Apparently, the lower level

tour scheduling is also NP-hard. Each optimization of one level

problem would directly impact the other. Therefore, the upper

and lower level optimizations in CTMC are coupled with each

other and should not be addressed separately to obtain the

global solution. Thus, the formulated CTMC problem is the

combination of two coupling NP-hard problems.

B. Surrogate Function Construction

Remember the objective function in the upper level opti-

mization is nonlinear and related to optimal task cooperation.

Then in this subsection we construct a surrogate function

H(X) to approximate the nonlinear objective function.

Assuming we have selected sensor set X which does not

violate the energy capacity constraint of the mobile charger.

The set X has a random but fixed charging sequence. By

devising a special energy allocation strategy, we can make

the utility function to be linear. Then, our surrogate function

H(X) could be regarded as a value mapping from set X to

overall task utility. Based on this idea, we apply a greedy

strategy to allocate energy of each sensor to cooperate on tasks

according to the sequence in X as follows.

For sensor vj in X , we sort the tasks according to the

utility weight in a decreasing order. Then, vj greedily allocates

energy to various tasks in this order until each task improves

up to the utility threshold or there is no energy left for

allocation. In other words, we prefer to allocate energy as

much as possible to execute the task that has the highest utility

weight. Therefore, we could calculate task utility function

value H(X) when given set X . Moreover, if we add a new

sensor/element x into current set X , we always place x to

the end of the sequence in X . And we allocate energy in the

new set X ′ = X ∪ {x} using the strategy above to obtain the

function value H(X ′).
Our surrogate function H(X) is a special case of the initial

objective function U(X,P ). If we denote above energy allo-

cation strategy by P ′, we then achieve the equational relation

H(X) = U(X,P ′) and HX(ti) = U(X, ti). Additionally, we

denote the optimal energy allocation method by P ∗ and the

optimal task utility in the overall network can be represented

by U(X,P ∗).

C. Tour Scheduling Scheme

The lower level optimization in CTMC involves finding

a shortest tour including partial sensors which ensures the

total energy consumption not exceed the energy capacity E.

Optimizing this energy consumption is similar to solving one

variant of Traveling Salesman Problem (TSP), where it is often

infeasible to compute the optimal cost. Thus, we could use

an efficient approximate cost function Ĉ(X) to replace the

optimal cost. We use ψ(m) to denote the approximation ratio

when there is m sensors for selection. In our proposed algo-

rithm, we just use a general and fast nearest neighbour rule
to construct our TSP tour with a logm-approximation [31].

The traveling cost approximation can influence the quality of

utility approximation, which is described in next section.

D. Approximation Algorithm For CTMC

In this part, we jointly consider the two-level optimization

and attempt to devise a simple but efficient approximation

algorithm referring to the idea of [32].

Based on the approximation of TSP energy consumption,

the core idea is to use the greedy method to iteratively select

a new sensor v′j which has the largest reward-cost ratio
respecting the task utility. Then the sensor in iteration j is

obtained as follows:

vj′ = argmax
v∈V \Xj−1

H(Xj−1 ∪ {v})−H(Xj−1)

Ĉ(Xj−1 ∪ {v})− Ĉ(Xj−1)
.

v0 is the starting and ending point for the TSP tour. Initially,

X0 = ∅ and Xj = {v1′ , v2′ , ..., vj′}.

The progress of each iteration returns a better solution and

the nature of our results will depend on the quality of TSP

approximation. The details of the algorithm can be found

in Algorithm 1. Solution X ′ only contains a single sensor.

Utilizing this iterative method, we can add more sensors

continuously until violating the energy capacity constraint of

the mobile charger. We then find the sensor set Xj , where

Ĉ(Xj−1) ≤ E and Ĉ(Xj) ≥ E. Finally we would compare

H(X ′) with H(Xj) to select the maximal one.

Algorithm 1: Reward-Cost ratio (RC-ratio)

Input: Task set T = {t1, t2, ...tn}, starting point v0, sensor set
V = {v1, v2, ...vm}, utility weight {wij}, charging
energy budget E.

Output: Sensor set X ⊂ V , energy allocation {pij}.

1 Initialization. V ′ = V, j = 1, X0 = ∅ and Ĉ(X0) = 0;

X ′ = argmax{H(v)|v ∈ V, Ĉ(v) ≤ E};
2 while V ′ �= null do
3 foreach v ∈ V ′ do
4 Computing task utility H(Xj−1 ∪ {v}) and H(Xj−1)

with corresponding energy allocation scheme.
Computing the approximate TSP energy consumption
Ĉ(Xj−1 ∪ {v}) and Ĉ(Xj−1) using nearest neighbour
rule.

5 vj′ = argmax
v∈V \Xj−1

H(Xj−1∪{v})−H(Xj−1)

Ĉ(Xj−1∪{v})−Ĉ(Xj−1)
.

6 if Ĉ(Xj−1 ∪ {v′j}) ≤ E then
7 Xj = Xj−1 ∪ {v′j}, return pij′ ;
8 j = j + 1;

9 V ′ = V ′\v′j ;

10 if H(X ′) ≥ H(Xj−1) then
11 X = X ′;

12 else
13 X = Xj−1;

14 Output X ⊂ V , {pij};

V. THEORETICAL ANALYSIS

In this section, we give a series of theoretical analysis

about the submodularity and gap property for the constructed

surrogate function H(X) which helps transform our initial

problem into a submodular maximization problem subject to



Ui HA(ti)=uA(ti)
HA(ti)=Ui

HA(ti)=HB(ti)=Ui

HA(ti)=uA(ti)
HB(ti)=uB(ti)

i ju t v

Ui uB(ti)

uA(ti)

uA(ti)

uA(ti)

uB(ti)

uB(ti) Ui Ui Ui

i ju t v
Fig. 3: Submodular Analysis

a general routing constraint. On this basis, we can prove the

(1− 1/e)/4 approximation ratio of the proposed algorithm.

A. Surrogate Function Properties Analysis
In this subsection, we prove our constructed surrogate func-

tion has three tractable properties: nonnegativity, monotonicity,

and submodularity, which could be used to propose a bi-

criterion approximation algorithm as shown in Algorithm 1.

Definition 1: (Nonnegativity, Monotonicity, and Submod-
ularity) Given a finite ground set U , a real-valued set function

is defined as f : 2U → R, f is called nonnegative, monotone
(nondecreasing), and submodular if and only if it satisfies

following conditions, respectively.

• f(∅) = 0 and f(A) ≥ 0 for all A ⊆ U (nonnegative);

• f(A) ≤ f(B) for all A ⊆ B ⊆ U or equivalently: f(A∪
{e})−f(A) > 0 for all A ⊆ U and e ∈ U\A (monotone);

• f(A)+f(B) ≥ f(A∪B)+f(A∩B), for any A,B ⊆ U
or equivalently: f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) −
f(B), A ⊆ B ⊆ U , e ∈ U\B (submodular);

Then, we have the following theorem:

Theorem 2: The constructed surrogate function is nonneg-

ative, monotone and submodular.

Proof: According to the definition of our surrogate func-

tion, H(X) = U(X,P ′) ≥ 0 , then it is nonnegative.

When executing energy allocation strategy P ′, we have

HA(ti) = U(A, ti) = min{uA(ti), Ui} and HA(ti) ≤ HB(ti)
for set A ⊆ B ⊆ V . According to the additive task utility

model, we have the following equation

H(A) =

n∑

i=1

HA(ti) ≤
n∑

i=1

HB(ti) = H(B)

that implies H(X) is monotone.

Here we give the specific explanation that H(X) is also

submodular by proving H(A∪{vj})−H(A) ≥ H(B∪{vj})−
H(B). It is equal to prove

HA∪{vj}(ti)−HA(ti) ≥ HB∪{vj}(ti)−HB(ti). (3)

Fig. 3 presents three cases to give the proof.

(Case 1) If Ui ≤ uA(ti) : HB(ti) ≥ HA(ti), we have

HA∪{vj}(ti)−HA(ti) = 0 = HB∪{vj}(ti)−HB(ti).

(Case 2) If uA(ti) < Ui < uB(ti): in this case, we have

HB∪{vj}(ti)−HB(ti) = 0.
Meanwhile, we can derive that

HA∪{vj}(ti)−HA(ti)

= min{uA∪{vj}(ti), Ui} −min{uA(ti), Ui}
= min{uA∪{vj}(ti), Ui} − uA(ti)

=min{u(ti, vj), Ui − uA(ti)} ≥ 0.

Thus we can obtain Equation (3).

(Case 3) If uB(ti) ≤ Ui : in this case, we have

HA∪{vj}(ti)−HA(ti)

= min{uA∪{vj}(ti), Ui} −min{uA(ti), Ui}
= min{u(ti, vj), Ui − uA(ti)}

and
HB∪{vj}(ti)−HB(ti)

= min{uB∪{vj}(ti), Ui} −min{uB(ti), Ui}
= min{u(ti, vj), Ui − uB(ti)}.

For i. u(ti, vj) ≤ Ui − uB(ti), we have

HA∪{vj}(ti)−HA(ti) = u(ti, vj) = HB∪{vj}(ti)−HB(ti).

For ii. Ui − uB(ti) < u(ti, vj) < Ui − uA(ti), we have

HA∪{vj}(ti)−HA(ti)

= u(ti, vj) > Ui − uB(ti) = HB∪{vj}(ti)−HB(ti).

For iii. Ui − uA(ti) < u(ti, vj), we have

HA∪{vj}(ti)−HA(ti)

= Ui − uA(ti) ≥ Ui − uB(ti) = HB∪{vj}(ti)−HB(ti).

Therefore, we prove that H(X) is submodular.

Additionally, we need to point out that U(X,P ∗) is not

submodular, which can be proved using a counterexample.

B. Surrogate Function Gap Analysis

Given the selected subset X , the optimal energy allocation

P ∗ has the maximal task utility. In this subsection we would

evaluate the task utility by applying our energy allocation

strategy P ′ in the surrogate function H(X). Thus we begin

to analyze the gap between U(X,P ′) and U(X,P ∗).
Theorem 3: For any sensor set X , the achieved overall task

utility by using strategy P ′ in U(X,P ′) can reach at least 1/2
of the optimal task utility by using P ∗ in U(X,P ∗).

Proof: Assuming the selected subset X includes sensors

{v1′ , v2′ , ..., v|X|′}, where vj′ represents the j-th sensor in

the fixed sequence of X . For our energy allocation strategy

P ′, we denote the corresponding scheme by (X,P ′) =
{vP ′

1′ , v
P ′
2′ , ..., v

P ′
|X|′}. Similarly, we denote the optimal scheme

when applying the optimal energy allocation strategy P ∗ by

(X,P ∗) = {vP∗
1′ , vP

∗
2′ , ..., vP

∗
|X|′}.

Auxiliary scheme introduction: To evaluate the utility gap

between schemes (X,P ′) and (X,P ∗), we introduce two new

schemes (Y, P ′&P ∗) and (Xj , P
′&P ∗), respectively. Scheme

(Y, P ′&P ∗) includes a special sensor set Y with an associated

energy allocation strategy (P ′ & P ∗), which is denoted by

(Y, P ′ & P ∗) = {vP ′
1′ , ..., v

P ′
|X|′ , v

P∗
1′ , ..., vP

∗
|X|′}.

We explain this special sensor set Y by assuming that we can

select sensors in X twice. For the first |X| sensors, we utilize

energy allocation strategy P ′ and for the second |X| sensors,

we apply strategy P ∗ instead.
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Fig. 4: A concrete example for marginal utility comparison

Scheme (Xj , P
′&P ∗) includes the first j sensors of set X

which is denoted by

(Xj , P
′ & P ∗) = {vP ′

1′ , v
P ′
2′ , ..., v

P ′
(j−1)′ , v

P∗
j′ }.

In this special scheme, the front j-1 sensors apply the afore-

mentioned greedy strategy P ′ and the j-th sensor apply the

optimal allocation strategy like scheme (X,P ∗).
Marginal utility comparison: Remember we allocate en-

ergy for various tasks by turns in the fixed sequence, we

then define the marginal utility Δ(X,P )(vj′) for the energy

allocation scheme (X,P ) when a new sensor vj′ is added and

placed at the end of the sequence. By this way, we have the

marginal utility Δ(X,P ′)(vj′) and Δ(X,P∗)(vj′) for (X,P ′)
and (X,P ∗) respectively. Based on a series of definitions, we

can achieve some equations.

1. Comparison between (X,P ′) and (Y, P ′ & P ∗): Since

scheme (Y, P ′&P ∗) has different energy allocation strategies

for the first and second |X| sensors, then we use Δ(Y,P ′)(vj′)
and Δ(Y,P∗)(vj′) to denote their marginal utility independent-

ly. Apparently, we have

Δ(X,P ′)(vj′) = Δ(Y,P ′)(vj′). (4)

2. Comparison between (X,P ′) and (Xj , P
′ & P ∗): For

the same reason, we use Δ(Xj ,P∗)(vj′) to denote the marginal

utility for scheme (Xj , P
′ & P ∗) when adding a new sensor

vj′ where the optimal energy allocation strategy P ∗ is used.

As we achieve the maximal utility for each single sensor using

the greedy allocate energy strategy, we have

Δ(Xj ,P∗)(vj′) ≤ Δ(X,P ′)(vj′). (5)

3. Comparison between (Xj , P
′ & P ∗) and (Y, P ′ & P ∗):

When considering the marginal utility Δ(Y,P∗)(vj′), we can

observe the current situation of energy allocation in (Y, P ′ &
P ∗) as {vP ′

1′ , ..., v
P ′
|X|′ , v

P∗
1′ , ..., vP

∗
j′ }. Then current sensor set

Yj is {v1′ , v2′ , ..., v|X|′ , ..., v1′ , ..., vj′}. Meanwhile, we ob-

serve the situation of energy allocation in (Xj , P
′ & P ∗)

as {vP ′
1′ , ..., v

P ′
(j−1)′ , v

P∗
j′ }. Then current sensor set Xj is

{v1′ , v2′ , ..., vj′}.

Obviously, we have Xj\{vj′} ⊆ Yj\{vj′}. Similar to the

proof of submodularity for surrogate function H(X), we can

achieve that

Δ(Y,P∗)(vj′) ≤ Δ(Xj ,P∗)(vj′). (6)

4. Comparison in (Y, P ′ &P ∗): Combine Equation (4), (5)

and (6), we have

Δ(Y,P∗)(vj′) ≤ Δ(Y,P ′)(vj′). (7)

A concrete example: We give a toy example to illustrate the

definitions and above consequence as shown in Fig. 4. We con-

sider the marginal utility when adding a new sensor v3 where

Δ(X,P ′)(v3) corresponds to scheme (X,P ′), Δ(Xj ,P∗)(v3)
corresponds to scheme (Xj , P

′ & P ∗), Δ(Y,P ′)(v3) and

Δ(Y,P∗)(v3) corresponds to scheme (Y, P ′ & P ∗). Finally we

have the following equation as

Δ(Y,P ′)(v3) = Δ(X,P ′)(v3) ≥ Δ(Xj ,P∗)(v3) ≥ Δ(Y,P∗)(v3).

Therefore, we can sum all the marginal utility in set Y and

derive the result as follows:

OPT =
∑

vj′∈Y

Δ(Y,P ′&P∗)(vj′)

=
∑

vj′∈X

Δ(Y,P ′)(vj′) +
∑

vj′∈X

Δ(Y,P∗)(vj′)

≤ 2
∑

vj′∈X

Δ(Y,P ′)(vj′) = 2
∑

vj′∈X

Δ(X,P ′)(vj′)

= 2U(X,P ′) = 2H(X).

As a consequence, we prove that the constructed surrogate

function H(X) can obtain at least 1/2 of the optimal solution.

C. Approximation Ratio Analysis

Theorem 4: The proposed RC-ratio algorithm has (1 −
1/e)/4 bi-criterion approximation guarantee with computa-

tional complexity bounded by O(m2).
Proof: From subsection V-A we have sufficient and

specific theoretic analysis that the surrogate function is non-

negative, monotone and submodular. Meanwhile, the mobile

charger energy budget is just a general routing constraint.

Therefore our formulated problem can be regarded as one case

of submodular optimization with routing constraints referring

to [32]. By executing algorithm RC-ratio which adds sensors in

the order of the marginal benefit per unit marginal energy cost,

then we can achieve (1 − 1/e)/2 bi-criterion approximation

ratio, comparing to the solution of the surrogate submodular

function optimization with a slight relaxed budget constraint.

The approximated cost function Ĉ(X) would directly influence

the relaxed decree of budget constraint.

Furthermore, from subsection V-B we have proved the 1/2
gap between the optimal energy allocation and ours in H(X)
when fixing the charging route. Therefore we can combine the

two kinds of bounds above and obtain the final (1 − 1/e)/4
bi-criterion approximation guarantee. We know RC-ratio has

at most m iterations. In each iteration, using the nearest
neighbour rule to select the next sensor also cost at most m
time, Thus the overall time complexity is bounded by O(m2).

VI. NUMERICAL EVALUATIONS

In this section, we conduct extensive simulations under

different network settings to evaluate the performance of our

proposed algorithm and reveal insights about it.
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Fig. 6: Energy Utilization Efficiency

A. Evaluation Setup

We assume these stationary rechargeable sensors with cor-

responding tasks to be executed are randomly distributed in a

100m ∗ 100m 2D plane. The default number of sensors and

tasks are 10 and 50 respectively. The task utility weights are

uniformly distributed within the range [5, 20]. By default, the

task utility threshold is 2000, the energy capacity of the mobile

charger and sensors are 3000 and 100 separately. The residual

energy of sensors is uniformly distributed within the range

[0, 20]. We set α = 5 and β = 2.
B. Baseline Setup

For effective and fair comparison, we introduce the random

algorithm (RAN) and optimal algorithm (OPT) for compari-

son. We devise RAN using the random sensor selection with

the greedy energy allocation strategy. Without exceeding the

energy budget of the mobile charger, we randomly select

partial sensors to charge and allocate energy greedily to

the task which has the best weight. For OPT, we simply

use a powerful optimization software called LINGO to help

solve nonlinear integer programming. Although the CTMC

problem has high computing complexity, we can still obtain

the optimal solution for small instances of this problem. Based

on the series of settings above, we run 10 times of different

algorithms to average the results.

C. Evaluation Results and Analysis
In general, the proposed RC-ratio outperforms RAN sub-

stantially and can achieve a near-optimal solution covering

84.9% of OPT at least, which validates the theoretical results.

Moreover, RC-ratio can prompt the mobile charger to spend

more energy charging for task execution to increase the overall

network utility, rather than wasting energy on traveling.

1) Impact of the number of sensors: Our simulation

results show that RC-ratio outperforms RAN on average by

40.6% and obtains at least 84.9% of the OPT as the number

of sensors increases from 10 to 70. As shown in Fig. 5a, the

achieved overall task utility of both RC-ratio and OPT increase

monotonically with the sensor number while RAN algorithm

just fluctuates to keep stable. This is because the proposed

RC-ratio always selects the most beneficial sensor. Then more

sensors provide more chances for the mobile charger to select

better closed tour and energy allocation strategy. However,

more sensors would also introduce some ’good’ or ’bad’

sensors for RAN and cause fluctuations in overall task utility.

Meanwhile, we can observe from Fig. 6a that RC-ratio and

OPT spend 66.26% and 61.35% energy of the whole charger

capacity, respectively, better than 44.6% in RAN, thus reflect

better energy efficiency.

2) Impact of the number of tasks: Our simulation results

show that RC-ratio outperforms RAN on average by 10.7%
and obtains at least 88.8% of OPT as the number of tasks

increases from 10 to 70. As shown in Fig. 5b, the achieved

overall task utility of these algorithms do not increase with

the task number. And Fig. 6b shows RC-ratio still has 50.1%
energy utilization efficiency similar to OPT which has 50.6%,

but better than RAN that has 44.1%. The reason accounts for

these results is that when utility weight and charger capacity

are fixed, RAN selects sensors randomly but allocates energy

using the same strategy in RC-ratio, thus can exhibit good

performance. Therefore, the number of tasks has little impact

on the charging utility.

3) Impact of the charger capacity: Our simulation results

show that RC-ratio outperforms RAN on average by 14.8%
and obtains at least 89.6% of OPT as the charger capacity

increases from 2000 to 5000. Fig. 5c shows that the achieved

overall task utility of these three algorithms increases with

the charger capacity from 2000 to 4000 but keeps stable from

4000 to 5000. We can explain that more energy provides more

energy replenishment and improves the overall task utility.

Each task has the utility threshold and thus the overall task

utility would invariably increase until up to the threshold

value. From Fig. 6c we observe RAN has the lowest energy

utilization efficiency when the charger capacity is less than

3500, but OPT would be the lowest one instead when the

charger capacity is more than 3500. RAN performs worse
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due to the random selection and neglect of the traveling cost.

However, when increasing the charger capacity, OPT would

try best to achieve the optimal task utility but not consider the

energy efficiency. Finally, RC-ratio performs the best among

all candidate algorithms.

4) Impact of the sensor capacity: Our simulation results

show that RC-ratio outperforms RAN on average by 6.4% and

obtains at least 93.2% of OPT as the amount of sensor capacity

increases from 90 to 150. Fig. 5d shows the achieved overall

task utility of these three algorithms increases almost linearly

with the sensor capacity. Indeed, as the amount of sensor

capacity increases, the mobile charger would replenish more

power to these sensors for task execution. Without exceeding

the task utility threshold, the achieved overall task utility

would increase apparently. As shown in Fig. 6d, RC-ratio and

OPT can keep better energy utilization efficiency at 48.3% and

49.1% respectively. However, RAN has 44.5% efficiency and

strong fluctuation which decreases to 42%.

VII. FIELD EXPERIMENT

To further evaluate our proposed algorithm, we conduct field

experiments in both small (indoor) and larger (outdoor) scale

environment as shown in Fig. 7 and Fig. 8.

A. Experimental Setup

Fig. 7 shows our testbed consists of a TX91501 power

transmitter produced by Powercast [33], rechargeable sensors

and an AP connecting to a laptop to report the collected data

from sensor nodes. Note that we install the transmitter on a

robot car driven by Raspberry Pi for mobility. In the small

scale environment, we place 10 rechargeable sensor nodes

in the office room of a 5m ∗ 5m square area. In the large

scale environment, we select the half soccer field region to

place 20 sensors. The transmit power of TX91501 is set to

3W and added into the energy consumption model of the

robot car. The received power is 40mW and the consuming

power of the robot car is 4W running at a speed of 0.3m/s.

The charging request of each sensor node is 1J. We define a

utility computing model for tasks where the task utility weights

are randomly distributed in the range [5, 20] and each task

utility threshold is 20. Finally, we set the energy budget of

the mobile charger 800J and 4000J for the indoor and outdoor

environment, respectively.

B. Experimental Results and Analysis

For indoor scenario, we can observe from Fig. 9 that the

overall task utility of RC-ratio outperforms that of RAN by

23.6% at average and 42.9% at most when we increase the

amount of tasks from 10 to 70. We can also see that the field

results are much lower than the theoretical results. The reason

is that when we conduct the field experiment, the receiving

power of wireless energy transfer is lower than 40mW due to

the impact of distances and angles. Meanwhile, we have to

spend extra time adjusting the charging distance, angles and

turning for the robot car, left less time/energy for wireless

charging. For example, when a typical case where 10 sensors

with associated 10 tasks is considered, we exhibit the actual

traveling path for this field experiment, as shown in Fig. 10.

We find that due to the energy budget of the mobile charger,

sensors v3, v4 and v10 would not be selected for energy transfer

and tasks t1, t4 and t5 would not be executed. However, we

can still achieve fine task utility in the network.

The obtained result from the outdoor soccer field experi-

ment is similar to that from the indoor field experiment (in

Fig. 8). Our proposed RC-ratio outperforms RAN better but

worse than the theoretical result for the above same reason.

We can observe that the increase of charger capacity leads to

the improvement of the overall task utility when comparing



Fig. 9 with Fig. 11. Meanwhile, there are more energy costs

on traveling when running in a large scale region.

VIII. CONCLUSION

The key novelty of this paper is that we make the first effort

towards the collaborated tasks-driven mobile charging which

jointly considers sensors selection with energy allocation and

charging tour scheduling. The key contribution of this paper

is proposing a surrogate function with the greedy energy

allocation strategy. Based on this scheme, we present the

specific theoretical analysis and proof that the constructed

function is submodular and can achieve at least 1/2 the value

of optimal solution. We prove the formulated problem can

be transformed into the problem of maximizing a monotone

submodular function subject to a general routing constraint

and utilizing our proposed algorithm can achieve (1− 1/e)/4
approximation ratio. Our simulation and field experimental

results show that the proposed algorithm achieves excellent

performance which exhibits the near-optimality.
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