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Abstract—Wireless Power Transfer (WPT) has emerged into
an inspiringly commercial and applicable era to charge devices.
Existing studies mainly focus on general charging patterns and
metrics while overlooking the collaborated task execution, which
incurs charging inefficiency among nodes. In this paper we
first advocate the collaborated tasks-driven mobile charging
and scheduling to respect the energy requirement diversity.
Specially, the mobile charging scheduling strategy is considered to
maximize the overall task utility which concerns sensor selection
and task cooperation. Unfortunately, solving this problem is
non-trivial, because it involves solving two coupling NP-hard
problems. In tackling with this difficulty, we construct a surrogate
function with specific theoretical analysis of its submodularity
and gap property. Then, we approximate the traveling cost to
transform the formulated problem into an essentially monotone
submodular function optimization subject to a general routing
constraint, where we propose a (1 — 1/e)/4-approximation al-
gorithm. Extensive simulations are conducted and the results
show that our algorithm can achieve a near-optimal solution
covering at least 84.9% of the optimal result achieved by the OPT
algorithm. Furthermore, field experiments in office room and
soccer field environment with 10 and 20 sensors are implemented
respectively to validate our proposed algorithm.

[. INTRODUCTION

Nowadays, wireless power transfer (WPT) has emerged into
an inspiringly commercial and applicable era to charge devices
due to the high reliability and efficiency of continuous power
supply. These breakthroughs help enhance the energy transfer
quality and encourage the application of wireless rechargeable
sensor networks (WRSNs) [1].

Usually, rechargeable devices such as WISP tags are de-
ployed in a certain area for executing a large number of
sensing, computing, and communication tasks [2]. As there
have been a large body of works on scheduling static chargers
[3]-[9], we employ mobile chargers for energy replenishment
due to the high mobility and flexibility for energy replenish-
ment. Recent studies have mainly focused on general charging
patterns and metrics to improve overall charging efficiency,
which include extending network lifetime [10] [11], optimiz-
ing vacation time [12] [13], meeting on-demand [14], spatial
and temporal charging requests [15] [16], minimizing charging
delay [17], maximizing charging reward [18], etc. However,
these schemes fall short in regarding charging effectiveness
for task execution and cannot cater to the task-level energy
requirement of sensors.
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Fig. 1: The scenario of collaborated tasks-driven mobile charging

Nevertheless, many applications in sensor networks rely
on the collaboration of tasks among nodes. a). In shared
sensor networks with multi-application deployment such as
urban sensing systems [19] and building automation [20],
nodes are allowed to allocate resources to contending appli-
cations. Thus sensor nodes can participate in multiple tasks
including temperature, humidity and radiation monitoring,
security alarms, and light control based on their Quality of
Monitoring of physical space [21]. b). In Software-Defined
Sensor Network (SDSNs) that equipped by several different
types of sensors [22], a sensor node is able to conduct multiple
tasks with different sensing targets simultaneously and a given
sensing task usually involves multiple sensors to achieve a
certain quality of sensing. ¢). Besides, in event/target detection
applications, spatially redundant or correlated data is generated
due to the random deployment and high density of nodes [23]
[24]. One sensor can detect multiple targets and one target is
covered by multiple sensors.

Therefore, in this paper we investigate Collaborated Tasks-
driven Mobile Charging (CTMC) problem. As shown in Fig. 1,
we employ a mobile charger to replenish energy for partial
energy-critical sensors to cooperate on specific tasks. One
sensor may participate in executing (denoted by the dotted
yellow line) multiple tasks and one task may be also ac-
complished by multiple sensors. Various sensors have various
power consumptions and utility weights for task execution.
Typically, the task can be the zone monitoring using directional
cameras where the task utility (e.g., the Quality of Monitoring)
is relevant to the distance, angle and allocated energy [25].
Thus we should devise a closed charging tour to maximize
the overall task utility.

Our problem yields two main technical challenges:



o The first challenge is that selecting sensors for charging
is a complex mixed integer programming mathematical-
ly, where the optimized objective function is nonlinear
including the product of both integer and fractional vari-
ables.

o The second challenge is to schedule the charging tour of
the mobile charger with constant energy budget, which
is similar to a variant of the classic Traveling Salesman
Problem (TSP) or the Orienteer Problem (OP). Generally,
we cannot address this challenge individually because
the two challenges are tightly coupled and make more
complicated.

To address this difficulty, we construct a surrogate function
to present the task cooperation for any selected sensors, which
involves a greedy energy allocation strategy. Then, we approx-
imate the charging tour using the nearest neighbour rule and
transform the initial problem into maximizing a submodular
function problem under a general routing constraint. We make
the following three key contributions.

o First, we propose a novel energy allocation scheme for
task cooperation. We prove the submodularity of the sur-
rogate function and bound its theoretical gap comparing
the optimal scheme.

o Second, we transform our initial problem and bound the
performance loss with a (1 —1/e)/4-approximation ratio
by proposing an efficient Reward-Cost ratio (RC-ratio)
algorithm.

o Third, we conduct extensive simulations and implement
two field experiments using a TX91501 power transmitter
and up to 20 rechargeable sensors to evaluate the perfor-
mance of our algorithm. The results show that in terms
of charging task utility, our algorithm can achieve a near-
optimal solution covering at least 84.9% of the optimal
result achieved by the OPT algorithm.

The rest of our paper is organized as follows. In Section II,
we briefly survey related works. Then, we present our system
model and problem formulation in Section III. We describe
our solution in Section IV and theoretical analysis in Section
V. Extensive simulations and field experiments are conducted
in Section VI and VII, respectively. Finally, we conclude the
paper in Section VIII.

II. RELATED WORK

There are many research works on wireless charging using
mobile chargers. Most of them focuses on relatively general
charging patterns and metrics. For example, Peng et al. [10]
designed a wireless charging system with the optimal charging
sequence to maximize the network lifetime. Hou et al. [12]
constructed a renewable energy cycle for sensor nodes. He et
al. [14] considered the on-demand mobile charging and used
a simple but efficient Nearest-Job-Next with Preemption disci-
pline. Chi er al. [16] investigated the issue of multiple mobile
chargers and considered the temporal and spatial requirements
from charging requests. Fu et al. [17] proposed a proper
algorithm to identify the optimal reader stop locations and
corresponding stop durations to minimize the total charging

TABLE I: Definition of notations

Notation | Definition

14 Set of sensors

v;j Stationary sensor or location

m Number of sensors

€ Battery capacity for sensor v;

e; Residual energy amount for sensor v;
c(vy) Charging cost for sensor v;

T Set of tasks

t; Task

n Number of tasks

Dij Allocated energy to task ¢; from sensor v;
Wij Utility weight between task ¢; and sensor v;
u(t;,v;) | Task utility from task ¢; by sensor v;
U; Utility threshold for each task ¢;

X Sensor subset of V'

U(X,t;) | Task utility for single task ¢;

E Mobile charger energy capacity

P Energy allocation strategy

U(X,P) | Overall task utility

C() Overall energy consumption

CT5P () | Traveling energy consumption

c(vy) Charging cost for sensor v;

a, B Constants in the system model

delay. Zhao et al. [26] considered the design of joint energy
replenishment and data gathering. They provided a selection
algorithm to balance the energy replenishment amount and
data gathering latency. Liang et al. [18] focused on the
charging rewards maximization problem for full and partial
charging. Zhou et al. [27] considered target k coverage in
WRSNs and proposed a A-GTSP charging algorithm after or-
ganizing sensors into load-balanced clusters. To the best of our
knowledge, only Dong et al. [28] explicitly considered the task
utility when introducing mobile charging. They considered a
feasible task assignment in WRSNs to maximize the charger’s
velocity when a mobile charger traveled along a fixed routing
to charge sensor nodes.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model

We use V' = {v1, 02, ...v,,, } to denote the set of m stationary
rechargeable sensors distributed in a 2D plane. The set of
associated n tasks is denoted by T = {t1,t2,...t,}. Each
sensor v; is powered by a rechargeable battery with capacity
e;. Once sensors are selected for mobile charging, they exploit
their harvested energy to execute tasks collaboratively. A
mobile charger starts at the service station vy, tries its best
to charging sensor nodes and returns to the depot. We list the
notations used as shown in Table I.

B. Energy Consumption Model

For the energy consumption model, there are mainly two
types of energy cost, the traveling energy cost and charging
energy cost. (x[v;],y[v;]) can be used to denote the location
coordinate of this rechargeable sensor v;. We consider the
distance as a metric and then the Euclidean distance d :
(V,V) — R between two sensors can be calculated.

Binary variable h; is used to denote whether sensor v; is
selected for charging. For example, h; is 1 if v; is selected;
otherwise, it is 0. Thus, for selected sensor set X C V, we



have h; = 1 for each v; € X and obtain the following
traveling energy cost
Z a-d.

CTSP(X) —
deLTSP(X)

« is the energy consumption rate per unit length and £757 (X)
is a closed tour that starts and ends at the depot vy, while all
sensors in X are visited only once.

When considering the charging energy cost, we assume
sensor v; with capacity e; has current residual energy €7, then
the amount of charging energy can be denoted by e; — €.
When charging sensors, there is energy loss inevitably which
depends on the charging distances and angles. For simplicity,
the mobile charger would consume $ amount of energy when
transferring one unit of energy to the sensor. Then, we denote
the charging energy cost for sensor v; as

c(vj) = B (ej — €f).
Therefore, the overall charging energy cost for selected sensor
set X is
Z C(Uj) = Z 5(€j — 6;) . hj, Vl)j € X, hj =1.
v;€X v; €V
Combining the consumed two energy cost during the charg-

ing tour, the total cost for any subset set X can be expressed
as

CX)=CTP(X)+ X c(vy)

v; €X
= Y a-d+ X Ble—e)-hy
deLTSP(X) v;EV
C. Task Utility Model

For the task utility model, we define the utility weight w;;
which means the achieved utility of unit power that sensor v;
spends on executing task ¢;. Then, we have the task utility
u(t;,v;) from sensor v; to task t; as

u(ts, vj) = WijPij,

where p;; is the amount of energy allocated to execute task
t; from sensor v;. The utility of task contributed by multiple
sensors is additive. That is, given any sensor set X C V, the
total additive utility for task ¢; can be calculated by

ux(t) = Y ultivg) = Y wipijhy.

v;€X v; eV

h; shows that only sensor v; is selected by the mobile charger
for charging could it allocate its achieved energy.

The maximum utility value of task ¢; is represented by U;.
If the additive utility uy (¢;) is larger than this threshold, the
excessive utility i.e., ux (t;) — U; would be useless. Therefore,
we have the final utility for task ¢; as

[]()(7 tl) = min{ux(ti), Uz}
D. Problem Definition

Naturally, the overall task utility in the network is the sum
for n tasks which is given by

U(X, P)= 3 U(X,t;) = 3 min{ux(t;), Ui}
i=1 i=1
= min{ Z w,-jpijhj,U,-}.
=1 ’UJ‘GV
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7777777777 Fig. 2: Two-level coupling optimization
We use matrix variable P = {p;;|i =1,...,n;7 =1,...,m}
to denote the energy allocation strategy for task cooperation.
Since each sensor cannot be overloaded, the sum of allocated
energy is no greater than the sensor capacity itself, then
€5 — Zpijhj ZO, V’Uj eV. (1)
t;eT
Meanwhile, the energy capacity of the mobile charger is
limited and the total amount of energy consumption should
not exceed the energy capacity . Thus we also have
C(X)<E, VXCVW. 2)
Based on above definitions and constraints, our object is to
select a sensor subset X of V to find a closed charing tour
with an energy allocation strategy P to maximize the overall
task utility in the network. Therefore we can formulate the
Collaborated Tasks-driven Mobile Charging (CTMC) problem
as a mixed integer nonlinear programming problem.

(CTMC) Max U(X, P)
s.t. € — Z pijh]' >0, ij cV (1)

t;eT
C(X) < E, VX CV (2)

h; and p;; are the variables that should be optimized to find
X and P, respectively.
IV. SOLUTION

A. Hardness Analysis

Based on the above problem definition, we can see that the
CTMC problem includes the two-level optimization as shown
in Fig. 2. The upper level optimization involves the sensor
selection with energy allocation while the lower level opti-
mization involves tour scheduling for these selected sensors.

While setting the traveling energy cost aside temporarily, the
upper level problem can be regarded as a simplified version
of the CTMC problem:

(CTMC-s) Max U(X,P)
s.t. € — Z pijhj > 0 5 VU]' eV (1)
t, €T
Z 5((3]' — 6;) . hj S EI7 V’Uj eV (20,)
v; €V

Lemma 1: The upper level CTMC-s problem is NP-hard.

The proof of Lemma 1 is based on the reduction from the
budget maximum coverage problem [29], which is omitted due
to the space limitation.

When considering the traveling energy cost, we can find
that even computing the cost function C(X) is quite difficult



in many settings, since it involves finding a closed TSP tour
LTSP(X), which is NP-hard [30]. Apparently, the lower level
tour scheduling is also NP-hard. Each optimization of one level
problem would directly impact the other. Therefore, the upper
and lower level optimizations in CTMC are coupled with each
other and should not be addressed separately to obtain the
global solution. Thus, the formulated CTMC problem is the
combination of two coupling NP-hard problems.

B. Surrogate Function Construction

Remember the objective function in the upper level opti-
mization is nonlinear and related to optimal task cooperation.
Then in this subsection we construct a surrogate function
H(X) to approximate the nonlinear objective function.

Assuming we have selected sensor set X which does not
violate the energy capacity constraint of the mobile charger.
The set X has a random but fixed charging sequence. By
devising a special energy allocation strategy, we can make
the utility function to be linear. Then, our surrogate function
H(X) could be regarded as a value mapping from set X to
overall task utility. Based on this idea, we apply a greedy
strategy to allocate energy of each sensor to cooperate on tasks
according to the sequence in X as follows.

For sensor v; in X, we sort the tasks according to the
utility weight in a decreasing order. Then, v; greedily allocates
energy to various tasks in this order until each task improves
up to the utility threshold or there is no energy left for
allocation. In other words, we prefer to allocate energy as
much as possible to execute the task that has the highest utility
weight. Therefore, we could calculate task utility function
value H(X) when given set X. Moreover, if we add a new
sensor/element x into current set X, we always place z to
the end of the sequence in X. And we allocate energy in the
new set X’ = X U {x} using the strategy above to obtain the
function value H(X’).

Our surrogate function H (X)) is a special case of the initial
objective function U (X, P). If we denote above energy allo-
cation strategy by P’, we then achieve the equational relation
H(X)=U(X,P’) and Hx(t;) = U(X,t;). Additionally, we
denote the optimal energy allocation method by P* and the
optimal task utility in the overall network can be represented
by U(X, P*).

C. Tour Scheduling Scheme

The lower level optimization in CTMC involves finding
a shortest tour including partial sensors which ensures the
total energy consumption not exceed the energy capacity E.
Optimizing this energy consumption is similar to solving one
variant of Traveling Salesman Problem (TSP), where it is often
infeasible to compute the optimal cost. Thus, we could use
an efficient approximate cost function ¢ (X) to replace the
optimal cost. We use ¢(m) to denote the approximation ratio
when there is m sensors for selection. In our proposed algo-
rithm, we just use a general and fast nearest neighbour rule
to construct our TSP tour with a log m-approximation [31].
The traveling cost approximation can influence the quality of
utility approximation, which is described in next section.

D. Approximation Algorithm For CTMC

In this part, we jointly consider the two-level optimization
and attempt to devise a simple but efficient approximation
algorithm referring to the idea of [32].

Based on the approximation of TSP energy consumption,
the core idea is to use the greedy method to iteratively select
a new sensor v;- which has the largest reward-cost ratio
respecting the task utility. Then the sensor in iteration j is
obtained as follows:

vy = argmax I{(Xj_l Uiv}) = I?(Xj_l).
veV\X;_1 C(Xj_l U {’U}) — C(Xj_l)

vg is the starting and ending point for the TSP tour. Initially,
XO = @ and Xj = {Ul/,vzl, ...,’Uj/}.

The progress of each iteration returns a better solution and
the nature of our results will depend on the quality of TSP
approximation. The details of the algorithm can be found
in Algorithm 1. Solution X’ only contains a single sensor.
Utilizing this iterative method, we can add more sensors
continuously until violating the energy capacity constraint of
the mobile charger. We then find the sensor set X, where
C(X;_1) < E and C(X;) > E. Finally we would compare
H(X') with H(Xj) to select the maximal one.

Algorithm 1: Reward-Cost ratio (RC-ratio)

Input: Task set 7' = {t1, {2, ...tn }, starting point vo, sensor set
V = {v1,v2,...um }, utility weight {w;;}, charging
energy budget F.
Output: Sensor set X C V, energy allocation {p;;}.
1 Initialization. V' = V,j =1, Xo = 0 and C(Xo) = 0;
X' = argmax{H (v)|v € V,C(v) < E};
2 while V' # null do
3 foreach v € V' do
4 Computing task utility H(X,;-1 U{v}) and H(X;_1)
with corresponding energy allocation scheme.
Computing the approximate TSP energy consumption
C(X;—1 U{v}) and C(X;_1) using nearest neighbour

rule.
L= H(Xj1U{v)) = H(X; 1)
T T BT e aoth—a o

6 if C(X;_1U{v}}) < E then

7 X; = X1 U{v}}, return p;jr;
8 Jj=J+1L

9 | V' =V\uj;

10 if H(X') > H(X;_1) then

1 L X=X

12 else

B3| X=X;-1;

14 Output X C V, {pi; };

V. THEORETICAL ANALYSIS

In this section, we give a series of theoretical analysis
about the submodularity and gap property for the constructed
surrogate function H(X) which helps transform our initial
problem into a submodular maximization problem subject to
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Fig. 3: Submodular Analysis

a general routing constraint. On this basis, we can prove the
(1 —1/e)/4 approximation ratio of the proposed algorithm.

A. Surrogate Function Properties Analysis
In this subsection, we prove our constructed surrogate func-
tion has three tractable properties: nonnegativity, monotonicity,
and submodularity, which could be used to propose a bi-
criterion approximation algorithm as shown in Algorithm 1.
Definition 1: (Nonnegativity, Monotonicity, and Submod-
ularity) Given a finite ground set I/, a real-valued set function
is defined as f : 2 — R, f is called nonnegative, monotone
(nondecreasing), and submodular if and only if it satisfies
following conditions, respectively.
e f(0) =0 and f(A) >0 for all A C U (nonnegative);
e f(A) < f(B) forall AC B CU or equivalently: f(AU
{e})—f(A) > 0forall A C U and e € U\ A (monotone);

o f(A)+f(B)> f(AUB)+ f(ANDB), forany A, B CU
or equivalently: f(A U {e}) — f(A) > f(BU{e}) —
f(B),AC B CU,ecU\B (submodular);

Then, we have the following theorem:

Theorem 2: The constructed surrogate function is nonneg-
ative, monotone and submodular.

Proof: According to the definition of our surrogate func-
tion, H(X) =U(X,P’) > 0, then it is nonnegative.

When executing energy allocation strategy P’, we have
HA(ti)ZU(A,ﬁ> mln{uA( ) U}and HA(t) <HB(ti)
for set A C B C V. According to the additive task utility
model, we have the following equation

ZHA <ZHBt)* B)

that implies H (X ) is monotone.

Here we give the specific explanation that H(X) is also
submodular by proving H(AU{v;})—H(A) > H(BU{v;})—
H(B). It is equal to prove

Hpugo,y (ti) — Ha(ti) > Hpugo,y(ti) —

H(A) =

Hp(ti). ()
Fig. 3 presents three cases to give the proof.

(Case 1) If U; < ual(t;) : Hp(t;) > Ha(t;), we have
HA(t)—O—HBu{vJ}( i) — Hp(t;).

(Case 2) If ua(t;) < U; < up(t;): in this case, we have
Hpygo,y(ti) — Hp(ti) = 0.
Meanwhile, we can derive that

HAU{UJ}( )

HAU{UJ}( ) HA(t )
= min{uayo,}(t:), Ui} — min{ua(t;), U}
= min{uaygo,y (i), Ui} —ua(ts)
=min{u(t;,v;),U; —ua(ts)} > 0.

Thus we can obtain Equation (3).

(Case 3) If up(t;) < U, : in this case, we have

Haugo,y(ti) — Ha(t:)
= min{uAu{vj}(ti), Uz} . min{uA(t,-L Ul}
= min{u(t;,v;),U; —ua(ts)}
Hpuo,y(ti) — Hp(t:)
= mm{uBu{Uj}(ti), Ul} — min{uB(ti), UZ}
= min{u(t;,v;),U; —up(t;)}.

For i. u(t;,v;) < U; —up(t;), we have

H guq0,y () = Ha(ti) = u(ti,vj) = Hpugo,y (i) —
For ii. U; —up(t;) < u(t;,v;) < U; —

Hpugo,y (t:) — Ha(ti)

and

Hp(t:).

ua(t;), we have

= u(ti,vj) >U; — ’U,B(ti) = HBU{U].}(Q) — HB(ti).
For iii. U; — ua(t;) < u(t;,v;), we have
HAU{’UJ (t) - HA( )
=U; —ua(t;) > Ui —up(ti) = Hpufu,y(ti) — Hp(t).

Therefore, we prove that H(X) is submodular.
Additionally, we need to point out that U (X, P*) is not
submodular, which can be proved using a counterexample. B

B. Surrogate Function Gap Analysis

Given the selected subset X, the optimal energy allocation
P* has the maximal task utility. In this subsection we would
evaluate the task utility by applying our energy allocation
strategy P’ in the surrogate function H(X). Thus we begin
to analyze the gap between U (X, P’) and U (X, P*).

Theorem 3: For any sensor set X, the achieved overall task
utility by using strategy P’ in U (X, P’) can reach at least 1/2
of the optimal task utility by using P* in U(X, P*).

Proof: Assuming the selected subset X includes sensors
{v1r,var, ..., v x|/}, where v; represents the j-th sensor in
the fixed sequence of X. For our energy allocation strategy
P’, we denote the corresponding scheme by (X,P’) =
(ol v}, ,vﬁ(/‘,}. Similarly, we denote the optimal scheme
when applying the optimal energy allocation strategy P* by
(X, P*) = {ol)" 0l ... v&*l,}

Auxiliary scheme introduction: To evaluate the utility gap
between schemes (X, P’) and (X, P*), we introduce two new
schemes (Y, P'& P*) and (X, P’'& P*), respectively. Scheme
(Y, P'& P*) includes a special sensor set Y with an associated
energy allocation strategy (P’ & P*), which is denoted by

P’ P*
(KP/&P*):{UII g eeey 'lel/}.
We explain this special sensor set Y by assuming that we can
select sensors in X twice. For the first | X| sensors, we utilize

energy allocation strategy P’ and for the second |X| sensors,
we apply strategy P* instead.

P’ p*
U‘X‘”Ul’ s ey



1. comparing between (X, P') and (Y, P' & P")

2. comparing between (X, P') and (X,,P'&P')

3. comparing between (X, P' & P*) and (Y,P'& P)
4. comparing A , ., (v;) and A (v,) in (Y,P'&P")

(X, P)
PP
LAy oy () = Ay (v3)
A(Y,P‘)(VJ)

Yy e

. Azx.r'»(‘/z) 2 A‘X’_,;,(V;)

.P)

A (%)

-

A(y.P'm(V3)

S > d
. A(Y.P‘\(VJ)ZA”,-.')(V?Q)
Fig. 4: A concrete example for marginal utility comparison
Scheme (X, P’ & P*) includes the first j sensors of set X
which is denoted by
P/ Pl P/ P*
(Xj, P'& P*) = {v1r , v 5o 1y, Vjr }-
In this special scheme, the front j-1 sensors apply the afore-

mentioned greedy strategy P’ and the j-th sensor apply the
optimal allocation strategy like scheme (X, P*).

Marginal utility comparison: Remember we allocate en-
ergy for various tasks by turns in the fixed sequence, we
then define the marginal utility Ax p)(v;/) for the energy
allocation scheme (X, P) when a new sensor v is added and
placed at the end of the sequence. By this way, we have the
marginal utility A(x pry(vy) and Ax p+y(vjr) for (X, P’)
and (X, P*) respectively. Based on a series of definitions, we
can achieve some equations.

1. Comparison between (X, P’) and (Y, P’ & P*): Since
scheme (Y, P’ & P*) has different energy allocation strategies
for the first and second | X| sensors, then we use Ay, pry(v;r)
and Ay, p+)(v;/) to denote their marginal utility independent-
ly. Apparently, we have

Ax,py (Vi) = Ay, pry(vy). Q)

2. Comparison between (X, P’) and (X;, P’ & P*): For
the same reason, we use A(x; p-)(v;’) to denote the marginal
utility for scheme (X, P’ & P*) when adding a new sensor
v;, where the optimal energy allocation strategy P* is used.
As we achieve the maximal utility for each single sensor using
the greedy allocate energy strategy, we have

A(X%p*)(vj/) S A(XJ)/)(’UJ‘I). (5)

3. Comparison between (X;, P’ & P*) and (Y, P/ & P*):
When considering the marginal utility Ay, p+)(v;/), we can
observe the current situation of energy allocation in (Y, P’ &
P*) as {vl], .‘.,vf;l,,vf,*, ...,vf*}. Then current sensor set
Y}' is {1)1/, V2l y wuny U\X|’7 ey ULl g eeny ’Uj/}. Meanwhile, we ob-
serve the situation of energy allocation in (X;, P’ & P*)
as {vl}, ...,v{;/_l),, 7}, Then current sensor set X is
{Ul'a ChIPEE Uj’}.

Obviously, we have X;\{v;/} C Y;\{v;}. Similar to the
proof of submodularity for surrogate function H(X), we can
achieve that

Ay, py(vjr) < Ax;,pey(vyr). (6)

(1. P &Py 3L 0928009 ‘

4. Comparison in (Y, P’ & P*): Combine Equation (4), (5)
and (6), we have

Ay, py(vir) < Agy,pry(vj1). (7)

A concrete example: We give a toy example to illustrate the
definitions and above consequence as shown in Fig. 4. We con-
sider the marginal utility when adding a new sensor vs where
A(x,pry(v3) corresponds to scheme (X, P’), Ax, p+)(v3)
corresponds to scheme (Xj;,P" & P*), Ay pry(vs) and
A(y,p+(vs) corresponds to scheme (Y, P’ & P*). Finally we
have the following equation as

A(y7p/)(U3) = A(X7p/)(7j3) Z A(Xj,P*)(UZi) 2 A(y7p*)(1}3).

Therefore, we can sum all the marginal utility in set Y and
derive the result as follows:

OPT = Z A(Y,P’&P*)(vj')

Uj/EY

= > Awpyvi)+ X Awpo(vy)
v €X vy €X

<2 Y Awpy) =2 T Agpn(uy)
vj/EX vj/EX

=2U(X,P') = 2H(X).

As a consequence, we prove that the constructed surrogate
function H (X') can obtain at least 1/2 of the optimal solution.
|

C. Approximation Ratio Analysis

Theorem 4: The proposed RC-ratio algorithm has (1 —
1/e)/4 bi-criterion approximation guarantee with computa-
tional complexity bounded by O(m?).

Proof: From subsection V-A we have sufficient and
specific theoretic analysis that the surrogate function is non-
negative, monotone and submodular. Meanwhile, the mobile
charger energy budget is just a general routing constraint.
Therefore our formulated problem can be regarded as one case
of submodular optimization with routing constraints referring
to [32]. By executing algorithm RC-ratio which adds sensors in
the order of the marginal benefit per unit marginal energy cost,
then we can achieve (1 — 1/e)/2 bi-criterion approximation
ratio, comparing to the solution of the surrogate submodular
function optimization with a slight relaxed budget constraint.
The approximated cost function C(X) would directly influence
the relaxed decree of budget constraint.

Furthermore, from subsection V-B we have proved the 1/2
gap between the optimal energy allocation and ours in H(X)
when fixing the charging route. Therefore we can combine the
two kinds of bounds above and obtain the final (1 — 1/e)/4
bi-criterion approximation guarantee. We know RC-ratio has
at most m iterations. In each iteration, using the nearest
neighbour rule to select the next sensor also cost at most m
time, Thus the overall time complexity is bounded by O(m?).

|

VI. NUMERICAL EVALUATIONS

In this section, we conduct extensive simulations under
different network settings to evaluate the performance of our
proposed algorithm and reveal insights about it.
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A. Evaluation Setup

We assume these stationary rechargeable sensors with cor-
responding tasks to be executed are randomly distributed in a
100m % 100m 2D plane. The default number of sensors and
tasks are 10 and 50 respectively. The task utility weights are
uniformly distributed within the range [5,20]. By default, the
task utility threshold is 2000, the energy capacity of the mobile
charger and sensors are 3000 and 100 separately. The residual
energy of sensors is uniformly distributed within the range
[0,20]. We set « =5 and 3 = 2.

B. Baseline Setup

For effective and fair comparison, we introduce the random
algorithm (RAN) and optimal algorithm (OPT) for compari-
son. We devise RAN using the random sensor selection with
the greedy energy allocation strategy. Without exceeding the
energy budget of the mobile charger, we randomly select
partial sensors to charge and allocate energy greedily to
the task which has the best weight. For OPT, we simply
use a powerful optimization software called LINGO to help
solve nonlinear integer programming. Although the CTMC
problem has high computing complexity, we can still obtain
the optimal solution for small instances of this problem. Based
on the series of settings above, we run 10 times of different
algorithms to average the results.

C. Evaluation Results and Analysis

In general, the proposed RC-ratio outperforms RAN sub-
stantially and can achieve a near-optimal solution covering
84.9% of OPT at least, which validates the theoretical results.
Moreover, RC-ratio can prompt the mobile charger to spend
more energy charging for task execution to increase the overall
network utility, rather than wasting energy on traveling.

1) Impact of the number of sensors: Our simulation
results show that RC-ratio outperforms RAN on average by
40.6% and obtains at least 84.9% of the OPT as the number
of sensors increases from 10 to 70. As shown in Fig. 5a, the
achieved overall task utility of both RC-ratio and OPT increase
monotonically with the sensor number while RAN algorithm

just fluctuates to keep stable. This is because the proposed
RC-ratio always selects the most beneficial sensor. Then more
sensors provide more chances for the mobile charger to select
better closed tour and energy allocation strategy. However,
more sensors would also introduce some ’good’ or ’bad’
sensors for RAN and cause fluctuations in overall task utility.
Meanwhile, we can observe from Fig. 6a that RC-ratio and
OPT spend 66.26% and 61.35% energy of the whole charger
capacity, respectively, better than 44.6% in RAN, thus reflect
better energy efficiency.

2) Impact of the number of tasks: Our simulation results
show that RC-ratio outperforms RAN on average by 10.7%
and obtains at least 88.8% of OPT as the number of tasks
increases from 10 to 70. As shown in Fig. 5b, the achieved
overall task utility of these algorithms do not increase with
the task number. And Fig. 6b shows RC-ratio still has 50.1%
energy utilization efficiency similar to OPT which has 50.6%,
but better than RAN that has 44.1%. The reason accounts for
these results is that when utility weight and charger capacity
are fixed, RAN selects sensors randomly but allocates energy
using the same strategy in RC-ratio, thus can exhibit good
performance. Therefore, the number of tasks has little impact
on the charging utility.

3) Impact of the charger capacity: Our simulation results
show that RC-ratio outperforms RAN on average by 14.8%
and obtains at least 89.6% of OPT as the charger capacity
increases from 2000 to 5000. Fig. 5¢ shows that the achieved
overall task utility of these three algorithms increases with
the charger capacity from 2000 to 4000 but keeps stable from
4000 to 5000. We can explain that more energy provides more
energy replenishment and improves the overall task utility.
Each task has the utility threshold and thus the overall task
utility would invariably increase until up to the threshold
value. From Fig. 6¢ we observe RAN has the lowest energy
utilization efficiency when the charger capacity is less than
3500, but OPT would be the lowest one instead when the
charger capacity is more than 3500. RAN performs worse
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due to the random selection and neglect of the traveling cost.
However, when increasing the charger capacity, OPT would
try best to achieve the optimal task utility but not consider the
energy efficiency. Finally, RC-ratio performs the best among
all candidate algorithms.

4) Impact of the sensor capacity: Our simulation results
show that RC-ratio outperforms RAN on average by 6.4% and
obtains at least 93.2% of OPT as the amount of sensor capacity
increases from 90 to 150. Fig. 5d shows the achieved overall
task utility of these three algorithms increases almost linearly
with the sensor capacity. Indeed, as the amount of sensor
capacity increases, the mobile charger would replenish more
power to these sensors for task execution. Without exceeding
the task utility threshold, the achieved overall task utility
would increase apparently. As shown in Fig. 6d, RC-ratio and
OPT can keep better energy utilization efficiency at 48.3% and
49.1% respectively. However, RAN has 44.5% efficiency and
strong fluctuation which decreases to 42%.

VII. FIELD EXPERIMENT

To further evaluate our proposed algorithm, we conduct field
experiments in both small (indoor) and larger (outdoor) scale
environment as shown in Fig. 7 and Fig. 8.

A. Experimental Setup

Fig. 7 shows our testbed consists of a TX91501 power
transmitter produced by Powercast [33], rechargeable sensors
and an AP connecting to a laptop to report the collected data
from sensor nodes. Note that we install the transmitter on a
robot car driven by Raspberry Pi for mobility. In the small
scale environment, we place 10 rechargeable sensor nodes
in the office room of a 5m % bm square area. In the large
scale environment, we select the half soccer field region to
place 20 sensors. The transmit power of TX91501 is set to

Fig. 10: The traveling path

Fig. 11: Overall task utility for outdoor scenario

3W and added into the energy consumption model of the
robot car. The received power is 40mW and the consuming
power of the robot car is 4W running at a speed of 0.3m/s.
The charging request of each sensor node is 1J. We define a
utility computing model for tasks where the task utility weights
are randomly distributed in the range [5,20] and each task
utility threshold is 20. Finally, we set the energy budget of
the mobile charger 800J and 4000] for the indoor and outdoor
environment, respectively.

B. Experimental Results and Analysis

For indoor scenario, we can observe from Fig. 9 that the
overall task utility of RC-ratio outperforms that of RAN by
23.6% at average and 42.9% at most when we increase the
amount of tasks from 10 to 70. We can also see that the field
results are much lower than the theoretical results. The reason
is that when we conduct the field experiment, the receiving
power of wireless energy transfer is lower than 40mW due to
the impact of distances and angles. Meanwhile, we have to
spend extra time adjusting the charging distance, angles and
turning for the robot car, left less time/energy for wireless
charging. For example, when a typical case where 10 sensors
with associated 10 tasks is considered, we exhibit the actual
traveling path for this field experiment, as shown in Fig. 10.
We find that due to the energy budget of the mobile charger,
sensors vs, v4 and v1g would not be selected for energy transfer
and tasks t1,%4 and t; would not be executed. However, we
can still achieve fine task utility in the network.

The obtained result from the outdoor soccer field experi-
ment is similar to that from the indoor field experiment (in
Fig. 8). Our proposed RC-ratio outperforms RAN better but
worse than the theoretical result for the above same reason.
We can observe that the increase of charger capacity leads to
the improvement of the overall task utility when comparing



Fig. 9 with Fig. 11. Meanwhile, there are more energy costs
on traveling when running in a large scale region.

VIII. CONCLUSION

The key novelty of this paper is that we make the first effort
towards the collaborated tasks-driven mobile charging which
jointly considers sensors selection with energy allocation and
charging tour scheduling. The key contribution of this paper
is proposing a surrogate function with the greedy energy
allocation strategy. Based on this scheme, we present the
specific theoretical analysis and proof that the constructed
function is submodular and can achieve at least 1/2 the value
of optimal solution. We prove the formulated problem can
be transformed into the problem of maximizing a monotone
submodular function subject to a general routing constraint
and utilizing our proposed algorithm can achieve (1 —1/¢)/4
approximation ratio. Our simulation and field experimental
results show that the proposed algorithm achieves excellent
performance which exhibits the near-optimality.
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