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Abstract—The recent breakthrough in Wireless Power Trans-
fer (WPT) provides a promising way to support rechargeable
sensors to enrich a series of energy-consuming applications.
Unfortunately, two major design restrictions hinder the applica-
bility of rechargeable sensor networks. First, most of the sensor
placement schemes are focusing on the sensing tasks instead of the
charging utility, which leaves a considerably high performance
gap towards the optimal result. Second, the charging scheduling
is non-flexible, where full or nothing charging policy suffers from
the relatively low charging coverage as well as efficiency. In this
paper, we focus on how to efficiently improve the charging utility
when introducing charging oriented sensor placement and flexible
scheduling policy. To this end, we jointly consider optimizing node
positions and charging allocations. In particular, we formulate a
general convex optimization problem under a general routing
constraint, which generates great difficulty. We utilize area
partition and charging discretization methods to reformulate a
submodular function maximization problem. Thus a constant
approximation algorithm is delivered to construct a near optimal
charging tour. To this end, we analyze the performance loss from
the discretization to guarantee that the output of the proposed
algorithm has more than (1−ε)/4(1−1/e) of the optimal solution,
where ε is an arbitrarily small positive parameter (0 ≤ ε ≤ 1).
Both simulations and field experiments are conducted to evaluate
the performance of our proposed algorithm.

I. INTRODUCTION

Varies types of sensor devices such as WISP RFID tags

are organized into an autonomous network to sense, monitor,

process and deliver information to enrich a series of energy-

consuming applications. Sustained energy furnish is essential

to support energy-critical sensors to execute tasks. Fortunately,

the recent breakthroughs in Wireless Power Transfer (WPT)

can provide continuous and reliable power supply for these

rechargeable sensors without replacing their batteries which

needs extensive human efforts. Exploiting the WPT technique

helps construct a rechargeable wireless sensor network, where

rechargeable sensors can harvest energy conveniently from a

mobile charger traveling in the network [1].

Unfortunately, two major design restrictions hinder the

applicability of rechargeable sensor networks. First, most of

the sensor placement schemes are focusing on the sensing

tasks instead of the charging utility [2] [3]. They usually

give priority to sensing tasks such as the target coverage or

event detection while overlooking the location of the power

resource. However, it is somehow unfavorable that charging

some remote sensors would incur too much energy waste

Fig. 1: Scenario of mobile charging for POIs coverage

and charging delay due to the far traveling. Many literatures

have studied efficient mobile charging scheduling to meet the

energy requirements of sensors. For example, Shi et al. [4] first

analyzed the charging requirements to construct a Hamiltonian

cycle. Some other perspectives have also been discussed such

as charging delay minimization [5], charging or network utility

maximization [6]–[8], on-demand charging requests [9]–[13],

etc. However, there still leaves a considerably high perfor-

mance gap towards the optimized charging utility.

Second, previous charging scheduling is usually non-

flexible, where full or nothing charging policy suffers from

the relatively low charging coverage as well as efficiency.

The direct policy loses the degree of freedom for energy

allocation and may degrade energy utilization efficiency for

task execution. As one task can be cooperated by multiple

sensors to accomplish tasks, the full charging may increase the

energy consumption because of the possible spatial redundance

of sensors [14] [15]. Therefore, the overall charging utility

may decline when only considering sensing tasks and full or

nothing charging policy.

In this paper, we focus on how to efficiently improve the

charging utility when introducing charging oriented sensor

placement and flexible scheduling policy. Formally, we jointly

consider optimizing node positions and charging allocations

respecting the charging utility. In particular, we formulate a

general convex optimization problem under the general routing

constraint. In our charging scenario as shown in Fig. 1, target

distribution information is given in the sensing region. The

expected charging utility is quantified by the effectiveness of

covering target/POI (Point of Interest) by sensors which is



related to the sensing distance and harvested energy. Thus we

should determine sensor positions and the amount of harvested

energy, such that the overall charging utility is maximized.

Our proposed convex optimization problem under the rout-

ing constraint generates great difficulty which includes three

technical challenges. First, the charging utility is nonlinear

with distance as sensors can be deployed in the continuous

space and have infinite candidate locations. Second, selecting

sensors for full or nothing charging has been generally NP-

hard. Then combining the flexible energy allocation policy

would induce extra nonlinearity which forms a complex mixed

integer problem. Third, it would be more complicated when

considering tour scheduling and thus poses another great

challenge.

To tackle aforementioned challenges, we partition the whole

square area into many subareas and descretize the charging

energy to construct enough virtual sensors in one grid. Then

we transform the initial problem into a combinatorial problem,

where we analyze the influence of discretization granularity

on the optimality of required solution. After proving the

submodular property of the reformulated objective function,

a constant approximation algorithm is delivered to calculate

sensor positions and energy allocation strategy to maximize the

overall charging utility. Our contributions can be summarized

as follows:

• We present the first step on proposing a charging ori-

ented sensor placement and flexible scheduling policy to

enhance the overall charging utility.

• We reduce candidate locations from infinite to finite

with bounded partition error ε and prove the 1/2 gap

of charging discretization. We transform the complicated

convex optimization problem subject to a general routing

constraint into a submodular function maximizing prob-

lem, which has (1− ε)/4(1− 1/e) approximation ratio.

• We carry out our policy in both Matlab and TX91501

power transmitters, and both simulations and field exper-

iments are conducted to evaluate the performance of our

propose algorithm.

The rest of the paper is organized as follows. We review

related works in Section II. Then, we present the system model

and formulate the problem in Section III. The specific solution

is presented in Section IV and we analyze the theoretical

results in Section V. In Section VI and Section VII, we

present the results of simulations and experiments respectively.

Finally, we conclude the work in Section VIII.

II. RELATED WORK

Although static chargers scheduling is an essential issue

to be considered, which including some studies on power

allocation [16] and safe charging [17]–[19], etc. We present

more research on mobile charging to illustrate the novelty of

our work. These existing works usually focused on the fixed

sensor placement to schedule mobile charging. Fu et al. [5]

studied to determine the mobile charger stop locations and

durations to minimize the total charging delay. Shi et al. [4]

employed a mobile charger to periodically charge the given

TABLE I: Definition of notations

Notation Definition
oj , O a POI, POI set
m Number of POIs
si, S Sensor, sensor set
u(si, oj) Utility of si by on oj
ei Amount of charged energy for si
E Energy capacity sensors
d(si, oj) Distance between si and oj
D Farthest coverage distance of a sensor
fS′(oj) Additive calculated utility of set S′ on oj
US′(oj) Utility of set S′ on POI oj
Uthreshold Utility threshold on oj
U(S′) Overall charging utility with respect to S′

PS′ Position set of deployed sensors S′

L(PS′) Closed charging tour including PS′
Budget Limited energy capacity of the mobile charger

Ctravel(S′) Traveling energy consumption with respect to S′

C(S′) Overall energy consumption with respect to S′

λ, α, c1, c2 Constant parameters

sensors to maximize the charger’s vacation time. Shu et al.
[20] first studied controlling traveling velocity of the mobile

charger for the time-bounded charging scenario. Dong et al.
[21] also optimize the charger’s velocity to meet a feasible task

assignment. Zhong et al. [22] considered the dynamic energy

consumption of sensors. Jiang et al. [23] investigated the event

monitoring applications when scheduling mobile chargers in

an on-demand way.

Some existing works considered partial charging. Liang et
al. [7] studied the charging utility maximization problem while

sensors can be full or partial charged. They also extended to a

general case where multiple sensors can be charged simulta-

neously [8]. Dai et al. also applied partial charging policy to

maximize the overall charging utility when considering EMR

safety [24] and charging direction [25]. However, none of

them considered charging task oriented sensor placement and

flexible scheduling policy jointly.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider m logical and substantial POIs denoted as

O = {o1, o2, ...om} distributed in the 2D plane. Let S =
{s1, s2, ...sn} be the set of rechargeable sensors which can

be deployed anywhere to sense, monitor and collect the

information of these POIs. A mobile charger with a limited

energy capacity would start from the service station, visit these

sensors to transfer power wirelessly and return to the depot

before the energy is exhausted. Definition of notations is listed

in Table I.

When considering the charging utility, we measure the

utility of deploying one sensor in terms of POI coverage

effectiveness. The coverage effectiveness of each sensor is

independent and only related to its location and flexible

harvested energy. To define the charging utility, we use the

empirical coverage model [3] as follows:

u(si, oj) =

{
λei

(d(si,oj)+α)2
, d ≤ D

0, d > D,
(1)



where u(si, oj) represents the charging utility of sensor si
when covering POI oj , d(si, oj) is the distance between sensor

si and POI oj , ei is the amount of charged energy which

is adjustable, α, λ are the constants and D is the maximum

coverage distance of the sensor.

The effectiveness of multiple sensors covering one single

POI is additive. Then, for any selected sensor set S′ ⊂ S, the

additive charging utility on POI oj can be calculated by

fS′(oj) =
∑
si∈S′

u(si, oj). (2)

Each POI has an upper bound of coverage effectiveness

which means the additive charging utility has a threshold

Uthreshold. Therefore, we define the final charging utility for

POI oj as

US′(oj) = min{fS′(oj), Uthreshold}. (3)

And the total charging utility can be represented by

U(S′) =
m∑
j=1

US′(oj). (4)

We consider two types of energy cost for mobile charging:

the traveling cost and the charging cost. Having deployed

sensor si in the 2D plane, we can use (x[si], y[si]) to denote

the coordinate of position psi . Then we can calculate the

Euclidean distance |psipsj | : (S, S) → R between two

sensors si, sj and furthermore achieve the length of closed

path including deployed sensors S′. We use coefficient c1
to represent energy cost per unit length. Therefore, for the

deployed sensor set S′ ⊂ S, the traveling energy cost is given

by

CTravel(S′) = c1L(PS′) = c1
∑

psi
,psj

∈P

|psipsj |,

where PS′ is the position set corresponding to deployed sensor

set S′. Thus we use L(PS′) to denote the closed charging tour

that starts and ends at the same depot ps0 , while all sensors

in S′ are visited only once.

When considering the charging cost, all deployed sensors

have the same battery capacity E and can be charged in a

flexible way. Then we have the charging cost as c2
∑

si∈S′
ei for

S′, where c2 denotes the charging efficiency which means the

energy cost for per unit energy harvest.

Therefore, the eventual energy cost for S′ is expressed by

C(S′) = c1L(PS′) + c2
∑
si∈S′

ei. (5)

B. Problem Formulation

Naturally, the mobile charger has a limited energy capacity

Budget and the total amount of energy consumption should

not violate the capacity constraint. Thus we have

c1L(PS′) + c2
∑
si∈S′

ei ≤ Budget. (6)

Our objective is to optimize the placement and flexible

charging allocation for selected sensors to construct a closed

charging tour, so as to maximize the charging utility in the

network. Then the problem can be formulated as a general

convex optimization problem under the routing constraint:

(P1) : max U(S′)
s.t. c1L(PS′) + c2

∑
si∈S′

ei ≤ Budget, ∀psi ∈ Ω, S′ ⊆ S.

C. Problem Hardness Analysis

In the optimization of problem P1, the coverage utility is

nonlinear with distance. We need to select partial sensors to

place in the continuous space which means the candidate

locations of sensors are infinite. The most straightforward

method is to enumerate all possible deployed positions but

may incur very high computational complexity. Even the sen-

sor placement is given, selecting for full or nothing charging is

in general NP-hard [26]. Then, considering the flexible energy

allocation policy would induce extra nonlinearity, which forms

a complex mixed integer problem. Moreover, it would be more

complex when considering tour scheduling. It involves finding

an optimal closed charging tour, similar to solving a Traveling

Salesman Problem which is NP-hard [27]. Therefore, our

initial problem is nonlinear as well as the combination of two

NP-hard problems which shows great difficulty.

IV. SOLUTION

A. Area Partition

In this subsection, we try to reduce the number of candidate

sensor positions from infinite to finite. As sensors can be

deployed at any point of a given square plane Ω = a ∗ a,

we first confine the deployment by partitioning the placement

area into many small subareas. As show in Fig. 2, we discrete

the plane Ω into uniform grids with side length δ. Suppose

we have Γ number of girds denoted by (g1, g2, ...gΓ), where

Γ =
⌈
|Ω|
δ2

⌉
. Next, we can approximately regard all points

in the same grid are identical and the point in a grid can

be randomly chosen as the candidate placement position.

Naturally, the coverage effectiveness from a sensor at any

location in the gird to any POI can be viewed as a constant,

which is equal to that achieved from the longest distance

between the grid and the POI. Taking Fig. 2 as an example,

given a fixed POI o and any two sensors si and s′i deployed

in grid gi respectively, the distance between sensor si or s′i
and POI o can be approximately equal to the longest distance

d(gi, o) as shown in green line. Then we have the relationship

d(si, o) ≈ d(s′i, o) ≈ d(gi, o). Apparently, the approximated

charging utility is the minimum utility that can be achieved

from any sensor in the grid.

In fact, as each deployed sensor has its maximal coverage

range with radius length D, it can achieve zero or non-zero

utility value according to whether the distance between the

sensor and the POI exceeds D or not. In Fig. 2, observing

two sensor sj and s′j in grid gj have d(sj , o) ≤ D and

d(s′j , o) > D respectively, we calculate the charging utility

value u(sj , o) > 0 and u(s′j , o) = 0 subsequently. Thus,

to address the performance loss, we adopt a conservation

scheme to decide the coverage distance by checking whether

d(gi, o) exceeds D or not. Then we modify the utility model

as follows:
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Fig. 3: Charging Discretization

u(gi, o) =

⎧⎨
⎩

λ
∑

psi
∈gi

ei

(d(gi,o)+α)2
, d(gi, o) ≤ D

0, d(gi, o) > D,
(7)

where
∑

psi
∈gi

ei represents the sum of harvested energy of

rechargeable sensors deployed in grid gi.

We have the following lemmas for coverage distance ap-

proximation and charging utility approximation error.

Lemma 1. If u(gi, o) > 0, which means the approximated
charging utility from any sensor in grid gi to POI o is greater
than zero, then any sensor in grid gi can cover POI o with
the coverage distance D −√

2δ.

Lemma 2. Set

δ =

√
2

2
α(

1√
1− ε

− 1),

where ε is an arbitrarily small positive parameter (0 ≤ ε ≤ 1).
For any sensor si that is deployed in the grid gi to cover POI
o, we have

u(si, o) ≥ (1− ε)u(gi, o). (8)

Proof: We can take δ into the utility model above and

calculate the ratio u(si, o) to u(gi, o) as

u(si,o)
u(gi,o)

= (d(gi,o)+α
d(si,o)+α )

2 ≥ ( d(gi,o)+α

d(gi,o)+
√
2δ+α

)2

= ( d(gi,o)+α
d(gi,o)+

α√
1−ε

)2 = (1− ε) (d(gi,o)+α)2

(
√
1−εd(gi,o)+α)

2 ≥ 1− ε.

Thus we get the result u(si, o) ≥ (1 − ε)u(gi, o) and

meanwhile have Γ uniform grids with the length δ.

B. Charging Discretization
After area partition, we have finite candidate positions for

sensor placement. We emphasize that in each grid it is allowed

to deploy more than one sensor, while the energy budget of

the mobile charger is not violated. As deployed sensors can be

flexibly charged, we presents another charging discretization

method to allocate energy and approximate the charging utility,

as shown in Fig. 3.

For the rechargeable sensor with a battery capacity E,

we divide E into uniform T pieces and let emin = E
T be

the minimum amount of energy charged to a sensor. Then

for any sensor sh that can be placed in grid gi, T virtual

copies {s1i,h, s2i,h, ..., sTi,h} are created and each copy ski,h
corresponds to kemin amount of received energy. Then we

have the modified utility model as follows:

u(ski,h, oj) =

{
λkemin

(d(ski,h,oj)+α)2
, d(ski,h, oj) ≤ D

0, d(ski,h, oj) > D.
(9)

We note that although such discretization method incurs

utility error, it can be bounded as shown in Lemma 4.

C. Problem Reformulation

After above approximation procedures, we have finite can-

didate positions for sensor placement and charging strategies

for energy allocation that we can obtain nΓT virtual sensors

X in the overall network. Similar to Equation 2, the additive

utility for POI oj is fX′(oj) =
∑

ski,h∈X′
u(ski,h, oj) and we have

the discrete utility as

UX′(oj) = min{fX′(oj), Uthreshold}. (10)

Therefore the overall charging utility is U(X ′) =
m∑
j=1

UX′(oj).

As a mobile charger needs to optimize its charging tour

after sensor placement, we adopt a conservative method that

uses the longest distance d(gi, gj) between two grids (gi, gj)
to calculate the traveling cost. Meanwhile, we approximate

the distance of sensors in the same grid to be zero, while

considering the bound of performance loss after area partition.

Therefore, this conservative method can guarantee the energy

budget constraint not be violated and we use L(P ′
X′) to denote

the modified traveling path.

Thus the initial P1 problem can be reformulated as

(P2) : max

m∑
j=1

UX′(oj) (11)

s.t. c1L(P ′
X′) + c2

∑
ski,h∈X′

kemin ≤ Budget, ∀X ′ ⊆ X

(11a)

Now P2 becomes as a combinatorial optimization problem

where (11a) shows more stringent constraint of the energy

budget. Therefore, P2 falls into the scope of maximizing a

submodular function subject to a general routing constraint.

In the next section we give some preliminary definitions to

assist further theoretical analysis.

D. Approximation Algorithm

The detailed algorithm for the charging maximization prob-

lem after discretization is described in Algorithm 1. We draw

Γ =
⌈
|Ω|
δ2

⌉
uniform grids with the length δ =

√
2
2 α( 1√

1−ε
−1).

Next, the sensor energy capacity E is divided into uniform T
pieces with the minimum emin amount of energy.

Therefore the main idea of the algorithm is to select the most

cost-efficient virtual sensor s∗ in each iteration as follows.

s∗ = argmax
sh,k
i ∈X\X′

U(X ′ ∪ {sh,ki })− U(X ′)

Ĉ(X ′ ∪ {sh,ki })− Ĉ(X ′)
. (12)

Initially, the candidate set X has nΓT virtual sensors and

the selected virtual sensor set X ′ is empty. We would calculate

the marginal charging utility U(X ′∪{sh,ki })−U(X ′) accord-

ing the utility model when adding a new virtual sensor sh,ki .

Meanwhile, we calculate the marginal energy consumption

Ĉ(X ′ ∪ {sh,ki })− Ĉ(X ′) using an approximation cost func-

tion Ĉ since the optimal cost is often infeasible to compute.

Then we choose a fast and simple nearest neighbour rule with

a log(nΓT )-approximation ratio and the impact on quality of

this approximation would be described in next subsection.



Algorithm 1: Approximation Algorithm

Input: The positions of m POIs, the number of sensors n, the
parameters of the coverage utility model α, and energy
consumption coefficient c1, c2, each POI utility
threshold Uthreshold and energy capacity Budget.

Output: The selected virtual sensor X ′, overall coverage utility
U(X ′).

1 Partition the given quare plane into many subareas by drawing

Γ =
⌈

|Ω|
δ2

⌉
uniform grids with the length δ =

√
2

2
α( 1√

1−ε
− 1).

2 Divide the sensor energy capacity E into uniform T pieces

with the minimum amount of charged energy emin = E
T

. Then
we have nΓT virtual sensors denoted by set X .

3 Initial: X ′ = ∅,Ĉ(X ′) = 0;

A = argmax{U(sh,ki )|sh,ki ∈ X, Ĉ(sh,ki ) ≤ Budget};
4 while X �= null do
5 foreach sh,ki ∈ X do
6 Computing marginal utility U(X ′ ∪ {sh,ki })− U(X ′)

and marginal traveling energy consumption
Ĉ(X ′ ∪ {sh,ki })− Ĉ(X ′) using nearest neighbour rule
and a so-called substitute algorithm.

7 s∗ = argmax
s
h,k
i ∈X\X′

U(X′∪{sh,k
i })−U(X′)

Ĉ(X′∪{sh,k
i })−Ĉ(X′)

8 if Ĉ(X ′ ∪ {s∗}) ≤ Budget then
9 X ′ = X ′ ∪ {s∗};

10 if U(A) ≥ U(X ′) then
11 X ′ = A;

12 Output X ′, U(X ′);

Since the charging utility is approximated in a grid by area

partition, all sensors in the grid would be charged successfully

as long as the traveling path of the mobile charger intersects

with the grid. Then after using the nearest neighbour rule to

achieve the approximated tour, we use a substitute algorithm to

shorten the tour further which is detailed in Algorithm 2. The

progress of iteration terminates until violating the budget of

the mobile charger Ĉ(X ′ ∪ {s∗}) ≤ Budget. Upon obtaining

X ′, we compare U(X ′) with U(A) which selects the single

sensor and choose the maximal one in the end.

Substitute algorithm: Supposing that utilizing the nearest

neighbour rule helps acquire γ grids {g′1, g′2, ..., g′γ} in order

and we connect their respective center points p1, p2, ..., pγ to

construct the initial closed tour L(P ). Note that there may

be multiple sensors deployed in a grid, we can still use one

position to represent them due to the location approximation

and performance loss guarantee. Then we use a binary search

idea to find the substitute locations for sensors and optimize

the tour iteratively.

For each point pi in P , we try to connect pi−1 and pi+1

to construct the segment pi−1pi+1 and check whether gi is

path-covered by pi−1pi+1 by comparing the least distance

with δ. If yes, we obtain p′i inside pi−1pi+1 as well as

in gi; otherwise, we search another location p′i inside the

segment pipi+1 using binary search with a granularity control

parameter σ to replace pi, under the constraint that gi should

be path-covered by segment pi−1p′i, too. In the binary search,

Algorithm 2: Substitute Algorithm

Input: The acquired grids set G′ = {g′1, g2, ..., g′γ}, side length
of grid δ, the control parameter σ .

Output: The shortened traveling path L(P ′).
1 for all pi (i = 1, 2, ..., γ) do
2 Connect pi−1, pi and pi+1 respectively to construct the

segment set C(pi−1pi) and C(pi−1pi+1).
3 if all grids path-covered by C(pi−1pi) are also

path-covered by C(pi−1pi+1) then
4 P ′ ←− Obtain p′i in P ;

5 else
6 ps = pi; pt = pi+1;
7 while |pspt| > σ do
8 p′i = (ps + pt)/2;

9 if all grids in C(pi−1p′i) ∪ C(pip′i) are in
C(pi−1p′i) then

10 ps = p′i;

11 else
12 pt = p′i;

13 P ′ ←− replace pi by p′i in P ;

initial path

find

1
2

3
4

5

find find

find

reconstructed path

Binary search

Substitute Binary search

Binary search Substitute

Substitute

Substitute

Fig. 4: Substitute process

the parameter σ is used to control the granularity of binary

search. An example of Algorithm 2 is shown in Fig. 4, the

traveling path is initialized to be {p0, p1, p2, p3, p4, p0}. The

location p1 is not path-covered by p0p2, and thus binary search

is used to find a new path p0p′1 to substitute segment p0p1.

Specifically, path 1, 2, 3, 4, and 5 are tried and finally path 5 is

chosen as it path-covers g1. Thus, we select the corresponding

node p′1 to substitute p1. Using the same substitute method,

we find p′2 and p′4. We obtain p′3 because the grid g3 is path-

covered by p′2p4. Finally, we find the new locations by the

substitute method and therefore the traveling path is updated

to {p0, p′1, p′2, p′3, p′4, p0} as shown in Fig. 4.



V. THEORETICAL ANALYSIS

Definition 1: (Nonnegativity, Monotonicity, and Submod-
ularity) Given a finite ground set U , a real-valued set function

defined as f : 2U → R, f is called nonnegative, monotone
(nondecreasing), and submodular if and only if it satisfies

following conditions, respectively.

• f(∅) = 0 and f(A) ≥ 0 for all A ⊆ U (nonnegative);

• f(A) ≤ f(B) for all A ⊆ B ⊆ U or equivalently: f(A∪
{e})−f(A) > 0 for all A ⊆ U and e ∈ U\A (monotone);

• f(A)+f(B) ≥ f(A∪B)+f(A∩B), for any A,B ⊆ U
or equivalently: f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) −
f(B), A ⊆ B ⊆ U , e ∈ U\B (submodular);

Then, we have the following lemma:

Lemma 3. The objective function in P2 is nonnegative,
monotone and submodular.

Proof: Apparently, the objective function is nonnegative

and monotone according to the utility model in Equation 9,

10 and 11. Given the virtual sensor subset X ′′ ⊂ X ′ ⊂ X ,

we have U(X ′) ≥ U(X ′′) ≥ 0.

To prove the submodularity, we should prove the property

of diminishing marginal utility in our formulated objective

function. As the coverage utility is addictive for m POIs,

we only need to compare the marginal utility ΔsUX′′(oj) =
UX′′∪{s}(oj) − UX′′(oj) and ΔsUX′(oj) = UX′∪{s}(oj) −
UX′(oj) of any POI oj when adding s into X ′′ and X ′

respectively.

Considering the utility threshold Uthreshold, the charging

utility is

UX′′(oj) = min{fX′′(oj), Uthreshold}, (13)

UX′(oj) = min{fX′(oj), Uthreshold}. (14)

1. If Uthreshold ≤ fX′′(oj), then UX′′(oj) = UX′(oj) =

Uthreshold. The coverage utility is still Uthreshold after adding

a sensor s. Thus we have ΔsUX′′(oj) = ΔsUX′(oj) = 0.

2. If fX′′(oj) < Uthreshold ≤ fX′(oj), then UX′′(oj)
= fX′′(oj) and UX′(oj) = Uthreshold. After adding a sen-

sor s, UX′′∪{s}(oj) = min{fX′′∪{s}(oj), Uthreshold} and

UX′∪{s}(oj) = Uthreshold. We have

ΔsUX′′(oj)−ΔsUX′(oj)

= min{fX′′∪{s}(oj), Uthreshold} − fX′′(oj)

= min{fX′′∪{s}(oj)− fX′′(oj), Uthreshold − fX′′(oj)} ≥ 0.

3. If fX′(oj) < Uthreshold ≤ fX′′∪{s}(oj), then UX′′(oj)
= fX′′(oj) and UX′(oj) = fX′(oj). After adding a sensor

s, UX′′∪{s}(oj) = min{fX′′∪{s}(oj), Uj} = Uthreshold and

UX′∪{s}(oj) = min{fX′∪{s}(oj), Uthreshold} = Uthreshold.

We have
ΔsUX′′(oj)−ΔsUX′(oj)

= Uthreshold − fX′′(oj)− (Uthreshold − fX′(oj))

= fX′(oj)− fX′′(oj) ≥ 0.

4. If fX′′∪{s}(oj) < Uthreshold ≤ fX′∪{s}(oj),
UX′′(oj) = fX′′(oj) and UX′(oj) = fX′(oj).
After adding a sensor s, we have UX′′∪{s}(oj) =

min{fX′′∪{s}(oj), Uthreshold} = fX′′∪{s}(oj) and

UX′∪{s}(oj) = min{fX′∪{s}(oj), Uthreshold} = Uthreshold.

We have
ΔsUX′′(oj)−ΔsUX′(oj)

= fX′′∪{s}(oj)− fX′′(oj)− (Uj − fX′(oj))

= u(s, oj) + fX′(oj)− Uj

= fX′∪{s}(oj)− Uj ≥ 0.

5. If fX′∪{s}(oj) < Uthreshold, UX′′(oj) = fX′′(oj)
and UX′(oj) = fX′(oj). After adding a sensor s, we have

UX′′∪{s}(oj) = min{fX′′∪{s}(oj), Uthreshold} = fX′′∪{s}(oj)
and UX′∪{s}(oj) = min{fX′∪{s}(oj), Uthreshold} =

fX′∪{s}(oj). Then we derive that

ΔsUX′′(oj)−ΔsUX′(oj)

= fX′′∪{s}(oj)− fX′′(oj)− (fX′∪{s}(oj)− fX′(oj))

= u(s, oj)− u(s, oj) = 0.

Therefore, we prove the objective function is submodular.

Lemma 4. When the mobile charger has a large energy
capacity that B > 2

√
2nc1a, the discrete utility after charging

discretization would achieve at least 1/2 of continuous optimal
charging utility.

Proof: As the mobile charger has more than 2
√
2nc1a

amount of energy, then it can visit all sensors at least once

when traveling in the a∗a square plain. We use U∗ denote the

continuous optimal solution where any sensor can be charged

any amount of energy to maximize the overall coverage utility.

Given any minimum amount of energy charged to a sensor

as emin, we can achieve a discrete solution Ur by rounding

U∗. For example, for any sensor si to be charged ei amount

of energy in U∗, we round it by charging only
⌊

ei
emin

⌋
emin

and thus construct this discrete solution Ur. Apparently due

to
⌊

ei
emin

⌋
emin ≤ ei, Ur is a feasible discrete solution.

Moveover, the sufficient energy of the mobile charger can

maintain that each sensor can be charged emin amount of

energy. Then we consider this kind of feasible discrete solution

which can be denoted by Ue. Naturally, the value of the sum

of the two discrete solutions is larger than the value of the

optimal solution and we have

U∗ ≤ Ur + Ue. (15)

If we use U∗
c to denote the optimal discrete solution

based on the emin amount of energy, apparently we have the

following two relations as

Ur ≤ U∗
c , Ue ≤ U∗

c

and derive Ur +Ue ≤ 2U∗
c . Combining Equation 15, we have

the result U∗ ≤ 2U∗
c .

Theorem 1. Given the energy capacity of the mobile charger
that Budget > 2

√
2nc1a, the proposed algorithm achieves

an approximation ratio of (1 − ε)/4(1 − 1/e) and its time
complexity is O(nΓT )2.

Proof: From Subsection IV-C we have transformed the

initial problem into maximizing a submodular function subject
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to a general routing constraint. Thus referring to [28], the

iterative greedy cost-efficient algorithm would have 1/2(1 −
1/e) bi-criterion approximation ratio compared to the optimal

solution with a slight relaxed budget constraint. The approx-

imated cost function Ĉ would directly influence the relaxed

decree of budget constraint. In our proposed algorithm, the

nearest neighbour rule can achieve log(nΓT ) that guarantee

the relaxed effect which can be found in [28].

Furthermore, as we set δ =
√
2
2 α( 1√

1−ε
− 1), we have the

utility error u(si, o) ≥ (1− ε)u(gi, o) by following Lemma 2.

And Lemma 4 shows the 1/2 gap between the discrete and

continuous solution. Finally, the our obtained solution can

achieve (1−ε)/4(1−1/e) approximation ratio. Due to the nΓT
iteration at most and nΓT times when using the neighbour rule

to find the next virtual sensor in each iteration, therefore the

overall time complexity is bounded by O(nΓT )2.

Lemma 5. Using L(P ′) to denote the achieved traveling path
by Algorithm 2, then we can easily derive that each substitute
operation reduces the traveling length by triangle inequality.

Let L(P ∗) denote the optimal traveling path. With Lem-

ma 5, we have the following theorem.

Theorem 2. Having achieved the approximated path L(P )
with γ number of grids, we can obtain |L(P ′)| ≤ |L(P ∗)| +√
2γδ by Algorithm 2 with the time complexity O(γ2 log δ

σ ).

Proof: We denote the achieved grids to be path-

covered are G = {g1, g2, ..., gγ} and use L(P ∗) =
{p0, p∗1, ..., p∗i , ..., p∗γ , p0} to denote the optimal traveling path

where p0 is the start and end point. After executing Al-

gorithm 2, we can obtain the traveling path L(P ′) =
{p0, p′1, ..., p′i, ..., p′γ , p0}. we use p∗i , p′i and pi to denote the

optimal stop location, the stop location obtained by Algorith-

m 2 and the center location in grid gi, respectively. Then we

construct an auxiliary detouring path including the optimal one

to present our theoretical result.

The detour path is conducted by adding segment {p∗i p′ip∗i }
into the optimal path L(P ∗). An shown in Fig. 5, we have the

optimal path {p0, p∗1, p∗2, p0} and {p0, p′1, p′2, p0} obtained by

substitute method. Thus we conduct the detour traveling path

as {p0, p∗1, p′1, p∗1, p∗2, p′2, p∗2, p0}. According to the triangle

inequality, we have

|p0, p∗1p′1p∗1, ..., p∗γp′γp∗γ , p0| ≥ |L(P ′)|.
For the bounded grid, we have

|p∗i p′ip∗i | = 2|p∗i p′i| ≤
√
2δ.

Hence

|p0, p∗1p′1p∗1, ..., p∗γp′γp∗γ , p0| ≤ |L(P )∗|+
√
2γδ.

Thus, we obtain |L(P ′)| ≤ |L(P ∗)|+√
2γδ.

Next, we investigate the complexity of Algorithm 2. It

is intuitive that the time complexity consists of iterations

and the substitute consumption. In that, it generates O(γ)
iterations for γ grids. In each iteration, the binary search

consumes O(γ log δ
σ ) for each substitute step. Therefore, the

time complexity of substitute method is O(γ2 log δ
σ ).

VI. EVALUATIONS

In this section, we conduct extensive simulations to verify

the performance of the proposed algorithm in terms of the

error threshold ε, the budget of the mobile charger, energy

discretization number, utility threshold.

A. Evaluation Setup

In our simulation, the sensing region is a 50m∗50m square

area. We use the following default setup that there are 50 POIs

in the 2D plane and 20 sensors at most. The energy capacity

of the mobile charger and one sensor is set as Budget = 3000
and E = 80 respectively. The utility threshold of each POI is

set to 700. The default error threshold ε is set as ε = 0.8 and

the default minimum amount of charged energy emin = 4.

α = 10, c1 = 1, c2 = 10, λ = 1000.

B. Baseline Setup

As there is no algorithm available for jointly sensor place-

ment and mobile charging problem. We devised two algorithm-

s named random algorithm (RAN) and full charging algorithm

(FC) for comparison. RAN randomly selects a position for

sensor placement and allocates random amount of energy

while not violating the budget constraint at each iteration. If

exceeding the budget, RAN randomly selects another position

and energy allocation strategy. FC is similar to our proposed

algorithm but tries to charge the placed sensor up to full energy

capacity. At each iteration, FC uses a simple greedy strategy

and selects the position for placement that can achieve the

maximal utility.

C. Evaluation Results and Analysis

1) Impact of error threshold ε. Our proposed algorithm

outperforms the other algorithms by at least 14.38% as the

error threshold ε increases from 0.2 to 0.9. As shown in

Fig. 6, all these algorithms have a diminishing trend with the

error threshold ε. They decrease fast as the error threshold ε
rises. This is because the utility function is inverse proportion

to the distance square. Rising the error threshold ε would

directly extend the side length of partitioned uniform grids

according to equation δ =
√
2
2 α( 1√

1−ε
− 1) and lead to the

longer approximated coverage distance. Therefore, to reduce

the running time of our algorithm, we set ε = 0.5 and the side

length of grid δ = 2.93.

2) Impact of the budget of the mobile charger Budget. Our

proposed algorithm outperforms the other algorithms as the
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budget of the mobile charger increases. Obviously, when we

provide more energy for the mobile charger, the performance

of all the algorithms has an increasing trend. As depicted in

Fig. 7, our algorithm increase the coverage utility by 27.5%
when the budget is improved from 10000 to 24000. However,

it then becomes relatively stable when the budget is more than

20000. What accounts for this stability is the influence of the

utility threshold. Since the utility threshold of each POI is 700

and there are 50 POIs in default, the overall coverage utility

threshold is 50 ∗ 700 = 35000 and increasing the budget from

20000 to 24000 would not bring external utility.

3) Impact of energy discretization number T . Our proposed

algorithm outperforms the other algorithms by at least 17.5%
as number of energy discretization increases from 5 to 40.

From Fig. 8 we can see that the utility of our proposed

algorithm has a slightly increasing trend with the number of

energy discretization while FC just becomes stable. This is

because FC always selects full charging mode which may incur

possible waste of energy. Specifically, When additive utility

on one POI oj has grown up near to the amount of threshold

Uthreshold, then adding a new sensor si with full charging

will only have a small value Uthreshold − u(si, oj) of the

marginal utility. The charging utility of our proposed algorithm

improves because the discretization granularity provides more

energy allocation strategies and would directly influence the

required optimality.

4) Impact of the utility threshold Uthreshold. Our proposed

algorithm outperforms the other algorithms by at least 5.8% as

POI utility threshold rises from 700 to 1400. Fig. 9 shows that

the charging utility of the proposed algorithm and FC grows

up nearly linearly with the utility threshold. This is because

the increasement of threshold gives more improving space of

the utility that makes the ascend trend.

For easy understanding, we visualize the sensor placement

and energy allocation strategy as shown in Fig. 10. There

are 50 POIs and the area is partitioned into 17 ∗ 17 = 289
uniform grids, where we use original point (0,0) to denote

the base station. By executing the proposed algorithm, we

select 21 girds for sensor placement with corresponding energy

allocation. The amount of energy allocated to sensors is

indicated by color map. As the energy capacity of each sensor

is divided into 20 pieces, we can place one sensor and charge

half full energy if allocating 10 pieces of energy. Besides, we

can place two sensors (one is full-charged and the other is

half-charged) in a grid if the amount of allocated energy is

30 pieces. Moreover, more grids are selected near the original
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Fig. 10: A strategy visualization example

point because of the less traveling cost.

VII. FIELD EXPERIMENT

To further evaluate our proposed algorithm, we conduct field

experiments to evaluate the performance.

As shown in Fig. 11, our testbed consists of a robot car

with a TX91501 power transmitter produced by Powercast

[29], rechargeable sensors and an AP connecting to a laptop

to report the collected energy. We set 6 POIs with coordi-

nates (1.5, 1.5), (1.8, 3.6), (4.2, 1.8), (3.4, 4.6), (2.4, 2.6) and

(3, 1.6) in a 5m∗5m square area of the office room. Then we

can record the charging utility from deployed sensors. Sensors

can harvest flexible energy via various charging duration for

the fixed received power. The robot car moves at a speed

of 0.3m/s. Thus, we can use time constraint to represent the

energy budget. In our experiment, we restrict the executing

time of the car to 5 minutes.

Fig. 12 shows a practical example of practical sensor place-

ment and charging tour by executing our algorithm, where the

mobile charger starts and ends at the bottom-left corner. The

mobile charger visit 6 grids to provide energy and the charging

time for each grid is denoted by the number in girds. We

compare the charging utility between the proposed algorithm

and FC by setting the utility threshold from 700 to 1400 as

shown in Fig. 13. Thus our devised algorithm outperforms FC

at least 7.8% and thus verifies the superiority.

VIII. CONCLUSION

This paper represents the first efforts towards joint sensors

placement and mobile charging scheduling, where a mobile

charger visits these deployed sensors for flexible energy trans-

fer so as to improve the overall charging utility. We utilize the

area partition and charging energy discretization methods to
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construct many virtual sensors with respect to various amount

of harvested energy in a finite candidate positions. We present

specific theoretical analysis to bound the discrete performance

loss and prove the submodularity of the reformed objective

function. Thus an efficient (1− ε)/4(1− 1/e) approximation

algorithm is proposed to achieve a near optimal solution in-

cluding deployed sensors with partial energy requirement and

the closed charging tour. Finally, we evaluated the performance

of the proposed algorithm against the full charging algorithm

and our proposed algorithm outperforms well according to the

results in the simulation and field experiment.
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