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Abstract—The recent breakthrough in Wireless Power Trans-
fer (WPT) provides a promising way to support rechargeable
sensors to enrich a series of energy-consuming applications.
Unfortunately, two major design restrictions hinder the applica-
bility of rechargeable sensor networks. First, most of the sensor
placement schemes are focusing on the sensing tasks instead of the
charging utility, which leaves a considerably high performance
gap towards the optimal result. Second, the charging scheduling
is non-flexible, where full or nothing charging policy suffers from
the relatively low charging coverage as well as efficiency. In this
paper, we focus on how to efficiently improve the charging utility
when introducing charging oriented sensor placement and flexible
scheduling policy. To this end, we jointly consider optimizing node
positions and charging allocations. In particular, we formulate a
general convex optimization problem under a general routing
constraint, which generates great difficulty. We utilize area
partition and charging discretization methods to reformulate a
submodular function maximization problem. Thus a constant
approximation algorithm is delivered to construct a near optimal
charging tour. To this end, we analyze the performance loss from
the discretization to guarantee that the output of the proposed
algorithm has more than (1—¢)/4(1—1/e) of the optimal solution,
where ¢ is an arbitrarily small positive parameter (0 < ¢ < 1).
Both simulations and field experiments are conducted to evaluate
the performance of our proposed algorithm.

[. INTRODUCTION

Varies types of sensor devices such as WISP RFID tags
are organized into an autonomous network to sense, monitor,
process and deliver information to enrich a series of energy-
consuming applications. Sustained energy furnish is essential
to support energy-critical sensors to execute tasks. Fortunately,
the recent breakthroughs in Wireless Power Transfer (WPT)
can provide continuous and reliable power supply for these
rechargeable sensors without replacing their batteries which
needs extensive human efforts. Exploiting the WPT technique
helps construct a rechargeable wireless sensor network, where
rechargeable sensors can harvest energy conveniently from a
mobile charger traveling in the network [1].

Unfortunately, two major design restrictions hinder the
applicability of rechargeable sensor networks. First, most of
the sensor placement schemes are focusing on the sensing
tasks instead of the charging utility [2] [3]. They usually
give priority to sensing tasks such as the target coverage or
event detection while overlooking the location of the power
resource. However, it is somehow unfavorable that charging
some remote sensors would incur too much energy waste
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Fig. 1: Scenario of mobile charging for POIs coverage

and charging delay due to the far traveling. Many literatures
have studied efficient mobile charging scheduling to meet the
energy requirements of sensors. For example, Shi et al. [4] first
analyzed the charging requirements to construct a Hamiltonian
cycle. Some other perspectives have also been discussed such
as charging delay minimization [5], charging or network utility
maximization [6]-[8], on-demand charging requests [9]-[13],
etc. However, there still leaves a considerably high perfor-
mance gap towards the optimized charging utility.

Second, previous charging scheduling is usually non-
flexible, where full or nothing charging policy suffers from
the relatively low charging coverage as well as efficiency.
The direct policy loses the degree of freedom for energy
allocation and may degrade energy utilization efficiency for
task execution. As one task can be cooperated by multiple
sensors to accomplish tasks, the full charging may increase the
energy consumption because of the possible spatial redundance
of sensors [14] [15]. Therefore, the overall charging utility
may decline when only considering sensing tasks and full or
nothing charging policy.

In this paper, we focus on how to efficiently improve the
charging utility when introducing charging oriented sensor
placement and flexible scheduling policy. Formally, we jointly
consider optimizing node positions and charging allocations
respecting the charging utility. In particular, we formulate a
general convex optimization problem under the general routing
constraint. In our charging scenario as shown in Fig. 1, target
distribution information is given in the sensing region. The
expected charging utility is quantified by the effectiveness of
covering target/POI (Point of Interest) by sensors which is



related to the sensing distance and harvested energy. Thus we
should determine sensor positions and the amount of harvested
energy, such that the overall charging utility is maximized.

Our proposed convex optimization problem under the rout-
ing constraint generates great difficulty which includes three
technical challenges. First, the charging utility is nonlinear
with distance as sensors can be deployed in the continuous
space and have infinite candidate locations. Second, selecting
sensors for full or nothing charging has been generally NP-
hard. Then combining the flexible energy allocation policy
would induce extra nonlinearity which forms a complex mixed
integer problem. Third, it would be more complicated when
considering tour scheduling and thus poses another great
challenge.

To tackle aforementioned challenges, we partition the whole
square area into many subareas and descretize the charging
energy to construct enough virtual sensors in one grid. Then
we transform the initial problem into a combinatorial problem,
where we analyze the influence of discretization granularity
on the optimality of required solution. After proving the
submodular property of the reformulated objective function,
a constant approximation algorithm is delivered to calculate
sensor positions and energy allocation strategy to maximize the
overall charging utility. Our contributions can be summarized
as follows:

o We present the first step on proposing a charging ori-
ented sensor placement and flexible scheduling policy to
enhance the overall charging utility.

o We reduce candidate locations from infinite to finite
with bounded partition error £ and prove the 1/2 gap
of charging discretization. We transform the complicated
convex optimization problem subject to a general routing
constraint into a submodular function maximizing prob-
lem, which has (1 —¢)/4(1 — 1/e) approximation ratio.

e We carry out our policy in both Matlab and TX91501
power transmitters, and both simulations and field exper-
iments are conducted to evaluate the performance of our
propose algorithm.

The rest of the paper is organized as follows. We review
related works in Section II. Then, we present the system model
and formulate the problem in Section III. The specific solution
is presented in Section IV and we analyze the theoretical
results in Section V. In Section VI and Section VII, we
present the results of simulations and experiments respectively.
Finally, we conclude the work in Section VIIL

II. RELATED WORK

Although static chargers scheduling is an essential issue
to be considered, which including some studies on power
allocation [16] and safe charging [17]-[19], etc. We present
more research on mobile charging to illustrate the novelty of
our work. These existing works usually focused on the fixed
sensor placement to schedule mobile charging. Fu et al. [5]
studied to determine the mobile charger stop locations and
durations to minimize the total charging delay. Shi et al. [4]
employed a mobile charger to periodically charge the given

TABLE I: Definition of notations

Notation Definition

05,0 a POI, POI set

m Number of POIs

5§, S Sensor, sensor set

u(s;, 05) Utility of s; by on o;

e Amount of charged energy for s;

E Energy capacity sensors

d(s;,05) Distance between s; and o;

D Farthest coverage distance of a sensor

fsr(0j) Additive calculated utility of set S” on o;

Us: (05) Utility of set S” on POI o,

Utihreshold Utility threshold on o;

U(s’) Overall charging utility with respect to S’

P/ Position set of deployed sensors S’

L(Psr) Closed charging tour including Pg/

Budget Limited energy capacity of the mobile charger
C*travel(S') | Traveling energy consumption with respect to S’
c(sh) Overall energy consumption with respect to S’
A, €1, C2 Constant parameters

sensors to maximize the charger’s vacation time. Shu et al.
[20] first studied controlling traveling velocity of the mobile
charger for the time-bounded charging scenario. Dong et al.
[21] also optimize the charger’s velocity to meet a feasible task
assignment. Zhong et al. [22] considered the dynamic energy
consumption of sensors. Jiang et al. [23] investigated the event
monitoring applications when scheduling mobile chargers in
an on-demand way.

Some existing works considered partial charging. Liang et
al. [7] studied the charging utility maximization problem while
sensors can be full or partial charged. They also extended to a
general case where multiple sensors can be charged simulta-
neously [8]. Dai et al. also applied partial charging policy to
maximize the overall charging utility when considering EMR
safety [24] and charging direction [25]. However, none of
them considered charging task oriented sensor placement and
flexible scheduling policy jointly.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model

We consider m logical and substantial POIs denoted as
O = {01,09,...0p, } distributed in the 2D plane. Let S =
{s1,82,...s,} be the set of rechargeable sensors which can
be deployed anywhere to sense, monitor and collect the
information of these POIs. A mobile charger with a limited
energy capacity would start from the service station, visit these
sensors to transfer power wirelessly and return to the depot
before the energy is exhausted. Definition of notations is listed
in Table 1.

When considering the charging utility, we measure the
utility of deploying one sensor in terms of POI coverage
effectiveness. The coverage effectiveness of each sensor is
independent and only related to its location and flexible
harvested energy. To define the charging utility, we use the
empirical coverage model [3] as follows:

d<D

Aei
u(s;,05) = { (d(siéoj)+a)2’ 4= D (1)



where u(s;, 0;) represents the charging utility of sensor s;
when covering POI o, d(s;, 0;) is the distance between sensor
s; and POI o;, e; is the amount of charged energy which
is adjustable, a;, A are the constants and D is the maximum
coverage distance of the sensor.

The effectiveness of multiple sensors covering one single
POI is additive. Then, for any selected sensor set S’ C S, the
additive charging utility on POI o; can be calculated by

fS’(Oj) = Z ’U,(Si,Oj). (2)
s; €S’

Each POI has an upper bound of coverage effectiveness
which means the additive charging utility has a threshold
Uthreshoid- Therefore, we define the final charging utility for
POI o; as

Us(0j) = min{ fs/(0;), Uthreshold}- (3)
And the total charging utility can be represented by
U(S") =Y Us(o;). )
j=1

We consider two types of energy cost for mobile charging:
the traveling cost and the charging cost. Having deployed
sensor s; in the 2D plane, we can use (z[s;],y[s;]) to denote
the coordinate of position p,,. Then we can calculate the
Euclidean distance |[ps,ps;| : (S,59) — R between two
sensors s;,s; and furthermore achieve the length of closed
path including deployed sensors S’. We use coefficient ¢;
to represent energy cost per unit length. Therefore, for the
deployed sensor set S’ C S, the traveling energy cost is given

by
>

Ps;Ps; €P

cTravel(§') = e1 L(Ps) = 1 ps,ps, |-
where Pg: is the position set corresponding to deployed sensor
set S”. Thus we use £(Ps/) to denote the closed charging tour
that starts and ends at the same depot p,,, while all sensors
in S’ are visited only once.

When considering the charging cost, all deployed sensors
have the same battery capacity £ and can be charged in a

flexible way. Then we have the charging cost as co > e; for
5;€8’
S’, where ¢y denotes the charging efficiency which means the

energy cost for per unit energy harvest.
Therefore, the eventual energy cost for S’ is expressed by

C(S) =c1L(Ps))+c2 Y e 5)

B. Problem Formulation si€8’

Naturally, the mobile charger has a limited energy capacity
Budget and the total amount of energy consumption should
not violate the capacity constraint. Thus we have

c1L(Ps:) + co Z e; < Budget. 6)
s, €8’

Our objective is to optimize the placement and flexible
charging allocation for selected sensors to construct a closed
charging tour, so as to maximize the charging utility in the
network. Then the problem can be formulated as a general
convex optimization problem under the routing constraint:

(P1) : max U(Y")

a1 L(Ps)+c2 Y, e; < Budget,
s; €S’

C. Problem Hardness Analysis

Vps, € 0,8 C 8.

s.t.

In the optimization of problem P1, the coverage utility is
nonlinear with distance. We need to select partial sensors to
place in the continuous space which means the candidate
locations of sensors are infinite. The most straightforward
method is to enumerate all possible deployed positions but
may incur very high computational complexity. Even the sen-
sor placement is given, selecting for full or nothing charging is
in general NP-hard [26]. Then, considering the flexible energy
allocation policy would induce extra nonlinearity, which forms
a complex mixed integer problem. Moreover, it would be more
complex when considering tour scheduling. It involves finding
an optimal closed charging tour, similar to solving a Traveling
Salesman Problem which is NP-hard [27]. Therefore, our
initial problem is nonlinear as well as the combination of two
NP-hard problems which shows great difficulty.

IV. SOLUTION

A. Area Partition

In this subsection, we try to reduce the number of candidate
sensor positions from infinite to finite. As sensors can be
deployed at any point of a given square plane 2 = a * a,
we first confine the deployment by partitioning the placement
area into many small subareas. As show in Fig. 2, we discrete
the plane 2 into uniform grids with side length §. Suppose
we have I' number of girds denoted by (g1, g2, ...gr), wWhere
I = P%—‘ Next, we can approximately regard all points
in the same grid are identical and the point in a grid can
be randomly chosen as the candidate placement position.
Naturally, the coverage effectiveness from a sensor at any
location in the gird to any POI can be viewed as a constant,
which is equal to that achieved from the longest distance
between the grid and the POI. Taking Fig. 2 as an example,
given a fixed POI o and any two sensors s; and s deployed
in grid g; respectively, the distance between sensor s; or s
and POI o can be approximately equal to the longest distance
d(g;, 0) as shown in green line. Then we have the relationship
d(s;,0) =~ d(s},0) ~ d(g;,0). Apparently, the approximated
charging utility is the minimum utility that can be achieved
from any sensor in the grid.

In fact, as each deployed sensor has its maximal coverage
range with radius length D, it can achieve zero or non-zero
utility value according to whether the distance between the
sensor and the POI exceeds D or not. In Fig. 2, observing
two sensor s; and s} in grid g; have d(sj,0) < D and
d(s,0) > D respectively, we calculate the charging utility
value u(s;,0) > 0 and wu(s},0) = 0 subsequently. Thus,
to address the performance loss, we adopt a conservation
scheme to decide the coverage distance by checking whether
d(g;,0) exceeds D or not. Then we modify the utility model
as follows:
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Fig. 2: Grid partition Fig. 3: Charging Discretization

A>T e
ulgi.0) = § Ty e d(gi,0) < D M
0, d(gi,0) > D,
where > e, represents the sum of harvested energy of
Ps; €9i

rechargeable sensors deployed in grid g;.
We have the following lemmas for coverage distance ap-
proximation and charging utility approximation error.

Lemma 1. If u(g;,0) > 0, which means the approximated
charging utility from any sensor in grid g; to POI o is greater
than zero, then any sensor in grid g; can cover POI o with
the coverage distance D — V26.

Lemma 2. Set

- o)
Ji—e

where ¢ is an arbitrarily smallposmve parameter (0 < e < 1).
For any sensor s; that is deployed in the grid g; to cover POI

o, we have
u(s;,0) > (1 —¢e)u(g;,0). (8)
Proof: We can take § into the utility model above and
calculate the ratio u(s;,0) to u(g;,0) as

u(si,0) (d(g'iao)""a)Q > ( d(gi,0)+o )2

u(gi,0) d(s;,0)+a d(gi,0)+V25+a
= ( d(gi,0)+o 2= (1—¢) (d(gi,0)+a)?
d(gi,0)+ \/% (V1—¢d(gi, o)+oz)
Thus we get the result u(s;,0) > (1 — €)u(gi,0) and
meanwhile have I' uniform grids with the length 6.

>1—e.

B. Charging Discretization

After area partition, we have finite candidate positions for
sensor placement. We emphasize that in each grid it is allowed
to deploy more than one sensor, while the energy budget of
the mobile charger is not violated. As deployed sensors can be
flexibly charged, we presents another charging discretization
method to allocate energy and approximate the charging utility,
as shown in Fig. 3.

For the rechargeable sensor with a battery capacity E,
we divide E into uniform 7' pieces and let €, = % be
the minimum amount of energy charged to a sensor. Then
for any sensor s; that can be placed in grid g;, T virtual
copies {s},,s7,,....s],} are created and each copy s,
corresponds to kenin amount of received energy. Then we
have the modified utility model as follows:

Ak€min
ko) = d (d(sF,05)+a)? A5 05) < D 9
u(sip, 05) = B0 ©
0, d(si,h’ Oj) > D.
We note that although such discretization method incurs
utility error, it can be bounded as shown in Lemma 4.

C. Problem Reformulation

After above approximation procedures, we have finite can-
didate positions for sensor placement and charging strategies
for energy allocation that we can obtain nI'T" virtual sensors
X in the overall network. Similar to Equation 2, the additive
utility for POI o, is fx/(0;) = > u(sf’h, 0j) and we have

sfthX’
the discrete utility as
UX’(Oj) = min{fX'(Oj)a Uthreshold}- (10)
m
Therefore the overall charging utility is U(X") = > Ux-(0;).
=1

As a mobile charger needs to optimize its charging tour
after sensor placement, we adopt a conservative method that
uses the longest distance d(g;, g;) between two grids (g;, g;)
to calculate the traveling cost. Meanwhile, we approximate
the distance of sensors in the same grid to be zero, while
considering the bound of performance loss after area partition.
Therefore, this conservative method can guarantee the energy
budget constraint not be violated and we use L£(P%/) to denote
the modified traveling path.

Thus the initial P1 problem can be reformulated as

(P2) :max > Uxs(o0;)

(11)
j=1
st 1 L(P%/) + co Z kemin < Budget, ¥X' C X
Sf,hexl
(11a)

Now P2 becomes as a combinatorial optimization problem
where (11a) shows more stringent constraint of the energy
budget. Therefore, P2 falls into the scope of maximizing a
submodular function subject to a general routing constraint.
In the next section we give some preliminary definitions to
assist further theoretical analysis.

D. Approximation Algorithm

The detailed algorithm for the charging maximization prob-
lem after discretization is described in Algorithm 1. We draw
= Pé—é‘—‘ uniform grids with the length ¢ = ?a( \/11: —1).
Next, the sensor energy capacity F is divided into uniform 7'
pieces with the minimum e,,;,, amount of energy.

Therefore the main idea of the algorithm is to select the most
cost-efficient virtual sensor s* in each iteration as follows.

s = argm U(Xl - {Sh’k}) — [{(Xl). (12)
st keX\X’ C(X"U{si ™)) - C(XY)

Initially, the candldate set X has nI'T" virtual sensors and
the selected virtual sensor set X’ is empty. We would calculate
the marginal charging utility U(X’ U {s""*})—U(X") accord-
ing the utility model when adding a new virtual sensor s’
Meanwhile, we calculate the marginal energy consumption
C(X' U {s""}) — C(X") using an approximation cost func-
tion C' since the optimal cost is often infeasible to compute.
Then we choose a fast and simple nearest neighbour rule with
a log(nI'T')-approximation ratio and the impact on quality of
this approximation would be described in next subsection.



Algorithm 1: Approximation Algorithm

Algorithm 2: Substitute Algorithm

Input: The positions of m POlIs, the number of sensors n, the
parameters of the coverage utility model «, and energy
consumption coefficient c1, c2, each POI utility
threshold Uinreshota and energy capacity Budget.

Output: The selected virtual sensor X', overall coverage utility

U(Xx".

Partition the given quare plane into many subareas by drawing
r = IVM L 1),
52 Vi-e

Divide the sensor energy capacity E into uniform 7' pieces

with the minimum amount of charged energy emin = % Then

we have nI'T" virtual sensors denoted by set X.

3 Initial: X' = 0,C(X’) = 0;

A = argmax{U(s!"")|s!"* € X,C(s*) < Budget};

4 while X # null do

5 foreach s/"* € X do

6 Computing marginal utility U(X’ U {s/"*}) — U(X")

and marginal traveling energy consumption

C(X' U {s"*}) — C(X') using nearest neighbour rule

and a so-called substitute algorithm.

[

-‘ uniform grids with the length § = ga(

(8]

. UX (sl P -ux’)

7 s" = argmax Zoom e s
shkex\x7 i

8 it C(X'U{s*}) < Budget then
9 | X'=X'U{s"}

10 if U(A) > U(X') then
n | X' =4
12 Output X', U(X");

Since the charging utility is approximated in a grid by area
partition, all sensors in the grid would be charged successfully
as long as the traveling path of the mobile charger intersects
with the grid. Then after using the nearest neighbour rule to
achieve the approximated tour, we use a substitute algorithm to
shorten the tour further which is detailed in Algorithm 2. The
progress of iteration terminates until violating the budget of
the mobile charger C'(X’ U {s*}) < Budget. Upon obtaining
X', we compare U(X') with U(A) which selects the single
sensor and choose the maximal one in the end.

Substitute algorithm: Supposing that utilizing the nearest
neighbour rule helps acquire v grids {g1, g5, ..., g} } in order
and we connect their respective center points pi, pa, ..., D to
construct the initial closed tour £(P). Note that there may
be multiple sensors deployed in a grid, we can still use one
position to represent them due to the location approximation
and performance loss guarantee. Then we use a binary search
idea to find the substitute locations for sensors and optimize
the tour iteratively.

For each point p; in P, we try to connect p;,_; and p;y1
to construct the segment p,_1p,+1 and check whether g; is
path-covered by p;—1p;+1 by comparing the least distance
with d. If yes, we obtain p} inside p;—1p;11 as well as
in g;; otherwise, we search another location p) inside the
segment p;p;11 using binary search with a granularity control
parameter o to replace p;, under the constraint that g; should
be path-covered by segment p;_1p}, too. In the binary search,

Input: The acquired grids set G’ = {g1, g2, ..., ¢, }, side length
of grid 9, the control parameter o .

Output: The shortened traveling path £(P’).
1 forallp; (i=1,2,...,7) do
2 Connect p;—1, p; and p;4+1 respectively to construct the
segment set C(p;—1p;) and C(pi—ipit1)-
3 if all grids path-covered by C(pi—1p;) are also
path-covered by C(p;—ipi+1) then

4 | P’ <+— Obtain p; in P;

5 else

6 DPs = Pi; Pt = Pi+1;

7 while |p;p;| > o do

8 pi = (ps +pe)/2s o

9 if all grids in C(pi—1p}) UC(pip}) are in
C(pi-1p}) then

10 | ps =pis

11 else

12 L pr = Ppi;

13 | P" <— replace p; by p; in P;

(G
Po

Binary search ﬁ

Binary search @ Substitute

reconstructed path .173 .

Fig. 4: Substitute process

the parameter o is used to control the granularity of binary
search. An example of Algorithm 2 is shown in Fig. 4, the
traveling path is initialized to be {po,p1,p2, ps, pa,po}- The
location p; is not path-covered by pop2, and thus binary search
is used to find a new path pop} to substitute segment pop;.
Specifically, path 1,2, 3,4, and 5 are tried and finally path 5 is
chosen as it path-covers g;. Thus, we select the corresponding
node p} to substitute p;. Using the same substitute method,
we find p5 and p). We obtain pf because the grid g3 is path-
covered by phps. Finally, we find the new locations by the
substitute method and therefore the traveling path is updated
to {po, P, vh, v, Py, po} as shown in Fig. 4.




V. THEORETICAL ANALYSIS

Definition 1: (Nonnegativity, Monotonicity, and Submod-
ularity) Given a finite ground set I/, a real-valued set function
defined as f : 2 — R, f is called nonnegative, monotone
(nondecreasing), and submodular if and only if it satisfies
following conditions, respectively.
e f(0)=0and f(A) >0 for all A C U (nonnegative);
e f(A) < f(B) forall A C B CU or equivalently: f(AU
{e})—f(A) > 0forall A C U and e € U\ A (monotone);

o f(A)+f(B) > f(AUB)+ f(ANB), forany A,B C U
or equivalently: f(A U {e}) — f(A) > f(BU {e}) —
f(B),AC B CU,eeU\B (submodular);

Then, we have the following lemma:

Lemma 3. The objective function in P2 is nonnegative,
monotone and submodular.

Proof: Apparently, the objective function is nonnegative
and monotone according to the utility model in Equation 9,
10 and 11. Given the virtual sensor subset X" C X' C X,
we have U(X') > U(X") > 0.

To prove the submodularity, we should prove the property
of diminishing marginal utility in our formulated objective
function. As the coverage utility is addictive for m POIs,
we only need to compare the marginal utility A;Uxw (o) =
Uxrugsy(05) — Uxr(0;) and AgUx(05) = Uxrugsy(05) —
Ux:(o;) of any POI o; when adding s into X’ and X’
respectively.

Considering the utility threshold Uypyesnoias the charging
utility is

UX” (Oj) = min{fX”(Oj)7 Uthreshold}7 (13)
Ux+(0j) = min{ fx:(05), Uthreshold }- (14)

L. If Uihreshota < fxr(05), then Uxn(0;) = Ux/(0;) =
Uthreshola- The coverage utility is still Uypresnorq after adding
a sensor s. Thus we have A,Ux(0;) = AsUx/(0j) = 0.

2. If fX”(Oj) < Uthreshold < fX’(Oj)’ then UX”(Oj)
= fxr(0j) and Ux/(0;) = Uihreshola- After adding a sen-
sor s, Uxnygsy(o5) = min{ fxrugs3(05), Uthreshota} and
Ux1ugs1(05) = Uthreshola- We have
ASUX//(Oj) — ASUX/(OJ‘)
= min{ fxu(s3(05), Uthreshota} — fxr(05)
= min{ fxrusy(05) = fxr(05), Uthreshota — fxr(05)} > 0.

3. If fX’(Oj) < Uthreshold < fX”u{s}(Oj), then UX”(Oj)
= fxu(0;) and Ux/(0j) = fxs(o;). After adding a sensor
S, UXNu{S}(Oj) = min{quU{s}(oj),Uj} = Uthreshold and
Uxiugsy(05) = min{ fxugs3(05), Uthreshold} = Uthreshold-
We have

AUxr(05) = AsUx(05)
- Uthreshold - fX”(Oj) - (Uthreshold - fX’(Oj))
= fx1(0j) = fx»(0;) = 0.
4. If fxrugsy(o5) < Uthreshold

Uxn(oj) = fxv(0;) and Uxi(o;) =
After adding a sensor s, we have UX//U{S}(OJ')

min{fX”u{s} (05); Uthreshotd = Fxrugsy (95) and
Uxiugsy(05) = min{ fxru(s3(05), Uthreshold} = Uthreshold-
We have

ASUXH(Oj) - ASUX/(Oj)

= fxrugsy(0f) — fxr (o) — (U — fxr(05))

=u(s,05) + fx:(0;) = U;

= fxugsy(og) = U; 2 0.

5. If fX/U{s}(Oj) < Uthresholds UX”(Oj) = fX” (Oj)
and Ux/(0j) = fxs(oj). After adding a sensor s, we have
Uxnugsy(05) = min{ fxrugsy(05), Uthreshotay = fxrugsy(05)
and UX’U{s}(Oj) = min{fX’U{S}(oj)7 Uthreshold} =
Jxugs)(05). Then we derive that

ASUXN (Oj) - ASUX/ (Oj)
= fxrugsy(05) = fx(05) = (fxrugsi(05) — fx(05))

=u(s,05) —u(s,05) =0.
Therefore, we prove the objective function is submodular. W

Lemma 4. When the mobile charger has a large energy
capacity that B > 2v/2ncya, the discrete utility after charging
discretization would achieve at least 1/2 of continuous optimal
charging utility.

Proof: As the mobile charger has more than 2v/2nc1a
amount of energy, then it can visit all sensors at least once
when traveling in the a*a square plain. We use U* denote the
continuous optimal solution where any sensor can be charged
any amount of energy to maximize the overall coverage utility.
Given any minimum amount of energy charged to a sensor
as emin, We can achieve a discrete solution U, by rounding
U*. For example, for any sensor s; to be charged e; amount
of energy in U*, we round it by charging only p—
and thus construct this discrete solution U,. Apparently due

€

€

Emin

to emin < €;, U, is a feasible discrete solution.

€min

Moveover, the sufficient energy of the mobile charger can
maintain that each sensor can be charged e,,;, amount of
energy. Then we consider this kind of feasible discrete solution
which can be denoted by U.. Naturally, the value of the sum
of the two discrete solutions is larger than the value of the
optimal solution and we have

U* <U, +U.. (15)
If we use U} to denote the optimal discrete solution

based on the e,,;, amount of energy, apparently we have the
following two relations as

U <USUe <UZ

and derive U, + U, < 2U/}. Combining Equation 15, we have
the result U* < 2U/. [ |

Theorem 1. Given the energy capacity of the mobile charger
that Budget > 2v/2ncia, the proposed algorithm achieves
an approximation ratio of (1 — €)/4(1 — 1/e) and its time
complexity is O(nI'T)>.

Proof: From Subsection IV-C we have transformed the
initial problem into maximizing a submodular function subject



Fig. 5: Optimized tour proof

to a general routing constraint. Thus referring to [28], the
iterative greedy cost-efficient algorithm would have 1/2(1 —
1/e) bi-criterion approximation ratio compared to the optimal
solution with a slight relaxed budget constraint. The approx-
imated cost function C' would directly influence the relaxed
decree of budget constraint. In our proposed algorithm, the
nearest neighbour rule can achieve log(nI'T’) that guarantee
the relaxed effect which can be found in [28].

Furthermore, as we set 6 = Y2a( 11 -

5 — — 1), we have the
utility error u(s;,0) > (1—¢)u(g;,0) by following Lemma 2.
And Lemma 4 shows the 1/2 gap between the discrete and
continuous solution. Finally, the our obtained solution can
achieve (1—¢)/4(1—1/e) approximation ratio. Due to the nI'T’
iteration at most and nl'T" times when using the neighbour rule
to find the next virtual sensor in each iteration, therefore the

overall time complexity is bounded by O(nI'T)?. |

Lemma 5. Using L(P') to denote the achieved traveling path
by Algorithm 2, then we can easily derive that each substitute
operation reduces the traveling length by triangle inequality.

Let £(P*) denote the optimal traveling path. With Lem-
ma 5, we have the following theorem.

Theorem 2. Having achieved the approximated path L(P)
with v number of grids, we can obtain |L(P")| < |L(P*)| +
V273 by Algorithm 2 with the time complexity O(~?log g)

Proof: We denote the achieved grids to be path-
covered are G = {g1,92,...,9¢} and use L(P*) =
{Po, p1; s P} s 5,0} to denote the optimal traveling path
where po is the start and end point. After executing Al-
gorithm 2, we can obtain the traveling path L(P’) =
{Po, P s s s DL, Po }. We use py, p; and p; to denote the
optimal stop location, the stop location obtained by Algorith-
m 2 and the center location in grid g;, respectively. Then we
construct an auxiliary detouring path including the optimal one
to present our theoretical result.

The detour path is conducted by adding segment {p;p.p:}
into the optimal path £(P*). An shown in Fig. 5, we have the

optimal path {po, p7,p3,p0} and {po, p’,ph, po} obtained by
substitute method. Thus we conduct the detour traveling path

as {p07p>{7pl17p>{7p§ap/27p§:p0}' ACCOTdng to the triang]e
inequality, we have
[P0, PIPIDY s - DAD, DL pol = |L(P)].
For the bounded grid, we have
Ipypip;| = 2Ipipjl < V/26.

Hence

[P0, DYPADT, s DAD, DS, Do| < |L(P)*] + V2956
Thus, we obtain [L(P')| < [L(P*)| + v/276.

Next, we investigate the complexity of Algorithm 2. It
is intuitive that the time complexity consists of iterations
and the substitute consumption. In that, it generates O(v)
iterations for ~ grids. In each iteration, the binary search
consumes O(+y log g) for each substitute step. Therefore, the
time complexity of substitute method is O(+? log g) [ ]

VI. EVALUATIONS

In this section, we conduct extensive simulations to verify
the performance of the proposed algorithm in terms of the
error threshold e, the budget of the mobile charger, energy
discretization number, utility threshold.

A. Evaluation Setup

In our simulation, the sensing region is a 50m * 50m square
area. We use the following default setup that there are 50 POIs
in the 2D plane and 20 sensors at most. The energy capacity
of the mobile charger and one sensor is set as Budget = 3000
and E = 80 respectively. The utility threshold of each POI is
set to 700. The default error threshold ¢ is set as ¢ = 0.8 and
the default minimum amount of charged energy €., = 4.
a =10, ¢c; =1, co = 10, X = 1000.

B. Baseline Setup

As there is no algorithm available for jointly sensor place-
ment and mobile charging problem. We devised two algorithm-
s named random algorithm (RAN) and full charging algorithm
(FC) for comparison. RAN randomly selects a position for
sensor placement and allocates random amount of energy
while not violating the budget constraint at each iteration. If
exceeding the budget, RAN randomly selects another position
and energy allocation strategy. FC is similar to our proposed
algorithm but tries to charge the placed sensor up to full energy
capacity. At each iteration, FC uses a simple greedy strategy
and selects the position for placement that can achieve the
maximal utility.

C. Evaluation Results and Analysis

1) Impact of error threshold e. Our proposed algorithm
outperforms the other algorithms by at least 14.38% as the
error threshold ¢ increases from 0.2 to 0.9. As shown in
Fig. 6, all these algorithms have a diminishing trend with the
error threshold €. They decrease fast as the error threshold e
rises. This is because the utility function is inverse proportion
to the distance square. Rising the error threshold ¢ would
directly extend the side length of partitioned uniform grids

according to equation § = ﬁa( ﬂl: — 1) and lead to the

2
longer approximated coverage distance. Therefore, to reduce

the running time of our algorithm, we set ¢ = 0.5 and the side
length of grid § = 2.93.

2) Impact of the budget of the mobile charger Budget. Our
proposed algorithm outperforms the other algorithms as the
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budget of the mobile charger increases. Obviously, when we
provide more energy for the mobile charger, the performance
of all the algorithms has an increasing trend. As depicted in
Fig. 7, our algorithm increase the coverage utility by 27.5%
when the budget is improved from 10000 to 24000. However,
it then becomes relatively stable when the budget is more than
20000. What accounts for this stability is the influence of the
utility threshold. Since the utility threshold of each POI is 700
and there are 50 POIs in default, the overall coverage utility
threshold is 50 * 700 = 35000 and increasing the budget from
20000 to 24000 would not bring external utility.

3) Impact of energy discretization number 7". Our proposed
algorithm outperforms the other algorithms by at least 17.5%
as number of energy discretization increases from 5 to 40.
From Fig. 8 we can see that the utility of our proposed
algorithm has a slightly increasing trend with the number of
energy discretization while FC just becomes stable. This is
because FC always selects full charging mode which may incur
possible waste of energy. Specifically, When additive utility
on one POI o; has grown up near to the amount of threshold
Utihreshold, then adding a new sensor s; with full charging
will only have a small value Uipreshota — u(si,05) of the
marginal utility. The charging utility of our proposed algorithm
improves because the discretization granularity provides more
energy allocation strategies and would directly influence the
required optimality.

4) Impact of the utility threshold U,peshorda- Our proposed
algorithm outperforms the other algorithms by at least 5.8% as
POI utility threshold rises from 700 to 1400. Fig. 9 shows that
the charging utility of the proposed algorithm and FC grows
up nearly linearly with the utility threshold. This is because
the increasement of threshold gives more improving space of
the utility that makes the ascend trend.

For easy understanding, we visualize the sensor placement
and energy allocation strategy as shown in Fig. 10. There
are 50 POIs and the area is partitioned into 17 x 17 = 289
uniform grids, where we use original point (0,0) to denote
the base station. By executing the proposed algorithm, we
select 21 girds for sensor placement with corresponding energy
allocation. The amount of energy allocated to sensors is
indicated by color map. As the energy capacity of each sensor
is divided into 20 pieces, we can place one sensor and charge
half full energy if allocating 10 pieces of energy. Besides, we
can place two sensors (one is full-charged and the other is
half-charged) in a grid if the amount of allocated energy is
30 pieces. Moreover, more grids are selected near the original
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Fig. 10: A strategy visualization example
point because of the less traveling cost.

VII. FIELD EXPERIMENT

To further evaluate our proposed algorithm, we conduct field
experiments to evaluate the performance.

As shown in Fig. 11, our testbed consists of a robot car
with a TX91501 power transmitter produced by Powercast
[29], rechargeable sensors and an AP connecting to a laptop
to report the collected energy. We set 6 POIs with coordi-
nates (1.5,1.5),(1.8,3.6),(4.2,1.8),(3.4,4.6), (2.4,2.6) and
(3,1.6) in a 5m*5m square area of the office room. Then we
can record the charging utility from deployed sensors. Sensors
can harvest flexible energy via various charging duration for
the fixed received power. The robot car moves at a speed
of 0.3m/s. Thus, we can use time constraint to represent the
energy budget. In our experiment, we restrict the executing
time of the car to 5 minutes.

Fig. 12 shows a practical example of practical sensor place-
ment and charging tour by executing our algorithm, where the
mobile charger starts and ends at the bottom-left corner. The
mobile charger visit 6 grids to provide energy and the charging
time for each grid is denoted by the number in girds. We
compare the charging utility between the proposed algorithm
and FC by setting the utility threshold from 700 to 1400 as
shown in Fig. 13. Thus our devised algorithm outperforms FC
at least 7.8% and thus verifies the superiority.

VIII. CONCLUSION

This paper represents the first efforts towards joint sensors
placement and mobile charging scheduling, where a mobile
charger visits these deployed sensors for flexible energy trans-
fer so as to improve the overall charging utility. We utilize the
area partition and charging energy discretization methods to
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construct many virtual sensors with respect to various amount
of harvested energy in a finite candidate positions. We present
specific theoretical analysis to bound the discrete performance
loss and prove the submodularity of the reformed objective
function. Thus an efficient (1 — ¢)/4(1 — 1/e) approximation
algorithm is proposed to achieve a near optimal solution in-
cluding deployed sensors with partial energy requirement and
the closed charging tour. Finally, we evaluated the performance
of the proposed algorithm against the full charging algorithm
and our proposed algorithm outperforms well according to the
results in the simulation and field experiment.
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